File: test_plot.py

package info (click to toggle)
scikit-learn 1.2.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 23,280 kB
  • sloc: python: 184,491; cpp: 5,783; ansic: 854; makefile: 307; sh: 45; javascript: 1
file content (354 lines) | stat: -rw-r--r-- 11,324 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
import pytest

from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier
from sklearn.utils import shuffle
from sklearn.utils._testing import assert_allclose, assert_array_equal

from sklearn.model_selection import learning_curve
from sklearn.model_selection import LearningCurveDisplay


@pytest.fixture
def data():
    return shuffle(*load_iris(return_X_y=True), random_state=0)


@pytest.mark.parametrize(
    "params, err_type, err_msg",
    [
        ({"std_display_style": "invalid"}, ValueError, "Unknown std_display_style:"),
        ({"score_type": "invalid"}, ValueError, "Unknown score_type:"),
    ],
)
def test_learning_curve_display_parameters_validation(
    pyplot, data, params, err_type, err_msg
):
    """Check that we raise a proper error when passing invalid parameters."""
    X, y = data
    estimator = DecisionTreeClassifier(random_state=0)

    train_sizes = [0.3, 0.6, 0.9]
    with pytest.raises(err_type, match=err_msg):
        LearningCurveDisplay.from_estimator(
            estimator, X, y, train_sizes=train_sizes, **params
        )


def test_learning_curve_display_default_usage(pyplot, data):
    """Check the default usage of the LearningCurveDisplay class."""
    X, y = data
    estimator = DecisionTreeClassifier(random_state=0)

    train_sizes = [0.3, 0.6, 0.9]
    display = LearningCurveDisplay.from_estimator(
        estimator, X, y, train_sizes=train_sizes
    )

    import matplotlib as mpl

    assert display.errorbar_ is None

    assert isinstance(display.lines_, list)
    for line in display.lines_:
        assert isinstance(line, mpl.lines.Line2D)

    assert isinstance(display.fill_between_, list)
    for fill in display.fill_between_:
        assert isinstance(fill, mpl.collections.PolyCollection)
        assert fill.get_alpha() == 0.5

    assert display.score_name == "Score"
    assert display.ax_.get_xlabel() == "Number of samples in the training set"
    assert display.ax_.get_ylabel() == "Score"

    _, legend_labels = display.ax_.get_legend_handles_labels()
    assert legend_labels == ["Testing metric"]

    train_sizes_abs, train_scores, test_scores = learning_curve(
        estimator, X, y, train_sizes=train_sizes
    )

    assert_array_equal(display.train_sizes, train_sizes_abs)
    assert_allclose(display.train_scores, train_scores)
    assert_allclose(display.test_scores, test_scores)


def test_learning_curve_display_negate_score(pyplot, data):
    """Check the behaviour of the `negate_score` parameter calling `from_estimator` and
    `plot`.
    """
    X, y = data
    estimator = DecisionTreeClassifier(max_depth=1, random_state=0)

    train_sizes = [0.3, 0.6, 0.9]
    negate_score = False
    display = LearningCurveDisplay.from_estimator(
        estimator,
        X,
        y,
        train_sizes=train_sizes,
        negate_score=negate_score,
    )

    positive_scores = display.lines_[0].get_data()[1]
    assert (positive_scores >= 0).all()
    assert display.ax_.get_ylabel() == "Score"

    negate_score = True
    display = LearningCurveDisplay.from_estimator(
        estimator, X, y, train_sizes=train_sizes, negate_score=negate_score
    )

    negative_scores = display.lines_[0].get_data()[1]
    assert (negative_scores <= 0).all()
    assert_allclose(negative_scores, -positive_scores)
    assert display.ax_.get_ylabel() == "Score"

    negate_score = False
    display = LearningCurveDisplay.from_estimator(
        estimator,
        X,
        y,
        train_sizes=train_sizes,
        negate_score=negate_score,
    )
    assert display.ax_.get_ylabel() == "Score"
    display.plot(negate_score=not negate_score)
    assert display.ax_.get_ylabel() == "Score"
    assert (display.lines_[0].get_data()[1] < 0).all()


@pytest.mark.parametrize(
    "score_name, ylabel", [(None, "Score"), ("Accuracy", "Accuracy")]
)
def test_learning_curve_display_score_name(pyplot, data, score_name, ylabel):
    """Check that we can overwrite the default score name shown on the y-axis."""
    X, y = data
    estimator = DecisionTreeClassifier(random_state=0)

    train_sizes = [0.3, 0.6, 0.9]
    display = LearningCurveDisplay.from_estimator(
        estimator, X, y, train_sizes=train_sizes, score_name=score_name
    )

    assert display.ax_.get_ylabel() == ylabel
    X, y = data
    estimator = DecisionTreeClassifier(max_depth=1, random_state=0)

    train_sizes = [0.3, 0.6, 0.9]
    display = LearningCurveDisplay.from_estimator(
        estimator, X, y, train_sizes=train_sizes, score_name=score_name
    )

    assert display.score_name == ylabel


@pytest.mark.parametrize("std_display_style", (None, "errorbar"))
def test_learning_curve_display_score_type(pyplot, data, std_display_style):
    """Check the behaviour of setting the `score_type` parameter."""
    X, y = data
    estimator = DecisionTreeClassifier(random_state=0)

    train_sizes = [0.3, 0.6, 0.9]
    train_sizes_abs, train_scores, test_scores = learning_curve(
        estimator, X, y, train_sizes=train_sizes
    )

    score_type = "train"
    display = LearningCurveDisplay.from_estimator(
        estimator,
        X,
        y,
        train_sizes=train_sizes,
        score_type=score_type,
        std_display_style=std_display_style,
    )

    _, legend_label = display.ax_.get_legend_handles_labels()
    assert legend_label == ["Training metric"]

    if std_display_style is None:
        assert len(display.lines_) == 1
        assert display.errorbar_ is None
        x_data, y_data = display.lines_[0].get_data()
    else:
        assert display.lines_ is None
        assert len(display.errorbar_) == 1
        x_data, y_data = display.errorbar_[0].lines[0].get_data()

    assert_array_equal(x_data, train_sizes_abs)
    assert_allclose(y_data, train_scores.mean(axis=1))

    score_type = "test"
    display = LearningCurveDisplay.from_estimator(
        estimator,
        X,
        y,
        train_sizes=train_sizes,
        score_type=score_type,
        std_display_style=std_display_style,
    )

    _, legend_label = display.ax_.get_legend_handles_labels()
    assert legend_label == ["Testing metric"]

    if std_display_style is None:
        assert len(display.lines_) == 1
        assert display.errorbar_ is None
        x_data, y_data = display.lines_[0].get_data()
    else:
        assert display.lines_ is None
        assert len(display.errorbar_) == 1
        x_data, y_data = display.errorbar_[0].lines[0].get_data()

    assert_array_equal(x_data, train_sizes_abs)
    assert_allclose(y_data, test_scores.mean(axis=1))

    score_type = "both"
    display = LearningCurveDisplay.from_estimator(
        estimator,
        X,
        y,
        train_sizes=train_sizes,
        score_type=score_type,
        std_display_style=std_display_style,
    )

    _, legend_label = display.ax_.get_legend_handles_labels()
    assert legend_label == ["Training metric", "Testing metric"]

    if std_display_style is None:
        assert len(display.lines_) == 2
        assert display.errorbar_ is None
        x_data_train, y_data_train = display.lines_[0].get_data()
        x_data_test, y_data_test = display.lines_[1].get_data()
    else:
        assert display.lines_ is None
        assert len(display.errorbar_) == 2
        x_data_train, y_data_train = display.errorbar_[0].lines[0].get_data()
        x_data_test, y_data_test = display.errorbar_[1].lines[0].get_data()

    assert_array_equal(x_data_train, train_sizes_abs)
    assert_allclose(y_data_train, train_scores.mean(axis=1))
    assert_array_equal(x_data_test, train_sizes_abs)
    assert_allclose(y_data_test, test_scores.mean(axis=1))


def test_learning_curve_display_log_scale(pyplot, data):
    """Check the behaviour of the parameter `log_scale`."""
    X, y = data
    estimator = DecisionTreeClassifier(random_state=0)

    train_sizes = [0.3, 0.6, 0.9]
    display = LearningCurveDisplay.from_estimator(
        estimator, X, y, train_sizes=train_sizes, log_scale=True
    )

    assert display.ax_.get_xscale() == "log"
    assert display.ax_.get_yscale() == "linear"

    display = LearningCurveDisplay.from_estimator(
        estimator, X, y, train_sizes=train_sizes, log_scale=False
    )

    assert display.ax_.get_xscale() == "linear"
    assert display.ax_.get_yscale() == "linear"


def test_learning_curve_display_std_display_style(pyplot, data):
    """Check the behaviour of the parameter `std_display_style`."""
    X, y = data
    estimator = DecisionTreeClassifier(random_state=0)

    import matplotlib as mpl

    train_sizes = [0.3, 0.6, 0.9]
    std_display_style = None
    display = LearningCurveDisplay.from_estimator(
        estimator,
        X,
        y,
        train_sizes=train_sizes,
        std_display_style=std_display_style,
    )

    assert len(display.lines_) == 1
    assert isinstance(display.lines_[0], mpl.lines.Line2D)
    assert display.errorbar_ is None
    assert display.fill_between_ is None
    _, legend_label = display.ax_.get_legend_handles_labels()
    assert len(legend_label) == 1

    std_display_style = "fill_between"
    display = LearningCurveDisplay.from_estimator(
        estimator,
        X,
        y,
        train_sizes=train_sizes,
        std_display_style=std_display_style,
    )

    assert len(display.lines_) == 1
    assert isinstance(display.lines_[0], mpl.lines.Line2D)
    assert display.errorbar_ is None
    assert len(display.fill_between_) == 1
    assert isinstance(display.fill_between_[0], mpl.collections.PolyCollection)
    _, legend_label = display.ax_.get_legend_handles_labels()
    assert len(legend_label) == 1

    std_display_style = "errorbar"
    display = LearningCurveDisplay.from_estimator(
        estimator,
        X,
        y,
        train_sizes=train_sizes,
        std_display_style=std_display_style,
    )

    assert display.lines_ is None
    assert len(display.errorbar_) == 1
    assert isinstance(display.errorbar_[0], mpl.container.ErrorbarContainer)
    assert display.fill_between_ is None
    _, legend_label = display.ax_.get_legend_handles_labels()
    assert len(legend_label) == 1


def test_learning_curve_display_plot_kwargs(pyplot, data):
    """Check the behaviour of the different plotting keyword arguments: `line_kw`,
    `fill_between_kw`, and `errorbar_kw`."""
    X, y = data
    estimator = DecisionTreeClassifier(random_state=0)

    train_sizes = [0.3, 0.6, 0.9]
    std_display_style = "fill_between"
    line_kw = {"color": "red"}
    fill_between_kw = {"color": "red", "alpha": 1.0}
    display = LearningCurveDisplay.from_estimator(
        estimator,
        X,
        y,
        train_sizes=train_sizes,
        std_display_style=std_display_style,
        line_kw=line_kw,
        fill_between_kw=fill_between_kw,
    )

    assert display.lines_[0].get_color() == "red"
    assert_allclose(
        display.fill_between_[0].get_facecolor(),
        [[1.0, 0.0, 0.0, 1.0]],  # trust me, it's red
    )

    std_display_style = "errorbar"
    errorbar_kw = {"color": "red"}
    display = LearningCurveDisplay.from_estimator(
        estimator,
        X,
        y,
        train_sizes=train_sizes,
        std_display_style=std_display_style,
        errorbar_kw=errorbar_kw,
    )

    assert display.errorbar_[0].lines[0].get_color() == "red"