1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
|
import numpy as np
from . import learning_curve
from ..utils import check_matplotlib_support
class LearningCurveDisplay:
"""Learning Curve visualization.
It is recommended to use
:meth:`~sklearn.model_selection.LearningCurveDisplay.from_estimator` to
create a :class:`~sklearn.model_selection.LearningCurveDisplay` instance.
All parameters are stored as attributes.
Read more in the :ref:`User Guide <visualizations>`.
.. versionadded:: 1.2
Parameters
----------
train_sizes : ndarray of shape (n_unique_ticks,)
Numbers of training examples that has been used to generate the
learning curve.
train_scores : ndarray of shape (n_ticks, n_cv_folds)
Scores on training sets.
test_scores : ndarray of shape (n_ticks, n_cv_folds)
Scores on test set.
score_name : str, default=None
The name of the score used in `learning_curve`. It will be used to
decorate the y-axis. If `None`, the generic name `"Score"` will be
used.
Attributes
----------
ax_ : matplotlib Axes
Axes with the learning curve.
figure_ : matplotlib Figure
Figure containing the learning curve.
errorbar_ : list of matplotlib Artist or None
When the `std_display_style` is `"errorbar"`, this is a list of
`matplotlib.container.ErrorbarContainer` objects. If another style is
used, `errorbar_` is `None`.
lines_ : list of matplotlib Artist or None
When the `std_display_style` is `"fill_between"`, this is a list of
`matplotlib.lines.Line2D` objects corresponding to the mean train and
test scores. If another style is used, `line_` is `None`.
fill_between_ : list of matplotlib Artist or None
When the `std_display_style` is `"fill_between"`, this is a list of
`matplotlib.collections.PolyCollection` objects. If another style is
used, `fill_between_` is `None`.
See Also
--------
sklearn.model_selection.learning_curve : Compute the learning curve.
Examples
--------
>>> import matplotlib.pyplot as plt
>>> from sklearn.datasets import load_iris
>>> from sklearn.model_selection import LearningCurveDisplay, learning_curve
>>> from sklearn.tree import DecisionTreeClassifier
>>> X, y = load_iris(return_X_y=True)
>>> tree = DecisionTreeClassifier(random_state=0)
>>> train_sizes, train_scores, test_scores = learning_curve(
... tree, X, y)
>>> display = LearningCurveDisplay(train_sizes=train_sizes,
... train_scores=train_scores, test_scores=test_scores, score_name="Score")
>>> display.plot()
<...>
>>> plt.show()
"""
def __init__(self, *, train_sizes, train_scores, test_scores, score_name=None):
self.train_sizes = train_sizes
self.train_scores = train_scores
self.test_scores = test_scores
self.score_name = score_name
def plot(
self,
ax=None,
*,
negate_score=False,
score_name=None,
score_type="test",
log_scale=False,
std_display_style="fill_between",
line_kw=None,
fill_between_kw=None,
errorbar_kw=None,
):
"""Plot visualization.
Parameters
----------
ax : matplotlib Axes, default=None
Axes object to plot on. If `None`, a new figure and axes is
created.
negate_score : bool, default=False
Whether or not to negate the scores obtained through
:func:`~sklearn.model_selection.learning_curve`. This is
particularly useful when using the error denoted by `neg_*` in
`scikit-learn`.
score_name : str, default=None
The name of the score used to decorate the y-axis of the plot. If
`None`, the generic name "Score" will be used.
score_type : {"test", "train", "both"}, default="test"
The type of score to plot. Can be one of `"test"`, `"train"`, or
`"both"`.
log_scale : bool, default=False
Whether or not to use a logarithmic scale for the x-axis.
std_display_style : {"errorbar", "fill_between"} or None, default="fill_between"
The style used to display the score standard deviation around the
mean score. If None, no standard deviation representation is
displayed.
line_kw : dict, default=None
Additional keyword arguments passed to the `plt.plot` used to draw
the mean score.
fill_between_kw : dict, default=None
Additional keyword arguments passed to the `plt.fill_between` used
to draw the score standard deviation.
errorbar_kw : dict, default=None
Additional keyword arguments passed to the `plt.errorbar` used to
draw mean score and standard deviation score.
Returns
-------
display : :class:`~sklearn.model_selection.LearningCurveDisplay`
Object that stores computed values.
"""
check_matplotlib_support(f"{self.__class__.__name__}.plot")
import matplotlib.pyplot as plt
if ax is None:
_, ax = plt.subplots()
if negate_score:
train_scores, test_scores = -self.train_scores, -self.test_scores
else:
train_scores, test_scores = self.train_scores, self.test_scores
if std_display_style not in ("errorbar", "fill_between", None):
raise ValueError(
f"Unknown std_display_style: {std_display_style}. Should be one of"
" 'errorbar', 'fill_between', or None."
)
if score_type not in ("test", "train", "both"):
raise ValueError(
f"Unknown score_type: {score_type}. Should be one of 'test', "
"'train', or 'both'."
)
if score_type == "train":
scores = {"Training metric": train_scores}
elif score_type == "test":
scores = {"Testing metric": test_scores}
else: # score_type == "both"
scores = {"Training metric": train_scores, "Testing metric": test_scores}
if std_display_style in ("fill_between", None):
# plot the mean score
if line_kw is None:
line_kw = {}
self.lines_ = []
for line_label, score in scores.items():
self.lines_.append(
*ax.plot(
self.train_sizes,
score.mean(axis=1),
label=line_label,
**line_kw,
)
)
self.errorbar_ = None
self.fill_between_ = None # overwritten below by fill_between
if std_display_style == "errorbar":
if errorbar_kw is None:
errorbar_kw = {}
self.errorbar_ = []
for line_label, score in scores.items():
self.errorbar_.append(
ax.errorbar(
self.train_sizes,
score.mean(axis=1),
score.std(axis=1),
label=line_label,
**errorbar_kw,
)
)
self.lines_, self.fill_between_ = None, None
elif std_display_style == "fill_between":
if fill_between_kw is None:
fill_between_kw = {}
default_fill_between_kw = {"alpha": 0.5}
fill_between_kw = {**default_fill_between_kw, **fill_between_kw}
self.fill_between_ = []
for line_label, score in scores.items():
self.fill_between_.append(
ax.fill_between(
self.train_sizes,
score.mean(axis=1) - score.std(axis=1),
score.mean(axis=1) + score.std(axis=1),
**fill_between_kw,
)
)
score_name = self.score_name if score_name is None else score_name
ax.legend()
if log_scale:
ax.set_xscale("log")
ax.set_xlabel("Number of samples in the training set")
ax.set_ylabel(f"{score_name}")
self.ax_ = ax
self.figure_ = ax.figure
return self
@classmethod
def from_estimator(
cls,
estimator,
X,
y,
*,
groups=None,
train_sizes=np.linspace(0.1, 1.0, 5),
cv=None,
scoring=None,
exploit_incremental_learning=False,
n_jobs=None,
pre_dispatch="all",
verbose=0,
shuffle=False,
random_state=None,
error_score=np.nan,
fit_params=None,
ax=None,
negate_score=False,
score_name=None,
score_type="test",
log_scale=False,
std_display_style="fill_between",
line_kw=None,
fill_between_kw=None,
errorbar_kw=None,
):
"""Create a learning curve display from an estimator.
Parameters
----------
estimator : object type that implements the "fit" and "predict" methods
An object of that type which is cloned for each validation.
X : array-like of shape (n_samples, n_features)
Training data, where `n_samples` is the number of samples and
`n_features` is the number of features.
y : array-like of shape (n_samples,) or (n_samples, n_outputs) or None
Target relative to X for classification or regression;
None for unsupervised learning.
groups : array-like of shape (n_samples,), default=None
Group labels for the samples used while splitting the dataset into
train/test set. Only used in conjunction with a "Group" :term:`cv`
instance (e.g., :class:`GroupKFold`).
train_sizes : array-like of shape (n_ticks,), \
default=np.linspace(0.1, 1.0, 5)
Relative or absolute numbers of training examples that will be used
to generate the learning curve. If the dtype is float, it is
regarded as a fraction of the maximum size of the training set
(that is determined by the selected validation method), i.e. it has
to be within (0, 1]. Otherwise it is interpreted as absolute sizes
of the training sets. Note that for classification the number of
samples usually have to be big enough to contain at least one
sample from each class.
cv : int, cross-validation generator or an iterable, default=None
Determines the cross-validation splitting strategy.
Possible inputs for cv are:
- None, to use the default 5-fold cross validation,
- int, to specify the number of folds in a `(Stratified)KFold`,
- :term:`CV splitter`,
- An iterable yielding (train, test) splits as arrays of indices.
For int/None inputs, if the estimator is a classifier and `y` is
either binary or multiclass,
:class:`~sklearn.model_selection.StratifiedKFold` is used. In all
other cases, :class:`~sklearn.model_selectionKFold` is used. These
splitters are instantiated with `shuffle=False` so the splits will
be the same across calls.
Refer :ref:`User Guide <cross_validation>` for the various
cross-validation strategies that can be used here.
scoring : str or callable, default=None
A string (see :ref:`scoring_parameter`) or
a scorer callable object / function with signature
`scorer(estimator, X, y)` (see :ref:`scoring`).
exploit_incremental_learning : bool, default=False
If the estimator supports incremental learning, this will be
used to speed up fitting for different training set sizes.
n_jobs : int, default=None
Number of jobs to run in parallel. Training the estimator and
computing the score are parallelized over the different training
and test sets. `None` means 1 unless in a
:obj:`joblib.parallel_backend` context. `-1` means using all
processors. See :term:`Glossary <n_jobs>` for more details.
pre_dispatch : int or str, default='all'
Number of predispatched jobs for parallel execution (default is
all). The option can reduce the allocated memory. The str can
be an expression like '2*n_jobs'.
verbose : int, default=0
Controls the verbosity: the higher, the more messages.
shuffle : bool, default=False
Whether to shuffle training data before taking prefixes of it
based on`train_sizes`.
random_state : int, RandomState instance or None, default=None
Used when `shuffle` is True. Pass an int for reproducible
output across multiple function calls.
See :term:`Glossary <random_state>`.
error_score : 'raise' or numeric, default=np.nan
Value to assign to the score if an error occurs in estimator
fitting. If set to 'raise', the error is raised. If a numeric value
is given, FitFailedWarning is raised.
fit_params : dict, default=None
Parameters to pass to the fit method of the estimator.
ax : matplotlib Axes, default=None
Axes object to plot on. If `None`, a new figure and axes is
created.
negate_score : bool, default=False
Whether or not to negate the scores obtained through
:func:`~sklearn.model_selection.learning_curve`. This is
particularly useful when using the error denoted by `neg_*` in
`scikit-learn`.
score_name : str, default=None
The name of the score used to decorate the y-axis of the plot.
If `None`, the generic `"Score"` name will be used.
score_type : {"test", "train", "both"}, default="test"
The type of score to plot. Can be one of `"test"`, `"train"`, or
`"both"`.
log_scale : bool, default=False
Whether or not to use a logarithmic scale for the x-axis.
std_display_style : {"errorbar", "fill_between"} or None, default="fill_between"
The style used to display the score standard deviation around the
mean score. If `None`, no representation of the standard deviation
is displayed.
line_kw : dict, default=None
Additional keyword arguments passed to the `plt.plot` used to draw
the mean score.
fill_between_kw : dict, default=None
Additional keyword arguments passed to the `plt.fill_between` used
to draw the score standard deviation.
errorbar_kw : dict, default=None
Additional keyword arguments passed to the `plt.errorbar` used to
draw mean score and standard deviation score.
Returns
-------
display : :class:`~sklearn.model_selection.LearningCurveDisplay`
Object that stores computed values.
Examples
--------
>>> import matplotlib.pyplot as plt
>>> from sklearn.datasets import load_iris
>>> from sklearn.model_selection import LearningCurveDisplay
>>> from sklearn.tree import DecisionTreeClassifier
>>> X, y = load_iris(return_X_y=True)
>>> tree = DecisionTreeClassifier(random_state=0)
>>> LearningCurveDisplay.from_estimator(tree, X, y)
<...>
>>> plt.show()
"""
check_matplotlib_support(f"{cls.__name__}.from_estimator")
score_name = "Score" if score_name is None else score_name
train_sizes, train_scores, test_scores = learning_curve(
estimator,
X,
y,
groups=groups,
train_sizes=train_sizes,
cv=cv,
scoring=scoring,
exploit_incremental_learning=exploit_incremental_learning,
n_jobs=n_jobs,
pre_dispatch=pre_dispatch,
verbose=verbose,
shuffle=shuffle,
random_state=random_state,
error_score=error_score,
return_times=False,
fit_params=fit_params,
)
viz = cls(
train_sizes=train_sizes,
train_scores=train_scores,
test_scores=test_scores,
score_name=score_name,
)
return viz.plot(
ax=ax,
negate_score=negate_score,
score_type=score_type,
log_scale=log_scale,
std_display_style=std_display_style,
line_kw=line_kw,
fill_between_kw=fill_between_kw,
errorbar_kw=errorbar_kw,
)
|