File: test_split.py

package info (click to toggle)
scikit-learn 1.2.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 23,280 kB
  • sloc: python: 184,491; cpp: 5,783; ansic: 854; makefile: 307; sh: 45; javascript: 1
file content (1923 lines) | stat: -rw-r--r-- 68,921 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
"""Test the split module"""
import warnings
import pytest
import re
import numpy as np
from scipy.sparse import coo_matrix, csc_matrix, csr_matrix
from scipy import stats
from scipy.special import comb
from itertools import combinations
from itertools import combinations_with_replacement
from itertools import permutations

from sklearn.utils._testing import assert_allclose
from sklearn.utils._testing import assert_array_almost_equal
from sklearn.utils._testing import assert_array_equal
from sklearn.utils._testing import ignore_warnings
from sklearn.utils.validation import _num_samples
from sklearn.utils._mocking import MockDataFrame

from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold
from sklearn.model_selection import StratifiedKFold
from sklearn.model_selection import GroupKFold
from sklearn.model_selection import TimeSeriesSplit
from sklearn.model_selection import LeaveOneOut
from sklearn.model_selection import LeaveOneGroupOut
from sklearn.model_selection import LeavePOut
from sklearn.model_selection import LeavePGroupsOut
from sklearn.model_selection import ShuffleSplit
from sklearn.model_selection import GroupShuffleSplit
from sklearn.model_selection import StratifiedShuffleSplit
from sklearn.model_selection import PredefinedSplit
from sklearn.model_selection import check_cv
from sklearn.model_selection import train_test_split
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import RepeatedKFold
from sklearn.model_selection import RepeatedStratifiedKFold
from sklearn.model_selection import StratifiedGroupKFold

from sklearn.dummy import DummyClassifier

from sklearn.model_selection._split import _validate_shuffle_split
from sklearn.model_selection._split import _build_repr
from sklearn.model_selection._split import _yields_constant_splits

from sklearn.datasets import load_digits
from sklearn.datasets import make_classification

from sklearn.svm import SVC

X = np.ones(10)
y = np.arange(10) // 2
P_sparse = coo_matrix(np.eye(5))
test_groups = (
    np.array([1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3]),
    np.array([0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3]),
    np.array([0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2]),
    np.array([1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4]),
    [1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3],
    ["1", "1", "1", "1", "2", "2", "2", "3", "3", "3", "3", "3"],
)
digits = load_digits()


@ignore_warnings
def test_cross_validator_with_default_params():
    n_samples = 4
    n_unique_groups = 4
    n_splits = 2
    p = 2
    n_shuffle_splits = 10  # (the default value)

    X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]])
    X_1d = np.array([1, 2, 3, 4])
    y = np.array([1, 1, 2, 2])
    groups = np.array([1, 2, 3, 4])
    loo = LeaveOneOut()
    lpo = LeavePOut(p)
    kf = KFold(n_splits)
    skf = StratifiedKFold(n_splits)
    lolo = LeaveOneGroupOut()
    lopo = LeavePGroupsOut(p)
    ss = ShuffleSplit(random_state=0)
    ps = PredefinedSplit([1, 1, 2, 2])  # n_splits = np of unique folds = 2
    sgkf = StratifiedGroupKFold(n_splits)

    loo_repr = "LeaveOneOut()"
    lpo_repr = "LeavePOut(p=2)"
    kf_repr = "KFold(n_splits=2, random_state=None, shuffle=False)"
    skf_repr = "StratifiedKFold(n_splits=2, random_state=None, shuffle=False)"
    lolo_repr = "LeaveOneGroupOut()"
    lopo_repr = "LeavePGroupsOut(n_groups=2)"
    ss_repr = (
        "ShuffleSplit(n_splits=10, random_state=0, test_size=None, train_size=None)"
    )
    ps_repr = "PredefinedSplit(test_fold=array([1, 1, 2, 2]))"
    sgkf_repr = "StratifiedGroupKFold(n_splits=2, random_state=None, shuffle=False)"

    n_splits_expected = [
        n_samples,
        comb(n_samples, p),
        n_splits,
        n_splits,
        n_unique_groups,
        comb(n_unique_groups, p),
        n_shuffle_splits,
        2,
        n_splits,
    ]

    for i, (cv, cv_repr) in enumerate(
        zip(
            [loo, lpo, kf, skf, lolo, lopo, ss, ps, sgkf],
            [
                loo_repr,
                lpo_repr,
                kf_repr,
                skf_repr,
                lolo_repr,
                lopo_repr,
                ss_repr,
                ps_repr,
                sgkf_repr,
            ],
        )
    ):
        # Test if get_n_splits works correctly
        assert n_splits_expected[i] == cv.get_n_splits(X, y, groups)

        # Test if the cross-validator works as expected even if
        # the data is 1d
        np.testing.assert_equal(
            list(cv.split(X, y, groups)), list(cv.split(X_1d, y, groups))
        )
        # Test that train, test indices returned are integers
        for train, test in cv.split(X, y, groups):
            assert np.asarray(train).dtype.kind == "i"
            assert np.asarray(test).dtype.kind == "i"

        # Test if the repr works without any errors
        assert cv_repr == repr(cv)

    # ValueError for get_n_splits methods
    msg = "The 'X' parameter should not be None."
    with pytest.raises(ValueError, match=msg):
        loo.get_n_splits(None, y, groups)
    with pytest.raises(ValueError, match=msg):
        lpo.get_n_splits(None, y, groups)


def test_2d_y():
    # smoke test for 2d y and multi-label
    n_samples = 30
    rng = np.random.RandomState(1)
    X = rng.randint(0, 3, size=(n_samples, 2))
    y = rng.randint(0, 3, size=(n_samples,))
    y_2d = y.reshape(-1, 1)
    y_multilabel = rng.randint(0, 2, size=(n_samples, 3))
    groups = rng.randint(0, 3, size=(n_samples,))
    splitters = [
        LeaveOneOut(),
        LeavePOut(p=2),
        KFold(),
        StratifiedKFold(),
        RepeatedKFold(),
        RepeatedStratifiedKFold(),
        StratifiedGroupKFold(),
        ShuffleSplit(),
        StratifiedShuffleSplit(test_size=0.5),
        GroupShuffleSplit(),
        LeaveOneGroupOut(),
        LeavePGroupsOut(n_groups=2),
        GroupKFold(n_splits=3),
        TimeSeriesSplit(),
        PredefinedSplit(test_fold=groups),
    ]
    for splitter in splitters:
        list(splitter.split(X, y, groups))
        list(splitter.split(X, y_2d, groups))
        try:
            list(splitter.split(X, y_multilabel, groups))
        except ValueError as e:
            allowed_target_types = ("binary", "multiclass")
            msg = "Supported target types are: {}. Got 'multilabel".format(
                allowed_target_types
            )
            assert msg in str(e)


def check_valid_split(train, test, n_samples=None):
    # Use python sets to get more informative assertion failure messages
    train, test = set(train), set(test)

    # Train and test split should not overlap
    assert train.intersection(test) == set()

    if n_samples is not None:
        # Check that the union of train an test split cover all the indices
        assert train.union(test) == set(range(n_samples))


def check_cv_coverage(cv, X, y, groups, expected_n_splits):
    n_samples = _num_samples(X)
    # Check that a all the samples appear at least once in a test fold
    assert cv.get_n_splits(X, y, groups) == expected_n_splits

    collected_test_samples = set()
    iterations = 0
    for train, test in cv.split(X, y, groups):
        check_valid_split(train, test, n_samples=n_samples)
        iterations += 1
        collected_test_samples.update(test)

    # Check that the accumulated test samples cover the whole dataset
    assert iterations == expected_n_splits
    if n_samples is not None:
        assert collected_test_samples == set(range(n_samples))


def test_kfold_valueerrors():
    X1 = np.array([[1, 2], [3, 4], [5, 6]])
    X2 = np.array([[1, 2], [3, 4], [5, 6], [7, 8], [9, 10]])
    # Check that errors are raised if there is not enough samples
    (ValueError, next, KFold(4).split(X1))

    # Check that a warning is raised if the least populated class has too few
    # members.
    y = np.array([3, 3, -1, -1, 3])

    skf_3 = StratifiedKFold(3)
    with pytest.warns(Warning, match="The least populated class"):
        next(skf_3.split(X2, y))

    sgkf_3 = StratifiedGroupKFold(3)
    naive_groups = np.arange(len(y))
    with pytest.warns(Warning, match="The least populated class"):
        next(sgkf_3.split(X2, y, naive_groups))

    # Check that despite the warning the folds are still computed even
    # though all the classes are not necessarily represented at on each
    # side of the split at each split
    with warnings.catch_warnings():
        warnings.simplefilter("ignore")
        check_cv_coverage(skf_3, X2, y, groups=None, expected_n_splits=3)

    with warnings.catch_warnings():
        warnings.simplefilter("ignore")
        check_cv_coverage(sgkf_3, X2, y, groups=naive_groups, expected_n_splits=3)

    # Check that errors are raised if all n_groups for individual
    # classes are less than n_splits.
    y = np.array([3, 3, -1, -1, 2])

    with pytest.raises(ValueError):
        next(skf_3.split(X2, y))
    with pytest.raises(ValueError):
        next(sgkf_3.split(X2, y))

    # Error when number of folds is <= 1
    with pytest.raises(ValueError):
        KFold(0)
    with pytest.raises(ValueError):
        KFold(1)
    error_string = "k-fold cross-validation requires at least one train/test split"
    with pytest.raises(ValueError, match=error_string):
        StratifiedKFold(0)
    with pytest.raises(ValueError, match=error_string):
        StratifiedKFold(1)
    with pytest.raises(ValueError, match=error_string):
        StratifiedGroupKFold(0)
    with pytest.raises(ValueError, match=error_string):
        StratifiedGroupKFold(1)

    # When n_splits is not integer:
    with pytest.raises(ValueError):
        KFold(1.5)
    with pytest.raises(ValueError):
        KFold(2.0)
    with pytest.raises(ValueError):
        StratifiedKFold(1.5)
    with pytest.raises(ValueError):
        StratifiedKFold(2.0)
    with pytest.raises(ValueError):
        StratifiedGroupKFold(1.5)
    with pytest.raises(ValueError):
        StratifiedGroupKFold(2.0)

    # When shuffle is not  a bool:
    with pytest.raises(TypeError):
        KFold(n_splits=4, shuffle=None)


def test_kfold_indices():
    # Check all indices are returned in the test folds
    X1 = np.ones(18)
    kf = KFold(3)
    check_cv_coverage(kf, X1, y=None, groups=None, expected_n_splits=3)

    # Check all indices are returned in the test folds even when equal-sized
    # folds are not possible
    X2 = np.ones(17)
    kf = KFold(3)
    check_cv_coverage(kf, X2, y=None, groups=None, expected_n_splits=3)

    # Check if get_n_splits returns the number of folds
    assert 5 == KFold(5).get_n_splits(X2)


def test_kfold_no_shuffle():
    # Manually check that KFold preserves the data ordering on toy datasets
    X2 = [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10]]

    splits = KFold(2).split(X2[:-1])
    train, test = next(splits)
    assert_array_equal(test, [0, 1])
    assert_array_equal(train, [2, 3])

    train, test = next(splits)
    assert_array_equal(test, [2, 3])
    assert_array_equal(train, [0, 1])

    splits = KFold(2).split(X2)
    train, test = next(splits)
    assert_array_equal(test, [0, 1, 2])
    assert_array_equal(train, [3, 4])

    train, test = next(splits)
    assert_array_equal(test, [3, 4])
    assert_array_equal(train, [0, 1, 2])


def test_stratified_kfold_no_shuffle():
    # Manually check that StratifiedKFold preserves the data ordering as much
    # as possible on toy datasets in order to avoid hiding sample dependencies
    # when possible
    X, y = np.ones(4), [1, 1, 0, 0]
    splits = StratifiedKFold(2).split(X, y)
    train, test = next(splits)
    assert_array_equal(test, [0, 2])
    assert_array_equal(train, [1, 3])

    train, test = next(splits)
    assert_array_equal(test, [1, 3])
    assert_array_equal(train, [0, 2])

    X, y = np.ones(7), [1, 1, 1, 0, 0, 0, 0]
    splits = StratifiedKFold(2).split(X, y)
    train, test = next(splits)
    assert_array_equal(test, [0, 1, 3, 4])
    assert_array_equal(train, [2, 5, 6])

    train, test = next(splits)
    assert_array_equal(test, [2, 5, 6])
    assert_array_equal(train, [0, 1, 3, 4])

    # Check if get_n_splits returns the number of folds
    assert 5 == StratifiedKFold(5).get_n_splits(X, y)

    # Make sure string labels are also supported
    X = np.ones(7)
    y1 = ["1", "1", "1", "0", "0", "0", "0"]
    y2 = [1, 1, 1, 0, 0, 0, 0]
    np.testing.assert_equal(
        list(StratifiedKFold(2).split(X, y1)), list(StratifiedKFold(2).split(X, y2))
    )

    # Check equivalence to KFold
    y = [0, 1, 0, 1, 0, 1, 0, 1]
    X = np.ones_like(y)
    np.testing.assert_equal(
        list(StratifiedKFold(3).split(X, y)), list(KFold(3).split(X, y))
    )


@pytest.mark.parametrize("shuffle", [False, True])
@pytest.mark.parametrize("k", [4, 5, 6, 7, 8, 9, 10])
@pytest.mark.parametrize("kfold", [StratifiedKFold, StratifiedGroupKFold])
def test_stratified_kfold_ratios(k, shuffle, kfold):
    # Check that stratified kfold preserves class ratios in individual splits
    # Repeat with shuffling turned off and on
    n_samples = 1000
    X = np.ones(n_samples)
    y = np.array(
        [4] * int(0.10 * n_samples)
        + [0] * int(0.89 * n_samples)
        + [1] * int(0.01 * n_samples)
    )
    # ensure perfect stratification with StratifiedGroupKFold
    groups = np.arange(len(y))
    distr = np.bincount(y) / len(y)

    test_sizes = []
    random_state = None if not shuffle else 0
    skf = kfold(k, random_state=random_state, shuffle=shuffle)
    for train, test in skf.split(X, y, groups=groups):
        assert_allclose(np.bincount(y[train]) / len(train), distr, atol=0.02)
        assert_allclose(np.bincount(y[test]) / len(test), distr, atol=0.02)
        test_sizes.append(len(test))
    assert np.ptp(test_sizes) <= 1


@pytest.mark.parametrize("shuffle", [False, True])
@pytest.mark.parametrize("k", [4, 6, 7])
@pytest.mark.parametrize("kfold", [StratifiedKFold, StratifiedGroupKFold])
def test_stratified_kfold_label_invariance(k, shuffle, kfold):
    # Check that stratified kfold gives the same indices regardless of labels
    n_samples = 100
    y = np.array(
        [2] * int(0.10 * n_samples)
        + [0] * int(0.89 * n_samples)
        + [1] * int(0.01 * n_samples)
    )
    X = np.ones(len(y))
    # ensure perfect stratification with StratifiedGroupKFold
    groups = np.arange(len(y))

    def get_splits(y):
        random_state = None if not shuffle else 0
        return [
            (list(train), list(test))
            for train, test in kfold(
                k, random_state=random_state, shuffle=shuffle
            ).split(X, y, groups=groups)
        ]

    splits_base = get_splits(y)
    for perm in permutations([0, 1, 2]):
        y_perm = np.take(perm, y)
        splits_perm = get_splits(y_perm)
        assert splits_perm == splits_base


def test_kfold_balance():
    # Check that KFold returns folds with balanced sizes
    for i in range(11, 17):
        kf = KFold(5).split(X=np.ones(i))
        sizes = [len(test) for _, test in kf]

        assert (np.max(sizes) - np.min(sizes)) <= 1
        assert np.sum(sizes) == i


@pytest.mark.parametrize("kfold", [StratifiedKFold, StratifiedGroupKFold])
def test_stratifiedkfold_balance(kfold):
    # Check that KFold returns folds with balanced sizes (only when
    # stratification is possible)
    # Repeat with shuffling turned off and on
    X = np.ones(17)
    y = [0] * 3 + [1] * 14
    # ensure perfect stratification with StratifiedGroupKFold
    groups = np.arange(len(y))

    for shuffle in (True, False):
        cv = kfold(3, shuffle=shuffle)
        for i in range(11, 17):
            skf = cv.split(X[:i], y[:i], groups[:i])
            sizes = [len(test) for _, test in skf]

            assert (np.max(sizes) - np.min(sizes)) <= 1
            assert np.sum(sizes) == i


def test_shuffle_kfold():
    # Check the indices are shuffled properly
    kf = KFold(3)
    kf2 = KFold(3, shuffle=True, random_state=0)
    kf3 = KFold(3, shuffle=True, random_state=1)

    X = np.ones(300)

    all_folds = np.zeros(300)
    for (tr1, te1), (tr2, te2), (tr3, te3) in zip(
        kf.split(X), kf2.split(X), kf3.split(X)
    ):
        for tr_a, tr_b in combinations((tr1, tr2, tr3), 2):
            # Assert that there is no complete overlap
            assert len(np.intersect1d(tr_a, tr_b)) != len(tr1)

        # Set all test indices in successive iterations of kf2 to 1
        all_folds[te2] = 1

    # Check that all indices are returned in the different test folds
    assert sum(all_folds) == 300


@pytest.mark.parametrize("kfold", [KFold, StratifiedKFold, StratifiedGroupKFold])
def test_shuffle_kfold_stratifiedkfold_reproducibility(kfold):
    X = np.ones(15)  # Divisible by 3
    y = [0] * 7 + [1] * 8
    groups_1 = np.arange(len(y))
    X2 = np.ones(16)  # Not divisible by 3
    y2 = [0] * 8 + [1] * 8
    groups_2 = np.arange(len(y2))

    # Check that when the shuffle is True, multiple split calls produce the
    # same split when random_state is int
    kf = kfold(3, shuffle=True, random_state=0)

    np.testing.assert_equal(
        list(kf.split(X, y, groups_1)), list(kf.split(X, y, groups_1))
    )

    # Check that when the shuffle is True, multiple split calls often
    # (not always) produce different splits when random_state is
    # RandomState instance or None
    kf = kfold(3, shuffle=True, random_state=np.random.RandomState(0))
    for data in zip((X, X2), (y, y2), (groups_1, groups_2)):
        # Test if the two splits are different cv
        for (_, test_a), (_, test_b) in zip(kf.split(*data), kf.split(*data)):
            # cv.split(...) returns an array of tuples, each tuple
            # consisting of an array with train indices and test indices
            # Ensure that the splits for data are not same
            # when random state is not set
            with pytest.raises(AssertionError):
                np.testing.assert_array_equal(test_a, test_b)


def test_shuffle_stratifiedkfold():
    # Check that shuffling is happening when requested, and for proper
    # sample coverage
    X_40 = np.ones(40)
    y = [0] * 20 + [1] * 20
    kf0 = StratifiedKFold(5, shuffle=True, random_state=0)
    kf1 = StratifiedKFold(5, shuffle=True, random_state=1)
    for (_, test0), (_, test1) in zip(kf0.split(X_40, y), kf1.split(X_40, y)):
        assert set(test0) != set(test1)
    check_cv_coverage(kf0, X_40, y, groups=None, expected_n_splits=5)

    # Ensure that we shuffle each class's samples with different
    # random_state in StratifiedKFold
    # See https://github.com/scikit-learn/scikit-learn/pull/13124
    X = np.arange(10)
    y = [0] * 5 + [1] * 5
    kf1 = StratifiedKFold(5, shuffle=True, random_state=0)
    kf2 = StratifiedKFold(5, shuffle=True, random_state=1)
    test_set1 = sorted([tuple(s[1]) for s in kf1.split(X, y)])
    test_set2 = sorted([tuple(s[1]) for s in kf2.split(X, y)])
    assert test_set1 != test_set2


def test_kfold_can_detect_dependent_samples_on_digits():  # see #2372
    # The digits samples are dependent: they are apparently grouped by authors
    # although we don't have any information on the groups segment locations
    # for this data. We can highlight this fact by computing k-fold cross-
    # validation with and without shuffling: we observe that the shuffling case
    # wrongly makes the IID assumption and is therefore too optimistic: it
    # estimates a much higher accuracy (around 0.93) than that the non
    # shuffling variant (around 0.81).

    X, y = digits.data[:600], digits.target[:600]
    model = SVC(C=10, gamma=0.005)

    n_splits = 3

    cv = KFold(n_splits=n_splits, shuffle=False)
    mean_score = cross_val_score(model, X, y, cv=cv).mean()
    assert 0.92 > mean_score
    assert mean_score > 0.80

    # Shuffling the data artificially breaks the dependency and hides the
    # overfitting of the model with regards to the writing style of the authors
    # by yielding a seriously overestimated score:

    cv = KFold(n_splits, shuffle=True, random_state=0)
    mean_score = cross_val_score(model, X, y, cv=cv).mean()
    assert mean_score > 0.92

    cv = KFold(n_splits, shuffle=True, random_state=1)
    mean_score = cross_val_score(model, X, y, cv=cv).mean()
    assert mean_score > 0.92

    # Similarly, StratifiedKFold should try to shuffle the data as little
    # as possible (while respecting the balanced class constraints)
    # and thus be able to detect the dependency by not overestimating
    # the CV score either. As the digits dataset is approximately balanced
    # the estimated mean score is close to the score measured with
    # non-shuffled KFold

    cv = StratifiedKFold(n_splits)
    mean_score = cross_val_score(model, X, y, cv=cv).mean()
    assert 0.94 > mean_score
    assert mean_score > 0.80


def test_stratified_group_kfold_trivial():
    sgkf = StratifiedGroupKFold(n_splits=3)
    # Trivial example - groups with the same distribution
    y = np.array([1] * 6 + [0] * 12)
    X = np.ones_like(y).reshape(-1, 1)
    groups = np.asarray((1, 2, 3, 4, 5, 6, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6))
    distr = np.bincount(y) / len(y)
    test_sizes = []
    for train, test in sgkf.split(X, y, groups):
        # check group constraint
        assert np.intersect1d(groups[train], groups[test]).size == 0
        # check y distribution
        assert_allclose(np.bincount(y[train]) / len(train), distr, atol=0.02)
        assert_allclose(np.bincount(y[test]) / len(test), distr, atol=0.02)
        test_sizes.append(len(test))
    assert np.ptp(test_sizes) <= 1


def test_stratified_group_kfold_approximate():
    # Not perfect stratification (even though it is possible) because of
    # iteration over groups
    sgkf = StratifiedGroupKFold(n_splits=3)
    y = np.array([1] * 6 + [0] * 12)
    X = np.ones_like(y).reshape(-1, 1)
    groups = np.array([1, 2, 3, 3, 4, 4, 1, 1, 2, 2, 3, 4, 5, 5, 5, 6, 6, 6])
    expected = np.asarray([[0.833, 0.166], [0.666, 0.333], [0.5, 0.5]])
    test_sizes = []
    for (train, test), expect_dist in zip(sgkf.split(X, y, groups), expected):
        # check group constraint
        assert np.intersect1d(groups[train], groups[test]).size == 0
        split_dist = np.bincount(y[test]) / len(test)
        assert_allclose(split_dist, expect_dist, atol=0.001)
        test_sizes.append(len(test))
    assert np.ptp(test_sizes) <= 1


@pytest.mark.parametrize(
    "y, groups, expected",
    [
        (
            np.array([0] * 6 + [1] * 6),
            np.array([1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6]),
            np.asarray([[0.5, 0.5], [0.5, 0.5], [0.5, 0.5]]),
        ),
        (
            np.array([0] * 9 + [1] * 3),
            np.array([1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 5, 6]),
            np.asarray([[0.75, 0.25], [0.75, 0.25], [0.75, 0.25]]),
        ),
    ],
)
def test_stratified_group_kfold_homogeneous_groups(y, groups, expected):
    sgkf = StratifiedGroupKFold(n_splits=3)
    X = np.ones_like(y).reshape(-1, 1)
    for (train, test), expect_dist in zip(sgkf.split(X, y, groups), expected):
        # check group constraint
        assert np.intersect1d(groups[train], groups[test]).size == 0
        split_dist = np.bincount(y[test]) / len(test)
        assert_allclose(split_dist, expect_dist, atol=0.001)


@pytest.mark.parametrize("cls_distr", [(0.4, 0.6), (0.3, 0.7), (0.2, 0.8), (0.8, 0.2)])
@pytest.mark.parametrize("n_groups", [5, 30, 70])
def test_stratified_group_kfold_against_group_kfold(cls_distr, n_groups):
    # Check that given sufficient amount of samples StratifiedGroupKFold
    # produces better stratified folds than regular GroupKFold
    n_splits = 5
    sgkf = StratifiedGroupKFold(n_splits=n_splits)
    gkf = GroupKFold(n_splits=n_splits)
    rng = np.random.RandomState(0)
    n_points = 1000
    y = rng.choice(2, size=n_points, p=cls_distr)
    X = np.ones_like(y).reshape(-1, 1)
    g = rng.choice(n_groups, n_points)
    sgkf_folds = sgkf.split(X, y, groups=g)
    gkf_folds = gkf.split(X, y, groups=g)
    sgkf_entr = 0
    gkf_entr = 0
    for (sgkf_train, sgkf_test), (_, gkf_test) in zip(sgkf_folds, gkf_folds):
        # check group constraint
        assert np.intersect1d(g[sgkf_train], g[sgkf_test]).size == 0
        sgkf_distr = np.bincount(y[sgkf_test]) / len(sgkf_test)
        gkf_distr = np.bincount(y[gkf_test]) / len(gkf_test)
        sgkf_entr += stats.entropy(sgkf_distr, qk=cls_distr)
        gkf_entr += stats.entropy(gkf_distr, qk=cls_distr)
    sgkf_entr /= n_splits
    gkf_entr /= n_splits
    assert sgkf_entr <= gkf_entr


def test_shuffle_split():
    ss1 = ShuffleSplit(test_size=0.2, random_state=0).split(X)
    ss2 = ShuffleSplit(test_size=2, random_state=0).split(X)
    ss3 = ShuffleSplit(test_size=np.int32(2), random_state=0).split(X)
    ss4 = ShuffleSplit(test_size=int(2), random_state=0).split(X)
    for t1, t2, t3, t4 in zip(ss1, ss2, ss3, ss4):
        assert_array_equal(t1[0], t2[0])
        assert_array_equal(t2[0], t3[0])
        assert_array_equal(t3[0], t4[0])
        assert_array_equal(t1[1], t2[1])
        assert_array_equal(t2[1], t3[1])
        assert_array_equal(t3[1], t4[1])


@pytest.mark.parametrize("split_class", [ShuffleSplit, StratifiedShuffleSplit])
@pytest.mark.parametrize(
    "train_size, exp_train, exp_test", [(None, 9, 1), (8, 8, 2), (0.8, 8, 2)]
)
def test_shuffle_split_default_test_size(split_class, train_size, exp_train, exp_test):
    # Check that the default value has the expected behavior, i.e. 0.1 if both
    # unspecified or complement train_size unless both are specified.
    X = np.ones(10)
    y = np.ones(10)

    X_train, X_test = next(split_class(train_size=train_size).split(X, y))

    assert len(X_train) == exp_train
    assert len(X_test) == exp_test


@pytest.mark.parametrize(
    "train_size, exp_train, exp_test", [(None, 8, 2), (7, 7, 3), (0.7, 7, 3)]
)
def test_group_shuffle_split_default_test_size(train_size, exp_train, exp_test):
    # Check that the default value has the expected behavior, i.e. 0.2 if both
    # unspecified or complement train_size unless both are specified.
    X = np.ones(10)
    y = np.ones(10)
    groups = range(10)

    X_train, X_test = next(GroupShuffleSplit(train_size=train_size).split(X, y, groups))

    assert len(X_train) == exp_train
    assert len(X_test) == exp_test


@ignore_warnings
def test_stratified_shuffle_split_init():
    X = np.arange(7)
    y = np.asarray([0, 1, 1, 1, 2, 2, 2])
    # Check that error is raised if there is a class with only one sample
    with pytest.raises(ValueError):
        next(StratifiedShuffleSplit(3, test_size=0.2).split(X, y))

    # Check that error is raised if the test set size is smaller than n_classes
    with pytest.raises(ValueError):
        next(StratifiedShuffleSplit(3, test_size=2).split(X, y))
    # Check that error is raised if the train set size is smaller than
    # n_classes
    with pytest.raises(ValueError):
        next(StratifiedShuffleSplit(3, test_size=3, train_size=2).split(X, y))

    X = np.arange(9)
    y = np.asarray([0, 0, 0, 1, 1, 1, 2, 2, 2])

    # Train size or test size too small
    with pytest.raises(ValueError):
        next(StratifiedShuffleSplit(train_size=2).split(X, y))
    with pytest.raises(ValueError):
        next(StratifiedShuffleSplit(test_size=2).split(X, y))


def test_stratified_shuffle_split_respects_test_size():
    y = np.array([0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2])
    test_size = 5
    train_size = 10
    sss = StratifiedShuffleSplit(
        6, test_size=test_size, train_size=train_size, random_state=0
    ).split(np.ones(len(y)), y)
    for train, test in sss:
        assert len(train) == train_size
        assert len(test) == test_size


def test_stratified_shuffle_split_iter():
    ys = [
        np.array([1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3]),
        np.array([0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3]),
        np.array([0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2] * 2),
        np.array([1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4]),
        np.array([-1] * 800 + [1] * 50),
        np.concatenate([[i] * (100 + i) for i in range(11)]),
        [1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3],
        ["1", "1", "1", "1", "2", "2", "2", "3", "3", "3", "3", "3"],
    ]

    for y in ys:
        sss = StratifiedShuffleSplit(6, test_size=0.33, random_state=0).split(
            np.ones(len(y)), y
        )
        y = np.asanyarray(y)  # To make it indexable for y[train]
        # this is how test-size is computed internally
        # in _validate_shuffle_split
        test_size = np.ceil(0.33 * len(y))
        train_size = len(y) - test_size
        for train, test in sss:
            assert_array_equal(np.unique(y[train]), np.unique(y[test]))
            # Checks if folds keep classes proportions
            p_train = np.bincount(np.unique(y[train], return_inverse=True)[1]) / float(
                len(y[train])
            )
            p_test = np.bincount(np.unique(y[test], return_inverse=True)[1]) / float(
                len(y[test])
            )
            assert_array_almost_equal(p_train, p_test, 1)
            assert len(train) + len(test) == y.size
            assert len(train) == train_size
            assert len(test) == test_size
            assert_array_equal(np.lib.arraysetops.intersect1d(train, test), [])


def test_stratified_shuffle_split_even():
    # Test the StratifiedShuffleSplit, indices are drawn with a
    # equal chance
    n_folds = 5
    n_splits = 1000

    def assert_counts_are_ok(idx_counts, p):
        # Here we test that the distribution of the counts
        # per index is close enough to a binomial
        threshold = 0.05 / n_splits
        bf = stats.binom(n_splits, p)
        for count in idx_counts:
            prob = bf.pmf(count)
            assert (
                prob > threshold
            ), "An index is not drawn with chance corresponding to even draws"

    for n_samples in (6, 22):
        groups = np.array((n_samples // 2) * [0, 1])
        splits = StratifiedShuffleSplit(
            n_splits=n_splits, test_size=1.0 / n_folds, random_state=0
        )

        train_counts = [0] * n_samples
        test_counts = [0] * n_samples
        n_splits_actual = 0
        for train, test in splits.split(X=np.ones(n_samples), y=groups):
            n_splits_actual += 1
            for counter, ids in [(train_counts, train), (test_counts, test)]:
                for id in ids:
                    counter[id] += 1
        assert n_splits_actual == n_splits

        n_train, n_test = _validate_shuffle_split(
            n_samples, test_size=1.0 / n_folds, train_size=1.0 - (1.0 / n_folds)
        )

        assert len(train) == n_train
        assert len(test) == n_test
        assert len(set(train).intersection(test)) == 0

        group_counts = np.unique(groups)
        assert splits.test_size == 1.0 / n_folds
        assert n_train + n_test == len(groups)
        assert len(group_counts) == 2
        ex_test_p = float(n_test) / n_samples
        ex_train_p = float(n_train) / n_samples

        assert_counts_are_ok(train_counts, ex_train_p)
        assert_counts_are_ok(test_counts, ex_test_p)


def test_stratified_shuffle_split_overlap_train_test_bug():
    # See https://github.com/scikit-learn/scikit-learn/issues/6121 for
    # the original bug report
    y = [0, 1, 2, 3] * 3 + [4, 5] * 5
    X = np.ones_like(y)

    sss = StratifiedShuffleSplit(n_splits=1, test_size=0.5, random_state=0)

    train, test = next(sss.split(X=X, y=y))

    # no overlap
    assert_array_equal(np.intersect1d(train, test), [])

    # complete partition
    assert_array_equal(np.union1d(train, test), np.arange(len(y)))


def test_stratified_shuffle_split_multilabel():
    # fix for issue 9037
    for y in [
        np.array([[0, 1], [1, 0], [1, 0], [0, 1]]),
        np.array([[0, 1], [1, 1], [1, 1], [0, 1]]),
    ]:
        X = np.ones_like(y)
        sss = StratifiedShuffleSplit(n_splits=1, test_size=0.5, random_state=0)
        train, test = next(sss.split(X=X, y=y))
        y_train = y[train]
        y_test = y[test]

        # no overlap
        assert_array_equal(np.intersect1d(train, test), [])

        # complete partition
        assert_array_equal(np.union1d(train, test), np.arange(len(y)))

        # correct stratification of entire rows
        # (by design, here y[:, 0] uniquely determines the entire row of y)
        expected_ratio = np.mean(y[:, 0])
        assert expected_ratio == np.mean(y_train[:, 0])
        assert expected_ratio == np.mean(y_test[:, 0])


def test_stratified_shuffle_split_multilabel_many_labels():
    # fix in PR #9922: for multilabel data with > 1000 labels, str(row)
    # truncates with an ellipsis for elements in positions 4 through
    # len(row) - 4, so labels were not being correctly split using the powerset
    # method for transforming a multilabel problem to a multiclass one; this
    # test checks that this problem is fixed.
    row_with_many_zeros = [1, 0, 1] + [0] * 1000 + [1, 0, 1]
    row_with_many_ones = [1, 0, 1] + [1] * 1000 + [1, 0, 1]
    y = np.array([row_with_many_zeros] * 10 + [row_with_many_ones] * 100)
    X = np.ones_like(y)

    sss = StratifiedShuffleSplit(n_splits=1, test_size=0.5, random_state=0)
    train, test = next(sss.split(X=X, y=y))
    y_train = y[train]
    y_test = y[test]

    # correct stratification of entire rows
    # (by design, here y[:, 4] uniquely determines the entire row of y)
    expected_ratio = np.mean(y[:, 4])
    assert expected_ratio == np.mean(y_train[:, 4])
    assert expected_ratio == np.mean(y_test[:, 4])


def test_predefinedsplit_with_kfold_split():
    # Check that PredefinedSplit can reproduce a split generated by Kfold.
    folds = np.full(10, -1.0)
    kf_train = []
    kf_test = []
    for i, (train_ind, test_ind) in enumerate(KFold(5, shuffle=True).split(X)):
        kf_train.append(train_ind)
        kf_test.append(test_ind)
        folds[test_ind] = i
    ps = PredefinedSplit(folds)
    # n_splits is simply the no of unique folds
    assert len(np.unique(folds)) == ps.get_n_splits()
    ps_train, ps_test = zip(*ps.split())
    assert_array_equal(ps_train, kf_train)
    assert_array_equal(ps_test, kf_test)


def test_group_shuffle_split():
    for groups_i in test_groups:
        X = y = np.ones(len(groups_i))
        n_splits = 6
        test_size = 1.0 / 3
        slo = GroupShuffleSplit(n_splits, test_size=test_size, random_state=0)

        # Make sure the repr works
        repr(slo)

        # Test that the length is correct
        assert slo.get_n_splits(X, y, groups=groups_i) == n_splits

        l_unique = np.unique(groups_i)
        l = np.asarray(groups_i)

        for train, test in slo.split(X, y, groups=groups_i):
            # First test: no train group is in the test set and vice versa
            l_train_unique = np.unique(l[train])
            l_test_unique = np.unique(l[test])
            assert not np.any(np.in1d(l[train], l_test_unique))
            assert not np.any(np.in1d(l[test], l_train_unique))

            # Second test: train and test add up to all the data
            assert l[train].size + l[test].size == l.size

            # Third test: train and test are disjoint
            assert_array_equal(np.intersect1d(train, test), [])

            # Fourth test:
            # unique train and test groups are correct, +- 1 for rounding error
            assert abs(len(l_test_unique) - round(test_size * len(l_unique))) <= 1
            assert (
                abs(len(l_train_unique) - round((1.0 - test_size) * len(l_unique))) <= 1
            )


def test_leave_one_p_group_out():
    logo = LeaveOneGroupOut()
    lpgo_1 = LeavePGroupsOut(n_groups=1)
    lpgo_2 = LeavePGroupsOut(n_groups=2)

    # Make sure the repr works
    assert repr(logo) == "LeaveOneGroupOut()"
    assert repr(lpgo_1) == "LeavePGroupsOut(n_groups=1)"
    assert repr(lpgo_2) == "LeavePGroupsOut(n_groups=2)"
    assert repr(LeavePGroupsOut(n_groups=3)) == "LeavePGroupsOut(n_groups=3)"

    for j, (cv, p_groups_out) in enumerate(((logo, 1), (lpgo_1, 1), (lpgo_2, 2))):
        for i, groups_i in enumerate(test_groups):
            n_groups = len(np.unique(groups_i))
            n_splits = n_groups if p_groups_out == 1 else n_groups * (n_groups - 1) / 2
            X = y = np.ones(len(groups_i))

            # Test that the length is correct
            assert cv.get_n_splits(X, y, groups=groups_i) == n_splits

            groups_arr = np.asarray(groups_i)

            # Split using the original list / array / list of string groups_i
            for train, test in cv.split(X, y, groups=groups_i):
                # First test: no train group is in the test set and vice versa
                assert_array_equal(
                    np.intersect1d(groups_arr[train], groups_arr[test]).tolist(), []
                )

                # Second test: train and test add up to all the data
                assert len(train) + len(test) == len(groups_i)

                # Third test:
                # The number of groups in test must be equal to p_groups_out
                assert np.unique(groups_arr[test]).shape[0], p_groups_out

    # check get_n_splits() with dummy parameters
    assert logo.get_n_splits(None, None, ["a", "b", "c", "b", "c"]) == 3
    assert logo.get_n_splits(groups=[1.0, 1.1, 1.0, 1.2]) == 3
    assert lpgo_2.get_n_splits(None, None, np.arange(4)) == 6
    assert lpgo_1.get_n_splits(groups=np.arange(4)) == 4

    # raise ValueError if a `groups` parameter is illegal
    with pytest.raises(ValueError):
        logo.get_n_splits(None, None, [0.0, np.nan, 0.0])
    with pytest.raises(ValueError):
        lpgo_2.get_n_splits(None, None, [0.0, np.inf, 0.0])

    msg = "The 'groups' parameter should not be None."
    with pytest.raises(ValueError, match=msg):
        logo.get_n_splits(None, None, None)
    with pytest.raises(ValueError, match=msg):
        lpgo_1.get_n_splits(None, None, None)


def test_leave_group_out_changing_groups():
    # Check that LeaveOneGroupOut and LeavePGroupsOut work normally if
    # the groups variable is changed before calling split
    groups = np.array([0, 1, 2, 1, 1, 2, 0, 0])
    X = np.ones(len(groups))
    groups_changing = np.array(groups, copy=True)
    lolo = LeaveOneGroupOut().split(X, groups=groups)
    lolo_changing = LeaveOneGroupOut().split(X, groups=groups)
    lplo = LeavePGroupsOut(n_groups=2).split(X, groups=groups)
    lplo_changing = LeavePGroupsOut(n_groups=2).split(X, groups=groups)
    groups_changing[:] = 0
    for llo, llo_changing in [(lolo, lolo_changing), (lplo, lplo_changing)]:
        for (train, test), (train_chan, test_chan) in zip(llo, llo_changing):
            assert_array_equal(train, train_chan)
            assert_array_equal(test, test_chan)

    # n_splits = no of 2 (p) group combinations of the unique groups = 3C2 = 3
    assert 3 == LeavePGroupsOut(n_groups=2).get_n_splits(X, y=X, groups=groups)
    # n_splits = no of unique groups (C(uniq_lbls, 1) = n_unique_groups)
    assert 3 == LeaveOneGroupOut().get_n_splits(X, y=X, groups=groups)


def test_leave_group_out_order_dependence():
    # Check that LeaveOneGroupOut orders the splits according to the index
    # of the group left out.
    groups = np.array([2, 2, 0, 0, 1, 1])
    X = np.ones(len(groups))

    splits = iter(LeaveOneGroupOut().split(X, groups=groups))

    expected_indices = [
        ([0, 1, 4, 5], [2, 3]),
        ([0, 1, 2, 3], [4, 5]),
        ([2, 3, 4, 5], [0, 1]),
    ]

    for expected_train, expected_test in expected_indices:
        train, test = next(splits)
        assert_array_equal(train, expected_train)
        assert_array_equal(test, expected_test)


def test_leave_one_p_group_out_error_on_fewer_number_of_groups():
    X = y = groups = np.ones(0)
    msg = re.escape("Found array with 0 sample(s)")
    with pytest.raises(ValueError, match=msg):
        next(LeaveOneGroupOut().split(X, y, groups))

    X = y = groups = np.ones(1)
    msg = re.escape(
        f"The groups parameter contains fewer than 2 unique groups ({groups})."
        " LeaveOneGroupOut expects at least 2."
    )
    with pytest.raises(ValueError, match=msg):
        next(LeaveOneGroupOut().split(X, y, groups))

    X = y = groups = np.ones(1)
    msg = re.escape(
        "The groups parameter contains fewer than (or equal to) n_groups "
        f"(3) numbers of unique groups ({groups}). LeavePGroupsOut expects "
        "that at least n_groups + 1 (4) unique groups "
        "be present"
    )
    with pytest.raises(ValueError, match=msg):
        next(LeavePGroupsOut(n_groups=3).split(X, y, groups))

    X = y = groups = np.arange(3)
    msg = re.escape(
        "The groups parameter contains fewer than (or equal to) n_groups "
        f"(3) numbers of unique groups ({groups}). LeavePGroupsOut expects "
        "that at least n_groups + 1 (4) unique groups "
        "be present"
    )
    with pytest.raises(ValueError, match=msg):
        next(LeavePGroupsOut(n_groups=3).split(X, y, groups))


@ignore_warnings
def test_repeated_cv_value_errors():
    # n_repeats is not integer or <= 0
    for cv in (RepeatedKFold, RepeatedStratifiedKFold):
        with pytest.raises(ValueError):
            cv(n_repeats=0)
        with pytest.raises(ValueError):
            cv(n_repeats=1.5)


@pytest.mark.parametrize("RepeatedCV", [RepeatedKFold, RepeatedStratifiedKFold])
def test_repeated_cv_repr(RepeatedCV):
    n_splits, n_repeats = 2, 6
    repeated_cv = RepeatedCV(n_splits=n_splits, n_repeats=n_repeats)
    repeated_cv_repr = "{}(n_repeats=6, n_splits=2, random_state=None)".format(
        repeated_cv.__class__.__name__
    )
    assert repeated_cv_repr == repr(repeated_cv)


def test_repeated_kfold_determinstic_split():
    X = [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10]]
    random_state = 258173307
    rkf = RepeatedKFold(n_splits=2, n_repeats=2, random_state=random_state)

    # split should produce same and deterministic splits on
    # each call
    for _ in range(3):
        splits = rkf.split(X)
        train, test = next(splits)
        assert_array_equal(train, [2, 4])
        assert_array_equal(test, [0, 1, 3])

        train, test = next(splits)
        assert_array_equal(train, [0, 1, 3])
        assert_array_equal(test, [2, 4])

        train, test = next(splits)
        assert_array_equal(train, [0, 1])
        assert_array_equal(test, [2, 3, 4])

        train, test = next(splits)
        assert_array_equal(train, [2, 3, 4])
        assert_array_equal(test, [0, 1])

        with pytest.raises(StopIteration):
            next(splits)


def test_get_n_splits_for_repeated_kfold():
    n_splits = 3
    n_repeats = 4
    rkf = RepeatedKFold(n_splits=n_splits, n_repeats=n_repeats)
    expected_n_splits = n_splits * n_repeats
    assert expected_n_splits == rkf.get_n_splits()


def test_get_n_splits_for_repeated_stratified_kfold():
    n_splits = 3
    n_repeats = 4
    rskf = RepeatedStratifiedKFold(n_splits=n_splits, n_repeats=n_repeats)
    expected_n_splits = n_splits * n_repeats
    assert expected_n_splits == rskf.get_n_splits()


def test_repeated_stratified_kfold_determinstic_split():
    X = [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10]]
    y = [1, 1, 1, 0, 0]
    random_state = 1944695409
    rskf = RepeatedStratifiedKFold(n_splits=2, n_repeats=2, random_state=random_state)

    # split should produce same and deterministic splits on
    # each call
    for _ in range(3):
        splits = rskf.split(X, y)
        train, test = next(splits)
        assert_array_equal(train, [1, 4])
        assert_array_equal(test, [0, 2, 3])

        train, test = next(splits)
        assert_array_equal(train, [0, 2, 3])
        assert_array_equal(test, [1, 4])

        train, test = next(splits)
        assert_array_equal(train, [2, 3])
        assert_array_equal(test, [0, 1, 4])

        train, test = next(splits)
        assert_array_equal(train, [0, 1, 4])
        assert_array_equal(test, [2, 3])

        with pytest.raises(StopIteration):
            next(splits)


def test_train_test_split_errors():
    pytest.raises(ValueError, train_test_split)

    pytest.raises(ValueError, train_test_split, range(3), train_size=1.1)

    pytest.raises(ValueError, train_test_split, range(3), test_size=0.6, train_size=0.6)
    pytest.raises(
        ValueError,
        train_test_split,
        range(3),
        test_size=np.float32(0.6),
        train_size=np.float32(0.6),
    )
    pytest.raises(ValueError, train_test_split, range(3), test_size="wrong_type")
    pytest.raises(ValueError, train_test_split, range(3), test_size=2, train_size=4)
    pytest.raises(TypeError, train_test_split, range(3), some_argument=1.1)
    pytest.raises(ValueError, train_test_split, range(3), range(42))
    pytest.raises(ValueError, train_test_split, range(10), shuffle=False, stratify=True)

    with pytest.raises(
        ValueError,
        match=r"train_size=11 should be either positive and "
        r"smaller than the number of samples 10 or a "
        r"float in the \(0, 1\) range",
    ):
        train_test_split(range(10), train_size=11, test_size=1)


@pytest.mark.parametrize(
    "train_size,test_size",
    [
        (1.2, 0.8),
        (1.0, 0.8),
        (0.0, 0.8),
        (-0.2, 0.8),
        (0.8, 1.2),
        (0.8, 1.0),
        (0.8, 0.0),
        (0.8, -0.2),
    ],
)
def test_train_test_split_invalid_sizes1(train_size, test_size):
    with pytest.raises(ValueError, match=r"should be .* in the \(0, 1\) range"):
        train_test_split(range(10), train_size=train_size, test_size=test_size)


@pytest.mark.parametrize(
    "train_size,test_size",
    [(-10, 0.8), (0, 0.8), (11, 0.8), (0.8, -10), (0.8, 0), (0.8, 11)],
)
def test_train_test_split_invalid_sizes2(train_size, test_size):
    with pytest.raises(ValueError, match=r"should be either positive and smaller"):
        train_test_split(range(10), train_size=train_size, test_size=test_size)


@pytest.mark.parametrize(
    "train_size, exp_train, exp_test", [(None, 7, 3), (8, 8, 2), (0.8, 8, 2)]
)
def test_train_test_split_default_test_size(train_size, exp_train, exp_test):
    # Check that the default value has the expected behavior, i.e. complement
    # train_size unless both are specified.
    X_train, X_test = train_test_split(X, train_size=train_size)

    assert len(X_train) == exp_train
    assert len(X_test) == exp_test


def test_train_test_split():
    X = np.arange(100).reshape((10, 10))
    X_s = coo_matrix(X)
    y = np.arange(10)

    # simple test
    split = train_test_split(X, y, test_size=None, train_size=0.5)
    X_train, X_test, y_train, y_test = split
    assert len(y_test) == len(y_train)
    # test correspondence of X and y
    assert_array_equal(X_train[:, 0], y_train * 10)
    assert_array_equal(X_test[:, 0], y_test * 10)

    # don't convert lists to anything else by default
    split = train_test_split(X, X_s, y.tolist())
    X_train, X_test, X_s_train, X_s_test, y_train, y_test = split
    assert isinstance(y_train, list)
    assert isinstance(y_test, list)

    # allow nd-arrays
    X_4d = np.arange(10 * 5 * 3 * 2).reshape(10, 5, 3, 2)
    y_3d = np.arange(10 * 7 * 11).reshape(10, 7, 11)
    split = train_test_split(X_4d, y_3d)
    assert split[0].shape == (7, 5, 3, 2)
    assert split[1].shape == (3, 5, 3, 2)
    assert split[2].shape == (7, 7, 11)
    assert split[3].shape == (3, 7, 11)

    # test stratification option
    y = np.array([1, 1, 1, 1, 2, 2, 2, 2])
    for test_size, exp_test_size in zip([2, 4, 0.25, 0.5, 0.75], [2, 4, 2, 4, 6]):
        train, test = train_test_split(
            y, test_size=test_size, stratify=y, random_state=0
        )
        assert len(test) == exp_test_size
        assert len(test) + len(train) == len(y)
        # check the 1:1 ratio of ones and twos in the data is preserved
        assert np.sum(train == 1) == np.sum(train == 2)

    # test unshuffled split
    y = np.arange(10)
    for test_size in [2, 0.2]:
        train, test = train_test_split(y, shuffle=False, test_size=test_size)
        assert_array_equal(test, [8, 9])
        assert_array_equal(train, [0, 1, 2, 3, 4, 5, 6, 7])


def test_train_test_split_32bit_overflow():
    """Check for integer overflow on 32-bit platforms.

    Non-regression test for:
    https://github.com/scikit-learn/scikit-learn/issues/20774
    """

    # A number 'n' big enough for expression 'n * n * train_size' to cause
    # an overflow for signed 32-bit integer
    big_number = 100000

    # Definition of 'y' is a part of reproduction - population for at least
    # one class should be in the same order of magnitude as size of X
    X = np.arange(big_number)
    y = X > (0.99 * big_number)

    split = train_test_split(X, y, stratify=y, train_size=0.25)
    X_train, X_test, y_train, y_test = split

    assert X_train.size + X_test.size == big_number
    assert y_train.size + y_test.size == big_number


@ignore_warnings
def test_train_test_split_pandas():
    # check train_test_split doesn't destroy pandas dataframe
    types = [MockDataFrame]
    try:
        from pandas import DataFrame

        types.append(DataFrame)
    except ImportError:
        pass
    for InputFeatureType in types:
        # X dataframe
        X_df = InputFeatureType(X)
        X_train, X_test = train_test_split(X_df)
        assert isinstance(X_train, InputFeatureType)
        assert isinstance(X_test, InputFeatureType)


def test_train_test_split_sparse():
    # check that train_test_split converts scipy sparse matrices
    # to csr, as stated in the documentation
    X = np.arange(100).reshape((10, 10))
    sparse_types = [csr_matrix, csc_matrix, coo_matrix]
    for InputFeatureType in sparse_types:
        X_s = InputFeatureType(X)
        X_train, X_test = train_test_split(X_s)
        assert isinstance(X_train, csr_matrix)
        assert isinstance(X_test, csr_matrix)


def test_train_test_split_mock_pandas():
    # X mock dataframe
    X_df = MockDataFrame(X)
    X_train, X_test = train_test_split(X_df)
    assert isinstance(X_train, MockDataFrame)
    assert isinstance(X_test, MockDataFrame)
    X_train_arr, X_test_arr = train_test_split(X_df)


def test_train_test_split_list_input():
    # Check that when y is a list / list of string labels, it works.
    X = np.ones(7)
    y1 = ["1"] * 4 + ["0"] * 3
    y2 = np.hstack((np.ones(4), np.zeros(3)))
    y3 = y2.tolist()

    for stratify in (True, False):
        X_train1, X_test1, y_train1, y_test1 = train_test_split(
            X, y1, stratify=y1 if stratify else None, random_state=0
        )
        X_train2, X_test2, y_train2, y_test2 = train_test_split(
            X, y2, stratify=y2 if stratify else None, random_state=0
        )
        X_train3, X_test3, y_train3, y_test3 = train_test_split(
            X, y3, stratify=y3 if stratify else None, random_state=0
        )

        np.testing.assert_equal(X_train1, X_train2)
        np.testing.assert_equal(y_train2, y_train3)
        np.testing.assert_equal(X_test1, X_test3)
        np.testing.assert_equal(y_test3, y_test2)


@pytest.mark.parametrize(
    "test_size, train_size",
    [(2.0, None), (1.0, None), (0.1, 0.95), (None, 1j), (11, None), (10, None), (8, 3)],
)
def test_shufflesplit_errors(test_size, train_size):
    with pytest.raises(ValueError):
        next(ShuffleSplit(test_size=test_size, train_size=train_size).split(X))


def test_shufflesplit_reproducible():
    # Check that iterating twice on the ShuffleSplit gives the same
    # sequence of train-test when the random_state is given
    ss = ShuffleSplit(random_state=21)
    assert_array_equal([a for a, b in ss.split(X)], [a for a, b in ss.split(X)])


def test_stratifiedshufflesplit_list_input():
    # Check that when y is a list / list of string labels, it works.
    sss = StratifiedShuffleSplit(test_size=2, random_state=42)
    X = np.ones(7)
    y1 = ["1"] * 4 + ["0"] * 3
    y2 = np.hstack((np.ones(4), np.zeros(3)))
    y3 = y2.tolist()

    np.testing.assert_equal(list(sss.split(X, y1)), list(sss.split(X, y2)))
    np.testing.assert_equal(list(sss.split(X, y3)), list(sss.split(X, y2)))


def test_train_test_split_allow_nans():
    # Check that train_test_split allows input data with NaNs
    X = np.arange(200, dtype=np.float64).reshape(10, -1)
    X[2, :] = np.nan
    y = np.repeat([0, 1], X.shape[0] / 2)
    train_test_split(X, y, test_size=0.2, random_state=42)


def test_check_cv():
    X = np.ones(9)
    cv = check_cv(3, classifier=False)
    # Use numpy.testing.assert_equal which recursively compares
    # lists of lists
    np.testing.assert_equal(list(KFold(3).split(X)), list(cv.split(X)))

    y_binary = np.array([0, 1, 0, 1, 0, 0, 1, 1, 1])
    cv = check_cv(3, y_binary, classifier=True)
    np.testing.assert_equal(
        list(StratifiedKFold(3).split(X, y_binary)), list(cv.split(X, y_binary))
    )

    y_multiclass = np.array([0, 1, 0, 1, 2, 1, 2, 0, 2])
    cv = check_cv(3, y_multiclass, classifier=True)
    np.testing.assert_equal(
        list(StratifiedKFold(3).split(X, y_multiclass)), list(cv.split(X, y_multiclass))
    )
    # also works with 2d multiclass
    y_multiclass_2d = y_multiclass.reshape(-1, 1)
    cv = check_cv(3, y_multiclass_2d, classifier=True)
    np.testing.assert_equal(
        list(StratifiedKFold(3).split(X, y_multiclass_2d)),
        list(cv.split(X, y_multiclass_2d)),
    )

    assert not np.all(
        next(StratifiedKFold(3).split(X, y_multiclass_2d))[0]
        == next(KFold(3).split(X, y_multiclass_2d))[0]
    )

    X = np.ones(5)
    y_multilabel = np.array(
        [[0, 0, 0, 0], [0, 1, 1, 0], [0, 0, 0, 1], [1, 1, 0, 1], [0, 0, 1, 0]]
    )
    cv = check_cv(3, y_multilabel, classifier=True)
    np.testing.assert_equal(list(KFold(3).split(X)), list(cv.split(X)))

    y_multioutput = np.array([[1, 2], [0, 3], [0, 0], [3, 1], [2, 0]])
    cv = check_cv(3, y_multioutput, classifier=True)
    np.testing.assert_equal(list(KFold(3).split(X)), list(cv.split(X)))

    with pytest.raises(ValueError):
        check_cv(cv="lolo")


def test_cv_iterable_wrapper():
    kf_iter = KFold().split(X, y)
    kf_iter_wrapped = check_cv(kf_iter)
    # Since the wrapped iterable is enlisted and stored,
    # split can be called any number of times to produce
    # consistent results.
    np.testing.assert_equal(
        list(kf_iter_wrapped.split(X, y)), list(kf_iter_wrapped.split(X, y))
    )
    # If the splits are randomized, successive calls to split yields different
    # results
    kf_randomized_iter = KFold(shuffle=True, random_state=0).split(X, y)
    kf_randomized_iter_wrapped = check_cv(kf_randomized_iter)
    # numpy's assert_array_equal properly compares nested lists
    np.testing.assert_equal(
        list(kf_randomized_iter_wrapped.split(X, y)),
        list(kf_randomized_iter_wrapped.split(X, y)),
    )

    try:
        splits_are_equal = True
        np.testing.assert_equal(
            list(kf_iter_wrapped.split(X, y)),
            list(kf_randomized_iter_wrapped.split(X, y)),
        )
    except AssertionError:
        splits_are_equal = False
    assert not splits_are_equal, (
        "If the splits are randomized, "
        "successive calls to split should yield different results"
    )


@pytest.mark.parametrize("kfold", [GroupKFold, StratifiedGroupKFold])
def test_group_kfold(kfold):
    rng = np.random.RandomState(0)

    # Parameters of the test
    n_groups = 15
    n_samples = 1000
    n_splits = 5

    X = y = np.ones(n_samples)

    # Construct the test data
    tolerance = 0.05 * n_samples  # 5 percent error allowed
    groups = rng.randint(0, n_groups, n_samples)

    ideal_n_groups_per_fold = n_samples // n_splits

    len(np.unique(groups))
    # Get the test fold indices from the test set indices of each fold
    folds = np.zeros(n_samples)
    lkf = kfold(n_splits=n_splits)
    for i, (_, test) in enumerate(lkf.split(X, y, groups)):
        folds[test] = i

    # Check that folds have approximately the same size
    assert len(folds) == len(groups)
    for i in np.unique(folds):
        assert tolerance >= abs(sum(folds == i) - ideal_n_groups_per_fold)

    # Check that each group appears only in 1 fold
    for group in np.unique(groups):
        assert len(np.unique(folds[groups == group])) == 1

    # Check that no group is on both sides of the split
    groups = np.asarray(groups, dtype=object)
    for train, test in lkf.split(X, y, groups):
        assert len(np.intersect1d(groups[train], groups[test])) == 0

    # Construct the test data
    groups = np.array(
        [
            "Albert",
            "Jean",
            "Bertrand",
            "Michel",
            "Jean",
            "Francis",
            "Robert",
            "Michel",
            "Rachel",
            "Lois",
            "Michelle",
            "Bernard",
            "Marion",
            "Laura",
            "Jean",
            "Rachel",
            "Franck",
            "John",
            "Gael",
            "Anna",
            "Alix",
            "Robert",
            "Marion",
            "David",
            "Tony",
            "Abel",
            "Becky",
            "Madmood",
            "Cary",
            "Mary",
            "Alexandre",
            "David",
            "Francis",
            "Barack",
            "Abdoul",
            "Rasha",
            "Xi",
            "Silvia",
        ]
    )

    n_groups = len(np.unique(groups))
    n_samples = len(groups)
    n_splits = 5
    tolerance = 0.05 * n_samples  # 5 percent error allowed
    ideal_n_groups_per_fold = n_samples // n_splits

    X = y = np.ones(n_samples)

    # Get the test fold indices from the test set indices of each fold
    folds = np.zeros(n_samples)
    for i, (_, test) in enumerate(lkf.split(X, y, groups)):
        folds[test] = i

    # Check that folds have approximately the same size
    assert len(folds) == len(groups)
    for i in np.unique(folds):
        assert tolerance >= abs(sum(folds == i) - ideal_n_groups_per_fold)

    # Check that each group appears only in 1 fold
    with warnings.catch_warnings():
        warnings.simplefilter("ignore", FutureWarning)
        for group in np.unique(groups):
            assert len(np.unique(folds[groups == group])) == 1

    # Check that no group is on both sides of the split
    groups = np.asarray(groups, dtype=object)
    for train, test in lkf.split(X, y, groups):
        assert len(np.intersect1d(groups[train], groups[test])) == 0

    # groups can also be a list
    cv_iter = list(lkf.split(X, y, groups.tolist()))
    for (train1, test1), (train2, test2) in zip(lkf.split(X, y, groups), cv_iter):
        assert_array_equal(train1, train2)
        assert_array_equal(test1, test2)

    # Should fail if there are more folds than groups
    groups = np.array([1, 1, 1, 2, 2])
    X = y = np.ones(len(groups))
    with pytest.raises(ValueError, match="Cannot have number of splits.*greater"):
        next(GroupKFold(n_splits=3).split(X, y, groups))


def test_time_series_cv():
    X = [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10], [11, 12], [13, 14]]

    # Should fail if there are more folds than samples
    with pytest.raises(ValueError, match="Cannot have number of folds.*greater"):
        next(TimeSeriesSplit(n_splits=7).split(X))

    tscv = TimeSeriesSplit(2)

    # Manually check that Time Series CV preserves the data
    # ordering on toy datasets
    splits = tscv.split(X[:-1])
    train, test = next(splits)
    assert_array_equal(train, [0, 1])
    assert_array_equal(test, [2, 3])

    train, test = next(splits)
    assert_array_equal(train, [0, 1, 2, 3])
    assert_array_equal(test, [4, 5])

    splits = TimeSeriesSplit(2).split(X)

    train, test = next(splits)
    assert_array_equal(train, [0, 1, 2])
    assert_array_equal(test, [3, 4])

    train, test = next(splits)
    assert_array_equal(train, [0, 1, 2, 3, 4])
    assert_array_equal(test, [5, 6])

    # Check get_n_splits returns the correct number of splits
    splits = TimeSeriesSplit(2).split(X)
    n_splits_actual = len(list(splits))
    assert n_splits_actual == tscv.get_n_splits()
    assert n_splits_actual == 2


def _check_time_series_max_train_size(splits, check_splits, max_train_size):
    for (train, test), (check_train, check_test) in zip(splits, check_splits):
        assert_array_equal(test, check_test)
        assert len(check_train) <= max_train_size
        suffix_start = max(len(train) - max_train_size, 0)
        assert_array_equal(check_train, train[suffix_start:])


def test_time_series_max_train_size():
    X = np.zeros((6, 1))
    splits = TimeSeriesSplit(n_splits=3).split(X)
    check_splits = TimeSeriesSplit(n_splits=3, max_train_size=3).split(X)
    _check_time_series_max_train_size(splits, check_splits, max_train_size=3)

    # Test for the case where the size of a fold is greater than max_train_size
    check_splits = TimeSeriesSplit(n_splits=3, max_train_size=2).split(X)
    _check_time_series_max_train_size(splits, check_splits, max_train_size=2)

    # Test for the case where the size of each fold is less than max_train_size
    check_splits = TimeSeriesSplit(n_splits=3, max_train_size=5).split(X)
    _check_time_series_max_train_size(splits, check_splits, max_train_size=2)


def test_time_series_test_size():
    X = np.zeros((10, 1))

    # Test alone
    splits = TimeSeriesSplit(n_splits=3, test_size=3).split(X)

    train, test = next(splits)
    assert_array_equal(train, [0])
    assert_array_equal(test, [1, 2, 3])

    train, test = next(splits)
    assert_array_equal(train, [0, 1, 2, 3])
    assert_array_equal(test, [4, 5, 6])

    train, test = next(splits)
    assert_array_equal(train, [0, 1, 2, 3, 4, 5, 6])
    assert_array_equal(test, [7, 8, 9])

    # Test with max_train_size
    splits = TimeSeriesSplit(n_splits=2, test_size=2, max_train_size=4).split(X)

    train, test = next(splits)
    assert_array_equal(train, [2, 3, 4, 5])
    assert_array_equal(test, [6, 7])

    train, test = next(splits)
    assert_array_equal(train, [4, 5, 6, 7])
    assert_array_equal(test, [8, 9])

    # Should fail with not enough data points for configuration
    with pytest.raises(ValueError, match="Too many splits.*with test_size"):
        splits = TimeSeriesSplit(n_splits=5, test_size=2).split(X)
        next(splits)


def test_time_series_gap():
    X = np.zeros((10, 1))

    # Test alone
    splits = TimeSeriesSplit(n_splits=2, gap=2).split(X)

    train, test = next(splits)
    assert_array_equal(train, [0, 1])
    assert_array_equal(test, [4, 5, 6])

    train, test = next(splits)
    assert_array_equal(train, [0, 1, 2, 3, 4])
    assert_array_equal(test, [7, 8, 9])

    # Test with max_train_size
    splits = TimeSeriesSplit(n_splits=3, gap=2, max_train_size=2).split(X)

    train, test = next(splits)
    assert_array_equal(train, [0, 1])
    assert_array_equal(test, [4, 5])

    train, test = next(splits)
    assert_array_equal(train, [2, 3])
    assert_array_equal(test, [6, 7])

    train, test = next(splits)
    assert_array_equal(train, [4, 5])
    assert_array_equal(test, [8, 9])

    # Test with test_size
    splits = TimeSeriesSplit(n_splits=2, gap=2, max_train_size=4, test_size=2).split(X)

    train, test = next(splits)
    assert_array_equal(train, [0, 1, 2, 3])
    assert_array_equal(test, [6, 7])

    train, test = next(splits)
    assert_array_equal(train, [2, 3, 4, 5])
    assert_array_equal(test, [8, 9])

    # Test with additional test_size
    splits = TimeSeriesSplit(n_splits=2, gap=2, test_size=3).split(X)

    train, test = next(splits)
    assert_array_equal(train, [0, 1])
    assert_array_equal(test, [4, 5, 6])

    train, test = next(splits)
    assert_array_equal(train, [0, 1, 2, 3, 4])
    assert_array_equal(test, [7, 8, 9])

    # Verify proper error is thrown
    with pytest.raises(ValueError, match="Too many splits.*and gap"):
        splits = TimeSeriesSplit(n_splits=4, gap=2).split(X)
        next(splits)


def test_nested_cv():
    # Test if nested cross validation works with different combinations of cv
    rng = np.random.RandomState(0)

    X, y = make_classification(n_samples=15, n_classes=2, random_state=0)
    groups = rng.randint(0, 5, 15)

    cvs = [
        LeaveOneGroupOut(),
        StratifiedKFold(n_splits=2),
        GroupKFold(n_splits=3),
    ]

    for inner_cv, outer_cv in combinations_with_replacement(cvs, 2):
        gs = GridSearchCV(
            DummyClassifier(),
            param_grid={"strategy": ["stratified", "most_frequent"]},
            cv=inner_cv,
            error_score="raise",
        )
        cross_val_score(
            gs, X=X, y=y, groups=groups, cv=outer_cv, fit_params={"groups": groups}
        )


def test_build_repr():
    class MockSplitter:
        def __init__(self, a, b=0, c=None):
            self.a = a
            self.b = b
            self.c = c

        def __repr__(self):
            return _build_repr(self)

    assert repr(MockSplitter(5, 6)) == "MockSplitter(a=5, b=6, c=None)"


@pytest.mark.parametrize(
    "CVSplitter", (ShuffleSplit, GroupShuffleSplit, StratifiedShuffleSplit)
)
def test_shuffle_split_empty_trainset(CVSplitter):
    cv = CVSplitter(test_size=0.99)
    X, y = [[1]], [0]  # 1 sample
    with pytest.raises(
        ValueError,
        match=(
            "With n_samples=1, test_size=0.99 and train_size=None, "
            "the resulting train set will be empty"
        ),
    ):
        next(cv.split(X, y, groups=[1]))


def test_train_test_split_empty_trainset():
    (X,) = [[1]]  # 1 sample
    with pytest.raises(
        ValueError,
        match=(
            "With n_samples=1, test_size=0.99 and train_size=None, "
            "the resulting train set will be empty"
        ),
    ):
        train_test_split(X, test_size=0.99)

    X = [[1], [1], [1]]  # 3 samples, ask for more than 2 thirds
    with pytest.raises(
        ValueError,
        match=(
            "With n_samples=3, test_size=0.67 and train_size=None, "
            "the resulting train set will be empty"
        ),
    ):
        train_test_split(X, test_size=0.67)


def test_leave_one_out_empty_trainset():
    # LeaveOneGroup out expect at least 2 groups so no need to check
    cv = LeaveOneOut()
    X, y = [[1]], [0]  # 1 sample
    with pytest.raises(ValueError, match="Cannot perform LeaveOneOut with n_samples=1"):
        next(cv.split(X, y))


def test_leave_p_out_empty_trainset():
    # No need to check LeavePGroupsOut
    cv = LeavePOut(p=2)
    X, y = [[1], [2]], [0, 3]  # 2 samples
    with pytest.raises(
        ValueError, match="p=2 must be strictly less than the number of samples=2"
    ):
        next(cv.split(X, y, groups=[1, 2]))


@pytest.mark.parametrize("Klass", (KFold, StratifiedKFold, StratifiedGroupKFold))
def test_random_state_shuffle_false(Klass):
    # passing a non-default random_state when shuffle=False makes no sense
    with pytest.raises(ValueError, match="has no effect since shuffle is False"):
        Klass(3, shuffle=False, random_state=0)


@pytest.mark.parametrize(
    "cv, expected",
    [
        (KFold(), True),
        (KFold(shuffle=True, random_state=123), True),
        (StratifiedKFold(), True),
        (StratifiedKFold(shuffle=True, random_state=123), True),
        (StratifiedGroupKFold(shuffle=True, random_state=123), True),
        (StratifiedGroupKFold(), True),
        (RepeatedKFold(random_state=123), True),
        (RepeatedStratifiedKFold(random_state=123), True),
        (ShuffleSplit(random_state=123), True),
        (GroupShuffleSplit(random_state=123), True),
        (StratifiedShuffleSplit(random_state=123), True),
        (GroupKFold(), True),
        (TimeSeriesSplit(), True),
        (LeaveOneOut(), True),
        (LeaveOneGroupOut(), True),
        (LeavePGroupsOut(n_groups=2), True),
        (LeavePOut(p=2), True),
        (KFold(shuffle=True, random_state=None), False),
        (KFold(shuffle=True, random_state=None), False),
        (StratifiedKFold(shuffle=True, random_state=np.random.RandomState(0)), False),
        (StratifiedKFold(shuffle=True, random_state=np.random.RandomState(0)), False),
        (RepeatedKFold(random_state=None), False),
        (RepeatedKFold(random_state=np.random.RandomState(0)), False),
        (RepeatedStratifiedKFold(random_state=None), False),
        (RepeatedStratifiedKFold(random_state=np.random.RandomState(0)), False),
        (ShuffleSplit(random_state=None), False),
        (ShuffleSplit(random_state=np.random.RandomState(0)), False),
        (GroupShuffleSplit(random_state=None), False),
        (GroupShuffleSplit(random_state=np.random.RandomState(0)), False),
        (StratifiedShuffleSplit(random_state=None), False),
        (StratifiedShuffleSplit(random_state=np.random.RandomState(0)), False),
    ],
)
def test_yields_constant_splits(cv, expected):
    assert _yields_constant_splits(cv) == expected