1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
|
import pytest
from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier
from sklearn.utils import shuffle
from sklearn.utils._testing import assert_allclose, assert_array_equal
from sklearn.model_selection import learning_curve
from sklearn.model_selection import LearningCurveDisplay
@pytest.fixture
def data():
return shuffle(*load_iris(return_X_y=True), random_state=0)
@pytest.mark.parametrize(
"params, err_type, err_msg",
[
({"std_display_style": "invalid"}, ValueError, "Unknown std_display_style:"),
({"score_type": "invalid"}, ValueError, "Unknown score_type:"),
],
)
def test_learning_curve_display_parameters_validation(
pyplot, data, params, err_type, err_msg
):
"""Check that we raise a proper error when passing invalid parameters."""
X, y = data
estimator = DecisionTreeClassifier(random_state=0)
train_sizes = [0.3, 0.6, 0.9]
with pytest.raises(err_type, match=err_msg):
LearningCurveDisplay.from_estimator(
estimator, X, y, train_sizes=train_sizes, **params
)
def test_learning_curve_display_default_usage(pyplot, data):
"""Check the default usage of the LearningCurveDisplay class."""
X, y = data
estimator = DecisionTreeClassifier(random_state=0)
train_sizes = [0.3, 0.6, 0.9]
display = LearningCurveDisplay.from_estimator(
estimator, X, y, train_sizes=train_sizes
)
import matplotlib as mpl
assert display.errorbar_ is None
assert isinstance(display.lines_, list)
for line in display.lines_:
assert isinstance(line, mpl.lines.Line2D)
assert isinstance(display.fill_between_, list)
for fill in display.fill_between_:
assert isinstance(fill, mpl.collections.PolyCollection)
assert fill.get_alpha() == 0.5
assert display.score_name == "Score"
assert display.ax_.get_xlabel() == "Number of samples in the training set"
assert display.ax_.get_ylabel() == "Score"
_, legend_labels = display.ax_.get_legend_handles_labels()
assert legend_labels == ["Testing metric"]
train_sizes_abs, train_scores, test_scores = learning_curve(
estimator, X, y, train_sizes=train_sizes
)
assert_array_equal(display.train_sizes, train_sizes_abs)
assert_allclose(display.train_scores, train_scores)
assert_allclose(display.test_scores, test_scores)
def test_learning_curve_display_negate_score(pyplot, data):
"""Check the behaviour of the `negate_score` parameter calling `from_estimator` and
`plot`.
"""
X, y = data
estimator = DecisionTreeClassifier(max_depth=1, random_state=0)
train_sizes = [0.3, 0.6, 0.9]
negate_score = False
display = LearningCurveDisplay.from_estimator(
estimator,
X,
y,
train_sizes=train_sizes,
negate_score=negate_score,
)
positive_scores = display.lines_[0].get_data()[1]
assert (positive_scores >= 0).all()
assert display.ax_.get_ylabel() == "Score"
negate_score = True
display = LearningCurveDisplay.from_estimator(
estimator, X, y, train_sizes=train_sizes, negate_score=negate_score
)
negative_scores = display.lines_[0].get_data()[1]
assert (negative_scores <= 0).all()
assert_allclose(negative_scores, -positive_scores)
assert display.ax_.get_ylabel() == "Score"
negate_score = False
display = LearningCurveDisplay.from_estimator(
estimator,
X,
y,
train_sizes=train_sizes,
negate_score=negate_score,
)
assert display.ax_.get_ylabel() == "Score"
display.plot(negate_score=not negate_score)
assert display.ax_.get_ylabel() == "Score"
assert (display.lines_[0].get_data()[1] < 0).all()
@pytest.mark.parametrize(
"score_name, ylabel", [(None, "Score"), ("Accuracy", "Accuracy")]
)
def test_learning_curve_display_score_name(pyplot, data, score_name, ylabel):
"""Check that we can overwrite the default score name shown on the y-axis."""
X, y = data
estimator = DecisionTreeClassifier(random_state=0)
train_sizes = [0.3, 0.6, 0.9]
display = LearningCurveDisplay.from_estimator(
estimator, X, y, train_sizes=train_sizes, score_name=score_name
)
assert display.ax_.get_ylabel() == ylabel
X, y = data
estimator = DecisionTreeClassifier(max_depth=1, random_state=0)
train_sizes = [0.3, 0.6, 0.9]
display = LearningCurveDisplay.from_estimator(
estimator, X, y, train_sizes=train_sizes, score_name=score_name
)
assert display.score_name == ylabel
@pytest.mark.parametrize("std_display_style", (None, "errorbar"))
def test_learning_curve_display_score_type(pyplot, data, std_display_style):
"""Check the behaviour of setting the `score_type` parameter."""
X, y = data
estimator = DecisionTreeClassifier(random_state=0)
train_sizes = [0.3, 0.6, 0.9]
train_sizes_abs, train_scores, test_scores = learning_curve(
estimator, X, y, train_sizes=train_sizes
)
score_type = "train"
display = LearningCurveDisplay.from_estimator(
estimator,
X,
y,
train_sizes=train_sizes,
score_type=score_type,
std_display_style=std_display_style,
)
_, legend_label = display.ax_.get_legend_handles_labels()
assert legend_label == ["Training metric"]
if std_display_style is None:
assert len(display.lines_) == 1
assert display.errorbar_ is None
x_data, y_data = display.lines_[0].get_data()
else:
assert display.lines_ is None
assert len(display.errorbar_) == 1
x_data, y_data = display.errorbar_[0].lines[0].get_data()
assert_array_equal(x_data, train_sizes_abs)
assert_allclose(y_data, train_scores.mean(axis=1))
score_type = "test"
display = LearningCurveDisplay.from_estimator(
estimator,
X,
y,
train_sizes=train_sizes,
score_type=score_type,
std_display_style=std_display_style,
)
_, legend_label = display.ax_.get_legend_handles_labels()
assert legend_label == ["Testing metric"]
if std_display_style is None:
assert len(display.lines_) == 1
assert display.errorbar_ is None
x_data, y_data = display.lines_[0].get_data()
else:
assert display.lines_ is None
assert len(display.errorbar_) == 1
x_data, y_data = display.errorbar_[0].lines[0].get_data()
assert_array_equal(x_data, train_sizes_abs)
assert_allclose(y_data, test_scores.mean(axis=1))
score_type = "both"
display = LearningCurveDisplay.from_estimator(
estimator,
X,
y,
train_sizes=train_sizes,
score_type=score_type,
std_display_style=std_display_style,
)
_, legend_label = display.ax_.get_legend_handles_labels()
assert legend_label == ["Training metric", "Testing metric"]
if std_display_style is None:
assert len(display.lines_) == 2
assert display.errorbar_ is None
x_data_train, y_data_train = display.lines_[0].get_data()
x_data_test, y_data_test = display.lines_[1].get_data()
else:
assert display.lines_ is None
assert len(display.errorbar_) == 2
x_data_train, y_data_train = display.errorbar_[0].lines[0].get_data()
x_data_test, y_data_test = display.errorbar_[1].lines[0].get_data()
assert_array_equal(x_data_train, train_sizes_abs)
assert_allclose(y_data_train, train_scores.mean(axis=1))
assert_array_equal(x_data_test, train_sizes_abs)
assert_allclose(y_data_test, test_scores.mean(axis=1))
def test_learning_curve_display_log_scale(pyplot, data):
"""Check the behaviour of the parameter `log_scale`."""
X, y = data
estimator = DecisionTreeClassifier(random_state=0)
train_sizes = [0.3, 0.6, 0.9]
display = LearningCurveDisplay.from_estimator(
estimator, X, y, train_sizes=train_sizes, log_scale=True
)
assert display.ax_.get_xscale() == "log"
assert display.ax_.get_yscale() == "linear"
display = LearningCurveDisplay.from_estimator(
estimator, X, y, train_sizes=train_sizes, log_scale=False
)
assert display.ax_.get_xscale() == "linear"
assert display.ax_.get_yscale() == "linear"
def test_learning_curve_display_std_display_style(pyplot, data):
"""Check the behaviour of the parameter `std_display_style`."""
X, y = data
estimator = DecisionTreeClassifier(random_state=0)
import matplotlib as mpl
train_sizes = [0.3, 0.6, 0.9]
std_display_style = None
display = LearningCurveDisplay.from_estimator(
estimator,
X,
y,
train_sizes=train_sizes,
std_display_style=std_display_style,
)
assert len(display.lines_) == 1
assert isinstance(display.lines_[0], mpl.lines.Line2D)
assert display.errorbar_ is None
assert display.fill_between_ is None
_, legend_label = display.ax_.get_legend_handles_labels()
assert len(legend_label) == 1
std_display_style = "fill_between"
display = LearningCurveDisplay.from_estimator(
estimator,
X,
y,
train_sizes=train_sizes,
std_display_style=std_display_style,
)
assert len(display.lines_) == 1
assert isinstance(display.lines_[0], mpl.lines.Line2D)
assert display.errorbar_ is None
assert len(display.fill_between_) == 1
assert isinstance(display.fill_between_[0], mpl.collections.PolyCollection)
_, legend_label = display.ax_.get_legend_handles_labels()
assert len(legend_label) == 1
std_display_style = "errorbar"
display = LearningCurveDisplay.from_estimator(
estimator,
X,
y,
train_sizes=train_sizes,
std_display_style=std_display_style,
)
assert display.lines_ is None
assert len(display.errorbar_) == 1
assert isinstance(display.errorbar_[0], mpl.container.ErrorbarContainer)
assert display.fill_between_ is None
_, legend_label = display.ax_.get_legend_handles_labels()
assert len(legend_label) == 1
def test_learning_curve_display_plot_kwargs(pyplot, data):
"""Check the behaviour of the different plotting keyword arguments: `line_kw`,
`fill_between_kw`, and `errorbar_kw`."""
X, y = data
estimator = DecisionTreeClassifier(random_state=0)
train_sizes = [0.3, 0.6, 0.9]
std_display_style = "fill_between"
line_kw = {"color": "red"}
fill_between_kw = {"color": "red", "alpha": 1.0}
display = LearningCurveDisplay.from_estimator(
estimator,
X,
y,
train_sizes=train_sizes,
std_display_style=std_display_style,
line_kw=line_kw,
fill_between_kw=fill_between_kw,
)
assert display.lines_[0].get_color() == "red"
assert_allclose(
display.fill_between_[0].get_facecolor(),
[[1.0, 0.0, 0.0, 1.0]], # trust me, it's red
)
std_display_style = "errorbar"
errorbar_kw = {"color": "red"}
display = LearningCurveDisplay.from_estimator(
estimator,
X,
y,
train_sizes=train_sizes,
std_display_style=std_display_style,
errorbar_kw=errorbar_kw,
)
assert display.errorbar_[0].lines[0].get_color() == "red"
|