1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
|
"""Test the validation module"""
import os
import re
import sys
import tempfile
import warnings
from functools import partial
from time import sleep
import pytest
import numpy as np
from scipy.sparse import coo_matrix, csr_matrix
from sklearn.exceptions import FitFailedWarning
from sklearn.model_selection.tests.test_search import FailingClassifier
from sklearn.utils._testing import assert_almost_equal
from sklearn.utils._testing import assert_array_almost_equal
from sklearn.utils._testing import assert_array_equal
from sklearn.utils._testing import assert_allclose
from sklearn.utils._mocking import CheckingClassifier, MockDataFrame
from sklearn.utils.validation import _num_samples
from sklearn.model_selection import cross_val_score, ShuffleSplit
from sklearn.model_selection import cross_val_predict
from sklearn.model_selection import cross_validate
from sklearn.model_selection import permutation_test_score
from sklearn.model_selection import KFold
from sklearn.model_selection import StratifiedKFold
from sklearn.model_selection import LeaveOneOut
from sklearn.model_selection import LeaveOneGroupOut
from sklearn.model_selection import LeavePGroupsOut
from sklearn.model_selection import GroupKFold
from sklearn.model_selection import GroupShuffleSplit
from sklearn.model_selection import learning_curve
from sklearn.model_selection import validation_curve
from sklearn.model_selection._validation import _check_is_permutation
from sklearn.model_selection._validation import _fit_and_score
from sklearn.model_selection._validation import _score
from sklearn.datasets import make_regression
from sklearn.datasets import load_diabetes
from sklearn.datasets import load_iris
from sklearn.datasets import load_digits
from sklearn.metrics import explained_variance_score
from sklearn.metrics import make_scorer
from sklearn.metrics import accuracy_score
from sklearn.metrics import confusion_matrix
from sklearn.metrics import precision_recall_fscore_support
from sklearn.metrics import precision_score
from sklearn.metrics import r2_score
from sklearn.metrics import mean_squared_error
from sklearn.metrics import check_scoring
from sklearn.linear_model import Ridge, LogisticRegression, SGDClassifier
from sklearn.linear_model import PassiveAggressiveClassifier, RidgeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC, LinearSVC
from sklearn.cluster import KMeans
from sklearn.neural_network import MLPRegressor
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import LabelEncoder
from sklearn.pipeline import Pipeline
from io import StringIO
from sklearn.base import BaseEstimator
from sklearn.base import clone
from sklearn.multiclass import OneVsRestClassifier
from sklearn.utils import shuffle
from sklearn.datasets import make_classification
from sklearn.datasets import make_multilabel_classification
from sklearn.model_selection.tests.common import OneTimeSplitter
from sklearn.model_selection import GridSearchCV
try:
WindowsError # type: ignore
except NameError:
WindowsError = None
class MockImprovingEstimator(BaseEstimator):
"""Dummy classifier to test the learning curve"""
def __init__(self, n_max_train_sizes):
self.n_max_train_sizes = n_max_train_sizes
self.train_sizes = 0
self.X_subset = None
def fit(self, X_subset, y_subset=None):
self.X_subset = X_subset
self.train_sizes = X_subset.shape[0]
return self
def predict(self, X):
raise NotImplementedError
def score(self, X=None, Y=None):
# training score becomes worse (2 -> 1), test error better (0 -> 1)
if self._is_training_data(X):
return 2.0 - float(self.train_sizes) / self.n_max_train_sizes
else:
return float(self.train_sizes) / self.n_max_train_sizes
def _is_training_data(self, X):
return X is self.X_subset
class MockIncrementalImprovingEstimator(MockImprovingEstimator):
"""Dummy classifier that provides partial_fit"""
def __init__(self, n_max_train_sizes, expected_fit_params=None):
super().__init__(n_max_train_sizes)
self.x = None
self.expected_fit_params = expected_fit_params
def _is_training_data(self, X):
return self.x in X
def partial_fit(self, X, y=None, **params):
self.train_sizes += X.shape[0]
self.x = X[0]
if self.expected_fit_params:
missing = set(self.expected_fit_params) - set(params)
if missing:
raise AssertionError(
f"Expected fit parameter(s) {list(missing)} not seen."
)
for key, value in params.items():
if key in self.expected_fit_params and _num_samples(
value
) != _num_samples(X):
raise AssertionError(
f"Fit parameter {key} has length {_num_samples(value)}"
f"; expected {_num_samples(X)}."
)
class MockEstimatorWithParameter(BaseEstimator):
"""Dummy classifier to test the validation curve"""
def __init__(self, param=0.5):
self.X_subset = None
self.param = param
def fit(self, X_subset, y_subset):
self.X_subset = X_subset
self.train_sizes = X_subset.shape[0]
return self
def predict(self, X):
raise NotImplementedError
def score(self, X=None, y=None):
return self.param if self._is_training_data(X) else 1 - self.param
def _is_training_data(self, X):
return X is self.X_subset
class MockEstimatorWithSingleFitCallAllowed(MockEstimatorWithParameter):
"""Dummy classifier that disallows repeated calls of fit method"""
def fit(self, X_subset, y_subset):
assert not hasattr(self, "fit_called_"), "fit is called the second time"
self.fit_called_ = True
return super().fit(X_subset, y_subset)
def predict(self, X):
raise NotImplementedError
class MockClassifier:
"""Dummy classifier to test the cross-validation"""
def __init__(self, a=0, allow_nd=False):
self.a = a
self.allow_nd = allow_nd
def fit(
self,
X,
Y=None,
sample_weight=None,
class_prior=None,
sparse_sample_weight=None,
sparse_param=None,
dummy_int=None,
dummy_str=None,
dummy_obj=None,
callback=None,
):
"""The dummy arguments are to test that this fit function can
accept non-array arguments through cross-validation, such as:
- int
- str (this is actually array-like)
- object
- function
"""
self.dummy_int = dummy_int
self.dummy_str = dummy_str
self.dummy_obj = dummy_obj
if callback is not None:
callback(self)
if self.allow_nd:
X = X.reshape(len(X), -1)
if X.ndim >= 3 and not self.allow_nd:
raise ValueError("X cannot be d")
if sample_weight is not None:
assert sample_weight.shape[0] == X.shape[0], (
"MockClassifier extra fit_param "
"sample_weight.shape[0] is {0}, should be {1}".format(
sample_weight.shape[0], X.shape[0]
)
)
if class_prior is not None:
assert class_prior.shape[0] == len(np.unique(y)), (
"MockClassifier extra fit_param class_prior.shape[0]"
" is {0}, should be {1}".format(class_prior.shape[0], len(np.unique(y)))
)
if sparse_sample_weight is not None:
fmt = (
"MockClassifier extra fit_param sparse_sample_weight"
".shape[0] is {0}, should be {1}"
)
assert sparse_sample_weight.shape[0] == X.shape[0], fmt.format(
sparse_sample_weight.shape[0], X.shape[0]
)
if sparse_param is not None:
fmt = (
"MockClassifier extra fit_param sparse_param.shape "
"is ({0}, {1}), should be ({2}, {3})"
)
assert sparse_param.shape == P_sparse.shape, fmt.format(
sparse_param.shape[0],
sparse_param.shape[1],
P_sparse.shape[0],
P_sparse.shape[1],
)
return self
def predict(self, T):
if self.allow_nd:
T = T.reshape(len(T), -1)
return T[:, 0]
def predict_proba(self, T):
return T
def score(self, X=None, Y=None):
return 1.0 / (1 + np.abs(self.a))
def get_params(self, deep=False):
return {"a": self.a, "allow_nd": self.allow_nd}
# XXX: use 2D array, since 1D X is being detected as a single sample in
# check_consistent_length
X = np.ones((10, 2))
X_sparse = coo_matrix(X)
y = np.array([0, 0, 1, 1, 2, 2, 3, 3, 4, 4])
# The number of samples per class needs to be > n_splits,
# for StratifiedKFold(n_splits=3)
y2 = np.array([1, 1, 1, 2, 2, 2, 3, 3, 3, 3])
P_sparse = coo_matrix(np.eye(5))
def test_cross_val_score():
clf = MockClassifier()
for a in range(-10, 10):
clf.a = a
# Smoke test
scores = cross_val_score(clf, X, y2)
assert_array_equal(scores, clf.score(X, y2))
# test with multioutput y
multioutput_y = np.column_stack([y2, y2[::-1]])
scores = cross_val_score(clf, X_sparse, multioutput_y)
assert_array_equal(scores, clf.score(X_sparse, multioutput_y))
scores = cross_val_score(clf, X_sparse, y2)
assert_array_equal(scores, clf.score(X_sparse, y2))
# test with multioutput y
scores = cross_val_score(clf, X_sparse, multioutput_y)
assert_array_equal(scores, clf.score(X_sparse, multioutput_y))
# test with X and y as list
list_check = lambda x: isinstance(x, list)
clf = CheckingClassifier(check_X=list_check)
scores = cross_val_score(clf, X.tolist(), y2.tolist(), cv=3)
clf = CheckingClassifier(check_y=list_check)
scores = cross_val_score(clf, X, y2.tolist(), cv=3)
with pytest.raises(ValueError):
cross_val_score(clf, X, y2, scoring="sklearn")
# test with 3d X and
X_3d = X[:, :, np.newaxis]
clf = MockClassifier(allow_nd=True)
scores = cross_val_score(clf, X_3d, y2)
clf = MockClassifier(allow_nd=False)
with pytest.raises(ValueError):
cross_val_score(clf, X_3d, y2, error_score="raise")
def test_cross_validate_many_jobs():
# regression test for #12154: cv='warn' with n_jobs>1 trigger a copy of
# the parameters leading to a failure in check_cv due to cv is 'warn'
# instead of cv == 'warn'.
X, y = load_iris(return_X_y=True)
clf = SVC(gamma="auto")
grid = GridSearchCV(clf, param_grid={"C": [1, 10]})
cross_validate(grid, X, y, n_jobs=2)
def test_cross_validate_invalid_scoring_param():
X, y = make_classification(random_state=0)
estimator = MockClassifier()
# Test the errors
error_message_regexp = ".*must be unique strings.*"
# List/tuple of callables should raise a message advising users to use
# dict of names to callables mapping
with pytest.raises(ValueError, match=error_message_regexp):
cross_validate(
estimator,
X,
y,
scoring=(make_scorer(precision_score), make_scorer(accuracy_score)),
)
with pytest.raises(ValueError, match=error_message_regexp):
cross_validate(estimator, X, y, scoring=(make_scorer(precision_score),))
# So should empty lists/tuples
with pytest.raises(ValueError, match=error_message_regexp + "Empty list.*"):
cross_validate(estimator, X, y, scoring=())
# So should duplicated entries
with pytest.raises(ValueError, match=error_message_regexp + "Duplicate.*"):
cross_validate(estimator, X, y, scoring=("f1_micro", "f1_micro"))
# Nested Lists should raise a generic error message
with pytest.raises(ValueError, match=error_message_regexp):
cross_validate(estimator, X, y, scoring=[[make_scorer(precision_score)]])
error_message_regexp = (
".*scoring is invalid.*Refer to the scoring glossary for details:.*"
)
# Empty dict should raise invalid scoring error
with pytest.raises(ValueError, match="An empty dict"):
cross_validate(estimator, X, y, scoring=(dict()))
# And so should any other invalid entry
with pytest.raises(ValueError, match=error_message_regexp):
cross_validate(estimator, X, y, scoring=5)
multiclass_scorer = make_scorer(precision_recall_fscore_support)
# Multiclass Scorers that return multiple values are not supported yet
# the warning message we're expecting to see
warning_message = (
"Scoring failed. The score on this train-test "
f"partition for these parameters will be set to {np.nan}. "
"Details: \n"
)
with pytest.warns(UserWarning, match=warning_message):
cross_validate(estimator, X, y, scoring=multiclass_scorer)
with pytest.warns(UserWarning, match=warning_message):
cross_validate(estimator, X, y, scoring={"foo": multiclass_scorer})
with pytest.raises(ValueError, match="'mse' is not a valid scoring value."):
cross_validate(SVC(), X, y, scoring="mse")
def test_cross_validate_nested_estimator():
# Non-regression test to ensure that nested
# estimators are properly returned in a list
# https://github.com/scikit-learn/scikit-learn/pull/17745
(X, y) = load_iris(return_X_y=True)
pipeline = Pipeline(
[
("imputer", SimpleImputer()),
("classifier", MockClassifier()),
]
)
results = cross_validate(pipeline, X, y, return_estimator=True)
estimators = results["estimator"]
assert isinstance(estimators, list)
assert all(isinstance(estimator, Pipeline) for estimator in estimators)
def test_cross_validate():
# Compute train and test mse/r2 scores
cv = KFold()
# Regression
X_reg, y_reg = make_regression(n_samples=30, random_state=0)
reg = Ridge(random_state=0)
# Classification
X_clf, y_clf = make_classification(n_samples=30, random_state=0)
clf = SVC(kernel="linear", random_state=0)
for X, y, est in ((X_reg, y_reg, reg), (X_clf, y_clf, clf)):
# It's okay to evaluate regression metrics on classification too
mse_scorer = check_scoring(est, scoring="neg_mean_squared_error")
r2_scorer = check_scoring(est, scoring="r2")
train_mse_scores = []
test_mse_scores = []
train_r2_scores = []
test_r2_scores = []
fitted_estimators = []
for train, test in cv.split(X, y):
est = clone(reg).fit(X[train], y[train])
train_mse_scores.append(mse_scorer(est, X[train], y[train]))
train_r2_scores.append(r2_scorer(est, X[train], y[train]))
test_mse_scores.append(mse_scorer(est, X[test], y[test]))
test_r2_scores.append(r2_scorer(est, X[test], y[test]))
fitted_estimators.append(est)
train_mse_scores = np.array(train_mse_scores)
test_mse_scores = np.array(test_mse_scores)
train_r2_scores = np.array(train_r2_scores)
test_r2_scores = np.array(test_r2_scores)
fitted_estimators = np.array(fitted_estimators)
scores = (
train_mse_scores,
test_mse_scores,
train_r2_scores,
test_r2_scores,
fitted_estimators,
)
check_cross_validate_single_metric(est, X, y, scores)
check_cross_validate_multi_metric(est, X, y, scores)
def check_cross_validate_single_metric(clf, X, y, scores):
(
train_mse_scores,
test_mse_scores,
train_r2_scores,
test_r2_scores,
fitted_estimators,
) = scores
# Test single metric evaluation when scoring is string or singleton list
for return_train_score, dict_len in ((True, 4), (False, 3)):
# Single metric passed as a string
if return_train_score:
mse_scores_dict = cross_validate(
clf, X, y, scoring="neg_mean_squared_error", return_train_score=True
)
assert_array_almost_equal(mse_scores_dict["train_score"], train_mse_scores)
else:
mse_scores_dict = cross_validate(
clf, X, y, scoring="neg_mean_squared_error", return_train_score=False
)
assert isinstance(mse_scores_dict, dict)
assert len(mse_scores_dict) == dict_len
assert_array_almost_equal(mse_scores_dict["test_score"], test_mse_scores)
# Single metric passed as a list
if return_train_score:
# It must be True by default - deprecated
r2_scores_dict = cross_validate(
clf, X, y, scoring=["r2"], return_train_score=True
)
assert_array_almost_equal(r2_scores_dict["train_r2"], train_r2_scores, True)
else:
r2_scores_dict = cross_validate(
clf, X, y, scoring=["r2"], return_train_score=False
)
assert isinstance(r2_scores_dict, dict)
assert len(r2_scores_dict) == dict_len
assert_array_almost_equal(r2_scores_dict["test_r2"], test_r2_scores)
# Test return_estimator option
mse_scores_dict = cross_validate(
clf, X, y, scoring="neg_mean_squared_error", return_estimator=True
)
for k, est in enumerate(mse_scores_dict["estimator"]):
assert_almost_equal(est.coef_, fitted_estimators[k].coef_)
assert_almost_equal(est.intercept_, fitted_estimators[k].intercept_)
def check_cross_validate_multi_metric(clf, X, y, scores):
# Test multimetric evaluation when scoring is a list / dict
(
train_mse_scores,
test_mse_scores,
train_r2_scores,
test_r2_scores,
fitted_estimators,
) = scores
def custom_scorer(clf, X, y):
y_pred = clf.predict(X)
return {
"r2": r2_score(y, y_pred),
"neg_mean_squared_error": -mean_squared_error(y, y_pred),
}
all_scoring = (
("r2", "neg_mean_squared_error"),
{
"r2": make_scorer(r2_score),
"neg_mean_squared_error": "neg_mean_squared_error",
},
custom_scorer,
)
keys_sans_train = {
"test_r2",
"test_neg_mean_squared_error",
"fit_time",
"score_time",
}
keys_with_train = keys_sans_train.union(
{"train_r2", "train_neg_mean_squared_error"}
)
for return_train_score in (True, False):
for scoring in all_scoring:
if return_train_score:
# return_train_score must be True by default - deprecated
cv_results = cross_validate(
clf, X, y, scoring=scoring, return_train_score=True
)
assert_array_almost_equal(cv_results["train_r2"], train_r2_scores)
assert_array_almost_equal(
cv_results["train_neg_mean_squared_error"], train_mse_scores
)
else:
cv_results = cross_validate(
clf, X, y, scoring=scoring, return_train_score=False
)
assert isinstance(cv_results, dict)
assert set(cv_results.keys()) == (
keys_with_train if return_train_score else keys_sans_train
)
assert_array_almost_equal(cv_results["test_r2"], test_r2_scores)
assert_array_almost_equal(
cv_results["test_neg_mean_squared_error"], test_mse_scores
)
# Make sure all the arrays are of np.ndarray type
assert type(cv_results["test_r2"]) == np.ndarray
assert type(cv_results["test_neg_mean_squared_error"]) == np.ndarray
assert type(cv_results["fit_time"]) == np.ndarray
assert type(cv_results["score_time"]) == np.ndarray
# Ensure all the times are within sane limits
assert np.all(cv_results["fit_time"] >= 0)
assert np.all(cv_results["fit_time"] < 10)
assert np.all(cv_results["score_time"] >= 0)
assert np.all(cv_results["score_time"] < 10)
def test_cross_val_score_predict_groups():
# Check if ValueError (when groups is None) propagates to cross_val_score
# and cross_val_predict
# And also check if groups is correctly passed to the cv object
X, y = make_classification(n_samples=20, n_classes=2, random_state=0)
clf = SVC(kernel="linear")
group_cvs = [
LeaveOneGroupOut(),
LeavePGroupsOut(2),
GroupKFold(),
GroupShuffleSplit(),
]
error_message = "The 'groups' parameter should not be None."
for cv in group_cvs:
with pytest.raises(ValueError, match=error_message):
cross_val_score(estimator=clf, X=X, y=y, cv=cv)
with pytest.raises(ValueError, match=error_message):
cross_val_predict(estimator=clf, X=X, y=y, cv=cv)
@pytest.mark.filterwarnings("ignore: Using or importing the ABCs from")
def test_cross_val_score_pandas():
# check cross_val_score doesn't destroy pandas dataframe
types = [(MockDataFrame, MockDataFrame)]
try:
from pandas import Series, DataFrame
types.append((Series, DataFrame))
except ImportError:
pass
for TargetType, InputFeatureType in types:
# X dataframe, y series
# 3 fold cross val is used so we need at least 3 samples per class
X_df, y_ser = InputFeatureType(X), TargetType(y2)
check_df = lambda x: isinstance(x, InputFeatureType)
check_series = lambda x: isinstance(x, TargetType)
clf = CheckingClassifier(check_X=check_df, check_y=check_series)
cross_val_score(clf, X_df, y_ser, cv=3)
def test_cross_val_score_mask():
# test that cross_val_score works with boolean masks
svm = SVC(kernel="linear")
iris = load_iris()
X, y = iris.data, iris.target
kfold = KFold(5)
scores_indices = cross_val_score(svm, X, y, cv=kfold)
kfold = KFold(5)
cv_masks = []
for train, test in kfold.split(X, y):
mask_train = np.zeros(len(y), dtype=bool)
mask_test = np.zeros(len(y), dtype=bool)
mask_train[train] = 1
mask_test[test] = 1
cv_masks.append((train, test))
scores_masks = cross_val_score(svm, X, y, cv=cv_masks)
assert_array_equal(scores_indices, scores_masks)
def test_cross_val_score_precomputed():
# test for svm with precomputed kernel
svm = SVC(kernel="precomputed")
iris = load_iris()
X, y = iris.data, iris.target
linear_kernel = np.dot(X, X.T)
score_precomputed = cross_val_score(svm, linear_kernel, y)
svm = SVC(kernel="linear")
score_linear = cross_val_score(svm, X, y)
assert_array_almost_equal(score_precomputed, score_linear)
# test with callable
svm = SVC(kernel=lambda x, y: np.dot(x, y.T))
score_callable = cross_val_score(svm, X, y)
assert_array_almost_equal(score_precomputed, score_callable)
# Error raised for non-square X
svm = SVC(kernel="precomputed")
with pytest.raises(ValueError):
cross_val_score(svm, X, y)
# test error is raised when the precomputed kernel is not array-like
# or sparse
with pytest.raises(ValueError):
cross_val_score(svm, linear_kernel.tolist(), y)
def test_cross_val_score_fit_params():
clf = MockClassifier()
n_samples = X.shape[0]
n_classes = len(np.unique(y))
W_sparse = coo_matrix(
(np.array([1]), (np.array([1]), np.array([0]))), shape=(10, 1)
)
P_sparse = coo_matrix(np.eye(5))
DUMMY_INT = 42
DUMMY_STR = "42"
DUMMY_OBJ = object()
def assert_fit_params(clf):
# Function to test that the values are passed correctly to the
# classifier arguments for non-array type
assert clf.dummy_int == DUMMY_INT
assert clf.dummy_str == DUMMY_STR
assert clf.dummy_obj == DUMMY_OBJ
fit_params = {
"sample_weight": np.ones(n_samples),
"class_prior": np.full(n_classes, 1.0 / n_classes),
"sparse_sample_weight": W_sparse,
"sparse_param": P_sparse,
"dummy_int": DUMMY_INT,
"dummy_str": DUMMY_STR,
"dummy_obj": DUMMY_OBJ,
"callback": assert_fit_params,
}
cross_val_score(clf, X, y, fit_params=fit_params)
def test_cross_val_score_score_func():
clf = MockClassifier()
_score_func_args = []
def score_func(y_test, y_predict):
_score_func_args.append((y_test, y_predict))
return 1.0
with warnings.catch_warnings(record=True):
scoring = make_scorer(score_func)
score = cross_val_score(clf, X, y, scoring=scoring, cv=3)
assert_array_equal(score, [1.0, 1.0, 1.0])
# Test that score function is called only 3 times (for cv=3)
assert len(_score_func_args) == 3
def test_cross_val_score_errors():
class BrokenEstimator:
pass
with pytest.raises(TypeError):
cross_val_score(BrokenEstimator(), X)
def test_cross_val_score_with_score_func_classification():
iris = load_iris()
clf = SVC(kernel="linear")
# Default score (should be the accuracy score)
scores = cross_val_score(clf, iris.data, iris.target)
assert_array_almost_equal(scores, [0.97, 1.0, 0.97, 0.97, 1.0], 2)
# Correct classification score (aka. zero / one score) - should be the
# same as the default estimator score
zo_scores = cross_val_score(clf, iris.data, iris.target, scoring="accuracy")
assert_array_almost_equal(zo_scores, [0.97, 1.0, 0.97, 0.97, 1.0], 2)
# F1 score (class are balanced so f1_score should be equal to zero/one
# score
f1_scores = cross_val_score(clf, iris.data, iris.target, scoring="f1_weighted")
assert_array_almost_equal(f1_scores, [0.97, 1.0, 0.97, 0.97, 1.0], 2)
def test_cross_val_score_with_score_func_regression():
X, y = make_regression(n_samples=30, n_features=20, n_informative=5, random_state=0)
reg = Ridge()
# Default score of the Ridge regression estimator
scores = cross_val_score(reg, X, y)
assert_array_almost_equal(scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2)
# R2 score (aka. determination coefficient) - should be the
# same as the default estimator score
r2_scores = cross_val_score(reg, X, y, scoring="r2")
assert_array_almost_equal(r2_scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2)
# Mean squared error; this is a loss function, so "scores" are negative
neg_mse_scores = cross_val_score(reg, X, y, scoring="neg_mean_squared_error")
expected_neg_mse = np.array([-763.07, -553.16, -274.38, -273.26, -1681.99])
assert_array_almost_equal(neg_mse_scores, expected_neg_mse, 2)
# Explained variance
scoring = make_scorer(explained_variance_score)
ev_scores = cross_val_score(reg, X, y, scoring=scoring)
assert_array_almost_equal(ev_scores, [0.94, 0.97, 0.97, 0.99, 0.92], 2)
def test_permutation_score():
iris = load_iris()
X = iris.data
X_sparse = coo_matrix(X)
y = iris.target
svm = SVC(kernel="linear")
cv = StratifiedKFold(2)
score, scores, pvalue = permutation_test_score(
svm, X, y, n_permutations=30, cv=cv, scoring="accuracy"
)
assert score > 0.9
assert_almost_equal(pvalue, 0.0, 1)
score_group, _, pvalue_group = permutation_test_score(
svm,
X,
y,
n_permutations=30,
cv=cv,
scoring="accuracy",
groups=np.ones(y.size),
random_state=0,
)
assert score_group == score
assert pvalue_group == pvalue
# check that we obtain the same results with a sparse representation
svm_sparse = SVC(kernel="linear")
cv_sparse = StratifiedKFold(2)
score_group, _, pvalue_group = permutation_test_score(
svm_sparse,
X_sparse,
y,
n_permutations=30,
cv=cv_sparse,
scoring="accuracy",
groups=np.ones(y.size),
random_state=0,
)
assert score_group == score
assert pvalue_group == pvalue
# test with custom scoring object
def custom_score(y_true, y_pred):
return ((y_true == y_pred).sum() - (y_true != y_pred).sum()) / y_true.shape[0]
scorer = make_scorer(custom_score)
score, _, pvalue = permutation_test_score(
svm, X, y, n_permutations=100, scoring=scorer, cv=cv, random_state=0
)
assert_almost_equal(score, 0.93, 2)
assert_almost_equal(pvalue, 0.01, 3)
# set random y
y = np.mod(np.arange(len(y)), 3)
score, scores, pvalue = permutation_test_score(
svm, X, y, n_permutations=30, cv=cv, scoring="accuracy"
)
assert score < 0.5
assert pvalue > 0.2
def test_permutation_test_score_allow_nans():
# Check that permutation_test_score allows input data with NaNs
X = np.arange(200, dtype=np.float64).reshape(10, -1)
X[2, :] = np.nan
y = np.repeat([0, 1], X.shape[0] / 2)
p = Pipeline(
[
("imputer", SimpleImputer(strategy="mean", missing_values=np.nan)),
("classifier", MockClassifier()),
]
)
permutation_test_score(p, X, y)
def test_permutation_test_score_fit_params():
X = np.arange(100).reshape(10, 10)
y = np.array([0] * 5 + [1] * 5)
clf = CheckingClassifier(expected_sample_weight=True)
err_msg = r"Expected sample_weight to be passed"
with pytest.raises(AssertionError, match=err_msg):
permutation_test_score(clf, X, y)
err_msg = r"sample_weight.shape == \(1,\), expected \(8,\)!"
with pytest.raises(ValueError, match=err_msg):
permutation_test_score(clf, X, y, fit_params={"sample_weight": np.ones(1)})
permutation_test_score(clf, X, y, fit_params={"sample_weight": np.ones(10)})
def test_cross_val_score_allow_nans():
# Check that cross_val_score allows input data with NaNs
X = np.arange(200, dtype=np.float64).reshape(10, -1)
X[2, :] = np.nan
y = np.repeat([0, 1], X.shape[0] / 2)
p = Pipeline(
[
("imputer", SimpleImputer(strategy="mean", missing_values=np.nan)),
("classifier", MockClassifier()),
]
)
cross_val_score(p, X, y)
def test_cross_val_score_multilabel():
X = np.array(
[
[-3, 4],
[2, 4],
[3, 3],
[0, 2],
[-3, 1],
[-2, 1],
[0, 0],
[-2, -1],
[-1, -2],
[1, -2],
]
)
y = np.array(
[[1, 1], [0, 1], [0, 1], [0, 1], [1, 1], [0, 1], [1, 0], [1, 1], [1, 0], [0, 0]]
)
clf = KNeighborsClassifier(n_neighbors=1)
scoring_micro = make_scorer(precision_score, average="micro")
scoring_macro = make_scorer(precision_score, average="macro")
scoring_samples = make_scorer(precision_score, average="samples")
score_micro = cross_val_score(clf, X, y, scoring=scoring_micro)
score_macro = cross_val_score(clf, X, y, scoring=scoring_macro)
score_samples = cross_val_score(clf, X, y, scoring=scoring_samples)
assert_almost_equal(score_micro, [1, 1 / 2, 3 / 4, 1 / 2, 1 / 3])
assert_almost_equal(score_macro, [1, 1 / 2, 3 / 4, 1 / 2, 1 / 4])
assert_almost_equal(score_samples, [1, 1 / 2, 3 / 4, 1 / 2, 1 / 4])
def test_cross_val_predict():
X, y = load_diabetes(return_X_y=True)
cv = KFold()
est = Ridge()
# Naive loop (should be same as cross_val_predict):
preds2 = np.zeros_like(y)
for train, test in cv.split(X, y):
est.fit(X[train], y[train])
preds2[test] = est.predict(X[test])
preds = cross_val_predict(est, X, y, cv=cv)
assert_array_almost_equal(preds, preds2)
preds = cross_val_predict(est, X, y)
assert len(preds) == len(y)
cv = LeaveOneOut()
preds = cross_val_predict(est, X, y, cv=cv)
assert len(preds) == len(y)
Xsp = X.copy()
Xsp *= Xsp > np.median(Xsp)
Xsp = coo_matrix(Xsp)
preds = cross_val_predict(est, Xsp, y)
assert_array_almost_equal(len(preds), len(y))
preds = cross_val_predict(KMeans(n_init="auto"), X)
assert len(preds) == len(y)
class BadCV:
def split(self, X, y=None, groups=None):
for i in range(4):
yield np.array([0, 1, 2, 3]), np.array([4, 5, 6, 7, 8])
with pytest.raises(ValueError):
cross_val_predict(est, X, y, cv=BadCV())
X, y = load_iris(return_X_y=True)
warning_message = (
r"Number of classes in training fold \(2\) does "
r"not match total number of classes \(3\). "
"Results may not be appropriate for your use case."
)
with pytest.warns(RuntimeWarning, match=warning_message):
cross_val_predict(
LogisticRegression(solver="liblinear"),
X,
y,
method="predict_proba",
cv=KFold(2),
)
def test_cross_val_predict_decision_function_shape():
X, y = make_classification(n_classes=2, n_samples=50, random_state=0)
preds = cross_val_predict(
LogisticRegression(solver="liblinear"), X, y, method="decision_function"
)
assert preds.shape == (50,)
X, y = load_iris(return_X_y=True)
preds = cross_val_predict(
LogisticRegression(solver="liblinear"), X, y, method="decision_function"
)
assert preds.shape == (150, 3)
# This specifically tests imbalanced splits for binary
# classification with decision_function. This is only
# applicable to classifiers that can be fit on a single
# class.
X = X[:100]
y = y[:100]
error_message = (
"Only 1 class/es in training fold,"
" but 2 in overall dataset. This"
" is not supported for decision_function"
" with imbalanced folds. To fix "
"this, use a cross-validation technique "
"resulting in properly stratified folds"
)
with pytest.raises(ValueError, match=error_message):
cross_val_predict(
RidgeClassifier(), X, y, method="decision_function", cv=KFold(2)
)
X, y = load_digits(return_X_y=True)
est = SVC(kernel="linear", decision_function_shape="ovo")
preds = cross_val_predict(est, X, y, method="decision_function")
assert preds.shape == (1797, 45)
ind = np.argsort(y)
X, y = X[ind], y[ind]
error_message_regexp = (
r"Output shape \(599L?, 21L?\) of "
"decision_function does not match number of "
r"classes \(7\) in fold. Irregular "
"decision_function .*"
)
with pytest.raises(ValueError, match=error_message_regexp):
cross_val_predict(est, X, y, cv=KFold(n_splits=3), method="decision_function")
def test_cross_val_predict_predict_proba_shape():
X, y = make_classification(n_classes=2, n_samples=50, random_state=0)
preds = cross_val_predict(
LogisticRegression(solver="liblinear"), X, y, method="predict_proba"
)
assert preds.shape == (50, 2)
X, y = load_iris(return_X_y=True)
preds = cross_val_predict(
LogisticRegression(solver="liblinear"), X, y, method="predict_proba"
)
assert preds.shape == (150, 3)
def test_cross_val_predict_predict_log_proba_shape():
X, y = make_classification(n_classes=2, n_samples=50, random_state=0)
preds = cross_val_predict(
LogisticRegression(solver="liblinear"), X, y, method="predict_log_proba"
)
assert preds.shape == (50, 2)
X, y = load_iris(return_X_y=True)
preds = cross_val_predict(
LogisticRegression(solver="liblinear"), X, y, method="predict_log_proba"
)
assert preds.shape == (150, 3)
def test_cross_val_predict_input_types():
iris = load_iris()
X, y = iris.data, iris.target
X_sparse = coo_matrix(X)
multioutput_y = np.column_stack([y, y[::-1]])
clf = Ridge(fit_intercept=False, random_state=0)
# 3 fold cv is used --> at least 3 samples per class
# Smoke test
predictions = cross_val_predict(clf, X, y)
assert predictions.shape == (150,)
# test with multioutput y
predictions = cross_val_predict(clf, X_sparse, multioutput_y)
assert predictions.shape == (150, 2)
predictions = cross_val_predict(clf, X_sparse, y)
assert_array_equal(predictions.shape, (150,))
# test with multioutput y
predictions = cross_val_predict(clf, X_sparse, multioutput_y)
assert_array_equal(predictions.shape, (150, 2))
# test with X and y as list
list_check = lambda x: isinstance(x, list)
clf = CheckingClassifier(check_X=list_check)
predictions = cross_val_predict(clf, X.tolist(), y.tolist())
clf = CheckingClassifier(check_y=list_check)
predictions = cross_val_predict(clf, X, y.tolist())
# test with X and y as list and non empty method
predictions = cross_val_predict(
LogisticRegression(solver="liblinear"),
X.tolist(),
y.tolist(),
method="decision_function",
)
predictions = cross_val_predict(
LogisticRegression(solver="liblinear"),
X,
y.tolist(),
method="decision_function",
)
# test with 3d X and
X_3d = X[:, :, np.newaxis]
check_3d = lambda x: x.ndim == 3
clf = CheckingClassifier(check_X=check_3d)
predictions = cross_val_predict(clf, X_3d, y)
assert_array_equal(predictions.shape, (150,))
@pytest.mark.filterwarnings("ignore: Using or importing the ABCs from")
# python3.7 deprecation warnings in pandas via matplotlib :-/
def test_cross_val_predict_pandas():
# check cross_val_score doesn't destroy pandas dataframe
types = [(MockDataFrame, MockDataFrame)]
try:
from pandas import Series, DataFrame
types.append((Series, DataFrame))
except ImportError:
pass
for TargetType, InputFeatureType in types:
# X dataframe, y series
X_df, y_ser = InputFeatureType(X), TargetType(y2)
check_df = lambda x: isinstance(x, InputFeatureType)
check_series = lambda x: isinstance(x, TargetType)
clf = CheckingClassifier(check_X=check_df, check_y=check_series)
cross_val_predict(clf, X_df, y_ser, cv=3)
def test_cross_val_predict_unbalanced():
X, y = make_classification(
n_samples=100,
n_features=2,
n_redundant=0,
n_informative=2,
n_clusters_per_class=1,
random_state=1,
)
# Change the first sample to a new class
y[0] = 2
clf = LogisticRegression(random_state=1, solver="liblinear")
cv = StratifiedKFold(n_splits=2)
train, test = list(cv.split(X, y))
yhat_proba = cross_val_predict(clf, X, y, cv=cv, method="predict_proba")
assert y[test[0]][0] == 2 # sanity check for further assertions
assert np.all(yhat_proba[test[0]][:, 2] == 0)
assert np.all(yhat_proba[test[0]][:, 0:1] > 0)
assert np.all(yhat_proba[test[1]] > 0)
assert_array_almost_equal(yhat_proba.sum(axis=1), np.ones(y.shape), decimal=12)
def test_cross_val_predict_y_none():
# ensure that cross_val_predict works when y is None
mock_classifier = MockClassifier()
rng = np.random.RandomState(42)
X = rng.rand(100, 10)
y_hat = cross_val_predict(mock_classifier, X, y=None, cv=5, method="predict")
assert_allclose(X[:, 0], y_hat)
y_hat_proba = cross_val_predict(
mock_classifier, X, y=None, cv=5, method="predict_proba"
)
assert_allclose(X, y_hat_proba)
def test_cross_val_score_sparse_fit_params():
iris = load_iris()
X, y = iris.data, iris.target
clf = MockClassifier()
fit_params = {"sparse_sample_weight": coo_matrix(np.eye(X.shape[0]))}
a = cross_val_score(clf, X, y, fit_params=fit_params, cv=3)
assert_array_equal(a, np.ones(3))
def test_learning_curve():
n_samples = 30
n_splits = 3
X, y = make_classification(
n_samples=n_samples,
n_features=1,
n_informative=1,
n_redundant=0,
n_classes=2,
n_clusters_per_class=1,
random_state=0,
)
estimator = MockImprovingEstimator(n_samples * ((n_splits - 1) / n_splits))
for shuffle_train in [False, True]:
with warnings.catch_warnings(record=True) as w:
(
train_sizes,
train_scores,
test_scores,
fit_times,
score_times,
) = learning_curve(
estimator,
X,
y,
cv=KFold(n_splits=n_splits),
train_sizes=np.linspace(0.1, 1.0, 10),
shuffle=shuffle_train,
return_times=True,
)
if len(w) > 0:
raise RuntimeError("Unexpected warning: %r" % w[0].message)
assert train_scores.shape == (10, 3)
assert test_scores.shape == (10, 3)
assert fit_times.shape == (10, 3)
assert score_times.shape == (10, 3)
assert_array_equal(train_sizes, np.linspace(2, 20, 10))
assert_array_almost_equal(train_scores.mean(axis=1), np.linspace(1.9, 1.0, 10))
assert_array_almost_equal(test_scores.mean(axis=1), np.linspace(0.1, 1.0, 10))
# Cannot use assert_array_almost_equal for fit and score times because
# the values are hardware-dependant
assert fit_times.dtype == "float64"
assert score_times.dtype == "float64"
# Test a custom cv splitter that can iterate only once
with warnings.catch_warnings(record=True) as w:
train_sizes2, train_scores2, test_scores2 = learning_curve(
estimator,
X,
y,
cv=OneTimeSplitter(n_splits=n_splits, n_samples=n_samples),
train_sizes=np.linspace(0.1, 1.0, 10),
shuffle=shuffle_train,
)
if len(w) > 0:
raise RuntimeError("Unexpected warning: %r" % w[0].message)
assert_array_almost_equal(train_scores2, train_scores)
assert_array_almost_equal(test_scores2, test_scores)
def test_learning_curve_unsupervised():
X, _ = make_classification(
n_samples=30,
n_features=1,
n_informative=1,
n_redundant=0,
n_classes=2,
n_clusters_per_class=1,
random_state=0,
)
estimator = MockImprovingEstimator(20)
train_sizes, train_scores, test_scores = learning_curve(
estimator, X, y=None, cv=3, train_sizes=np.linspace(0.1, 1.0, 10)
)
assert_array_equal(train_sizes, np.linspace(2, 20, 10))
assert_array_almost_equal(train_scores.mean(axis=1), np.linspace(1.9, 1.0, 10))
assert_array_almost_equal(test_scores.mean(axis=1), np.linspace(0.1, 1.0, 10))
def test_learning_curve_verbose():
X, y = make_classification(
n_samples=30,
n_features=1,
n_informative=1,
n_redundant=0,
n_classes=2,
n_clusters_per_class=1,
random_state=0,
)
estimator = MockImprovingEstimator(20)
old_stdout = sys.stdout
sys.stdout = StringIO()
try:
train_sizes, train_scores, test_scores = learning_curve(
estimator, X, y, cv=3, verbose=1
)
finally:
out = sys.stdout.getvalue()
sys.stdout.close()
sys.stdout = old_stdout
assert "[learning_curve]" in out
def test_learning_curve_incremental_learning_not_possible():
X, y = make_classification(
n_samples=2,
n_features=1,
n_informative=1,
n_redundant=0,
n_classes=2,
n_clusters_per_class=1,
random_state=0,
)
# The mockup does not have partial_fit()
estimator = MockImprovingEstimator(1)
with pytest.raises(ValueError):
learning_curve(estimator, X, y, exploit_incremental_learning=True)
def test_learning_curve_incremental_learning():
X, y = make_classification(
n_samples=30,
n_features=1,
n_informative=1,
n_redundant=0,
n_classes=2,
n_clusters_per_class=1,
random_state=0,
)
estimator = MockIncrementalImprovingEstimator(20)
for shuffle_train in [False, True]:
train_sizes, train_scores, test_scores = learning_curve(
estimator,
X,
y,
cv=3,
exploit_incremental_learning=True,
train_sizes=np.linspace(0.1, 1.0, 10),
shuffle=shuffle_train,
)
assert_array_equal(train_sizes, np.linspace(2, 20, 10))
assert_array_almost_equal(train_scores.mean(axis=1), np.linspace(1.9, 1.0, 10))
assert_array_almost_equal(test_scores.mean(axis=1), np.linspace(0.1, 1.0, 10))
def test_learning_curve_incremental_learning_unsupervised():
X, _ = make_classification(
n_samples=30,
n_features=1,
n_informative=1,
n_redundant=0,
n_classes=2,
n_clusters_per_class=1,
random_state=0,
)
estimator = MockIncrementalImprovingEstimator(20)
train_sizes, train_scores, test_scores = learning_curve(
estimator,
X,
y=None,
cv=3,
exploit_incremental_learning=True,
train_sizes=np.linspace(0.1, 1.0, 10),
)
assert_array_equal(train_sizes, np.linspace(2, 20, 10))
assert_array_almost_equal(train_scores.mean(axis=1), np.linspace(1.9, 1.0, 10))
assert_array_almost_equal(test_scores.mean(axis=1), np.linspace(0.1, 1.0, 10))
def test_learning_curve_batch_and_incremental_learning_are_equal():
X, y = make_classification(
n_samples=30,
n_features=1,
n_informative=1,
n_redundant=0,
n_classes=2,
n_clusters_per_class=1,
random_state=0,
)
train_sizes = np.linspace(0.2, 1.0, 5)
estimator = PassiveAggressiveClassifier(max_iter=1, tol=None, shuffle=False)
train_sizes_inc, train_scores_inc, test_scores_inc = learning_curve(
estimator,
X,
y,
train_sizes=train_sizes,
cv=3,
exploit_incremental_learning=True,
)
train_sizes_batch, train_scores_batch, test_scores_batch = learning_curve(
estimator,
X,
y,
cv=3,
train_sizes=train_sizes,
exploit_incremental_learning=False,
)
assert_array_equal(train_sizes_inc, train_sizes_batch)
assert_array_almost_equal(
train_scores_inc.mean(axis=1), train_scores_batch.mean(axis=1)
)
assert_array_almost_equal(
test_scores_inc.mean(axis=1), test_scores_batch.mean(axis=1)
)
def test_learning_curve_n_sample_range_out_of_bounds():
X, y = make_classification(
n_samples=30,
n_features=1,
n_informative=1,
n_redundant=0,
n_classes=2,
n_clusters_per_class=1,
random_state=0,
)
estimator = MockImprovingEstimator(20)
with pytest.raises(ValueError):
learning_curve(estimator, X, y, cv=3, train_sizes=[0, 1])
with pytest.raises(ValueError):
learning_curve(estimator, X, y, cv=3, train_sizes=[0.0, 1.0])
with pytest.raises(ValueError):
learning_curve(estimator, X, y, cv=3, train_sizes=[0.1, 1.1])
with pytest.raises(ValueError):
learning_curve(estimator, X, y, cv=3, train_sizes=[0, 20])
with pytest.raises(ValueError):
learning_curve(estimator, X, y, cv=3, train_sizes=[1, 21])
def test_learning_curve_remove_duplicate_sample_sizes():
X, y = make_classification(
n_samples=3,
n_features=1,
n_informative=1,
n_redundant=0,
n_classes=2,
n_clusters_per_class=1,
random_state=0,
)
estimator = MockImprovingEstimator(2)
warning_message = (
"Removed duplicate entries from 'train_sizes'. Number of ticks "
"will be less than the size of 'train_sizes': 2 instead of 3."
)
with pytest.warns(RuntimeWarning, match=warning_message):
train_sizes, _, _ = learning_curve(
estimator, X, y, cv=3, train_sizes=np.linspace(0.33, 1.0, 3)
)
assert_array_equal(train_sizes, [1, 2])
def test_learning_curve_with_boolean_indices():
X, y = make_classification(
n_samples=30,
n_features=1,
n_informative=1,
n_redundant=0,
n_classes=2,
n_clusters_per_class=1,
random_state=0,
)
estimator = MockImprovingEstimator(20)
cv = KFold(n_splits=3)
train_sizes, train_scores, test_scores = learning_curve(
estimator, X, y, cv=cv, train_sizes=np.linspace(0.1, 1.0, 10)
)
assert_array_equal(train_sizes, np.linspace(2, 20, 10))
assert_array_almost_equal(train_scores.mean(axis=1), np.linspace(1.9, 1.0, 10))
assert_array_almost_equal(test_scores.mean(axis=1), np.linspace(0.1, 1.0, 10))
def test_learning_curve_with_shuffle():
# Following test case was designed this way to verify the code
# changes made in pull request: #7506.
X = np.array(
[
[1, 2],
[3, 4],
[5, 6],
[7, 8],
[11, 12],
[13, 14],
[15, 16],
[17, 18],
[19, 20],
[7, 8],
[9, 10],
[11, 12],
[13, 14],
[15, 16],
[17, 18],
]
)
y = np.array([1, 1, 1, 2, 3, 4, 1, 1, 2, 3, 4, 1, 2, 3, 4])
groups = np.array([1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 4, 4, 4, 4])
# Splits on these groups fail without shuffle as the first iteration
# of the learning curve doesn't contain label 4 in the training set.
estimator = PassiveAggressiveClassifier(max_iter=5, tol=None, shuffle=False)
cv = GroupKFold(n_splits=2)
train_sizes_batch, train_scores_batch, test_scores_batch = learning_curve(
estimator,
X,
y,
cv=cv,
n_jobs=1,
train_sizes=np.linspace(0.3, 1.0, 3),
groups=groups,
shuffle=True,
random_state=2,
)
assert_array_almost_equal(
train_scores_batch.mean(axis=1), np.array([0.75, 0.3, 0.36111111])
)
assert_array_almost_equal(
test_scores_batch.mean(axis=1), np.array([0.36111111, 0.25, 0.25])
)
with pytest.raises(ValueError):
learning_curve(
estimator,
X,
y,
cv=cv,
n_jobs=1,
train_sizes=np.linspace(0.3, 1.0, 3),
groups=groups,
error_score="raise",
)
train_sizes_inc, train_scores_inc, test_scores_inc = learning_curve(
estimator,
X,
y,
cv=cv,
n_jobs=1,
train_sizes=np.linspace(0.3, 1.0, 3),
groups=groups,
shuffle=True,
random_state=2,
exploit_incremental_learning=True,
)
assert_array_almost_equal(
train_scores_inc.mean(axis=1), train_scores_batch.mean(axis=1)
)
assert_array_almost_equal(
test_scores_inc.mean(axis=1), test_scores_batch.mean(axis=1)
)
def test_learning_curve_fit_params():
X = np.arange(100).reshape(10, 10)
y = np.array([0] * 5 + [1] * 5)
clf = CheckingClassifier(expected_sample_weight=True)
err_msg = r"Expected sample_weight to be passed"
with pytest.raises(AssertionError, match=err_msg):
learning_curve(clf, X, y, error_score="raise")
err_msg = r"sample_weight.shape == \(1,\), expected \(2,\)!"
with pytest.raises(ValueError, match=err_msg):
learning_curve(
clf, X, y, error_score="raise", fit_params={"sample_weight": np.ones(1)}
)
learning_curve(
clf, X, y, error_score="raise", fit_params={"sample_weight": np.ones(10)}
)
def test_learning_curve_incremental_learning_fit_params():
X, y = make_classification(
n_samples=30,
n_features=1,
n_informative=1,
n_redundant=0,
n_classes=2,
n_clusters_per_class=1,
random_state=0,
)
estimator = MockIncrementalImprovingEstimator(20, ["sample_weight"])
err_msg = r"Expected fit parameter\(s\) \['sample_weight'\] not seen."
with pytest.raises(AssertionError, match=err_msg):
learning_curve(
estimator,
X,
y,
cv=3,
exploit_incremental_learning=True,
train_sizes=np.linspace(0.1, 1.0, 10),
error_score="raise",
)
err_msg = "Fit parameter sample_weight has length 3; expected"
with pytest.raises(AssertionError, match=err_msg):
learning_curve(
estimator,
X,
y,
cv=3,
exploit_incremental_learning=True,
train_sizes=np.linspace(0.1, 1.0, 10),
error_score="raise",
fit_params={"sample_weight": np.ones(3)},
)
learning_curve(
estimator,
X,
y,
cv=3,
exploit_incremental_learning=True,
train_sizes=np.linspace(0.1, 1.0, 10),
error_score="raise",
fit_params={"sample_weight": np.ones(2)},
)
def test_validation_curve():
X, y = make_classification(
n_samples=2,
n_features=1,
n_informative=1,
n_redundant=0,
n_classes=2,
n_clusters_per_class=1,
random_state=0,
)
param_range = np.linspace(0, 1, 10)
with warnings.catch_warnings(record=True) as w:
train_scores, test_scores = validation_curve(
MockEstimatorWithParameter(),
X,
y,
param_name="param",
param_range=param_range,
cv=2,
)
if len(w) > 0:
raise RuntimeError("Unexpected warning: %r" % w[0].message)
assert_array_almost_equal(train_scores.mean(axis=1), param_range)
assert_array_almost_equal(test_scores.mean(axis=1), 1 - param_range)
def test_validation_curve_clone_estimator():
X, y = make_classification(
n_samples=2,
n_features=1,
n_informative=1,
n_redundant=0,
n_classes=2,
n_clusters_per_class=1,
random_state=0,
)
param_range = np.linspace(1, 0, 10)
_, _ = validation_curve(
MockEstimatorWithSingleFitCallAllowed(),
X,
y,
param_name="param",
param_range=param_range,
cv=2,
)
def test_validation_curve_cv_splits_consistency():
n_samples = 100
n_splits = 5
X, y = make_classification(n_samples=100, random_state=0)
scores1 = validation_curve(
SVC(kernel="linear", random_state=0),
X,
y,
param_name="C",
param_range=[0.1, 0.1, 0.2, 0.2],
cv=OneTimeSplitter(n_splits=n_splits, n_samples=n_samples),
)
# The OneTimeSplitter is a non-re-entrant cv splitter. Unless, the
# `split` is called for each parameter, the following should produce
# identical results for param setting 1 and param setting 2 as both have
# the same C value.
assert_array_almost_equal(*np.vsplit(np.hstack(scores1)[(0, 2, 1, 3), :], 2))
scores2 = validation_curve(
SVC(kernel="linear", random_state=0),
X,
y,
param_name="C",
param_range=[0.1, 0.1, 0.2, 0.2],
cv=KFold(n_splits=n_splits, shuffle=True),
)
# For scores2, compare the 1st and 2nd parameter's scores
# (Since the C value for 1st two param setting is 0.1, they must be
# consistent unless the train test folds differ between the param settings)
assert_array_almost_equal(*np.vsplit(np.hstack(scores2)[(0, 2, 1, 3), :], 2))
scores3 = validation_curve(
SVC(kernel="linear", random_state=0),
X,
y,
param_name="C",
param_range=[0.1, 0.1, 0.2, 0.2],
cv=KFold(n_splits=n_splits),
)
# OneTimeSplitter is basically unshuffled KFold(n_splits=5). Sanity check.
assert_array_almost_equal(np.array(scores3), np.array(scores1))
def test_validation_curve_fit_params():
X = np.arange(100).reshape(10, 10)
y = np.array([0] * 5 + [1] * 5)
clf = CheckingClassifier(expected_sample_weight=True)
err_msg = r"Expected sample_weight to be passed"
with pytest.raises(AssertionError, match=err_msg):
validation_curve(
clf,
X,
y,
param_name="foo_param",
param_range=[1, 2, 3],
error_score="raise",
)
err_msg = r"sample_weight.shape == \(1,\), expected \(8,\)!"
with pytest.raises(ValueError, match=err_msg):
validation_curve(
clf,
X,
y,
param_name="foo_param",
param_range=[1, 2, 3],
error_score="raise",
fit_params={"sample_weight": np.ones(1)},
)
validation_curve(
clf,
X,
y,
param_name="foo_param",
param_range=[1, 2, 3],
error_score="raise",
fit_params={"sample_weight": np.ones(10)},
)
def test_check_is_permutation():
rng = np.random.RandomState(0)
p = np.arange(100)
rng.shuffle(p)
assert _check_is_permutation(p, 100)
assert not _check_is_permutation(np.delete(p, 23), 100)
p[0] = 23
assert not _check_is_permutation(p, 100)
# Check if the additional duplicate indices are caught
assert not _check_is_permutation(np.hstack((p, 0)), 100)
def test_cross_val_predict_sparse_prediction():
# check that cross_val_predict gives same result for sparse and dense input
X, y = make_multilabel_classification(
n_classes=2,
n_labels=1,
allow_unlabeled=False,
return_indicator=True,
random_state=1,
)
X_sparse = csr_matrix(X)
y_sparse = csr_matrix(y)
classif = OneVsRestClassifier(SVC(kernel="linear"))
preds = cross_val_predict(classif, X, y, cv=10)
preds_sparse = cross_val_predict(classif, X_sparse, y_sparse, cv=10)
preds_sparse = preds_sparse.toarray()
assert_array_almost_equal(preds_sparse, preds)
def check_cross_val_predict_binary(est, X, y, method):
"""Helper for tests of cross_val_predict with binary classification"""
cv = KFold(n_splits=3, shuffle=False)
# Generate expected outputs
if y.ndim == 1:
exp_shape = (len(X),) if method == "decision_function" else (len(X), 2)
else:
exp_shape = y.shape
expected_predictions = np.zeros(exp_shape)
for train, test in cv.split(X, y):
est = clone(est).fit(X[train], y[train])
expected_predictions[test] = getattr(est, method)(X[test])
# Check actual outputs for several representations of y
for tg in [y, y + 1, y - 2, y.astype("str")]:
assert_allclose(
cross_val_predict(est, X, tg, method=method, cv=cv), expected_predictions
)
def check_cross_val_predict_multiclass(est, X, y, method):
"""Helper for tests of cross_val_predict with multiclass classification"""
cv = KFold(n_splits=3, shuffle=False)
# Generate expected outputs
float_min = np.finfo(np.float64).min
default_values = {
"decision_function": float_min,
"predict_log_proba": float_min,
"predict_proba": 0,
}
expected_predictions = np.full(
(len(X), len(set(y))), default_values[method], dtype=np.float64
)
_, y_enc = np.unique(y, return_inverse=True)
for train, test in cv.split(X, y_enc):
est = clone(est).fit(X[train], y_enc[train])
fold_preds = getattr(est, method)(X[test])
i_cols_fit = np.unique(y_enc[train])
expected_predictions[np.ix_(test, i_cols_fit)] = fold_preds
# Check actual outputs for several representations of y
for tg in [y, y + 1, y - 2, y.astype("str")]:
assert_allclose(
cross_val_predict(est, X, tg, method=method, cv=cv), expected_predictions
)
def check_cross_val_predict_multilabel(est, X, y, method):
"""Check the output of cross_val_predict for 2D targets using
Estimators which provide a predictions as a list with one
element per class.
"""
cv = KFold(n_splits=3, shuffle=False)
# Create empty arrays of the correct size to hold outputs
float_min = np.finfo(np.float64).min
default_values = {
"decision_function": float_min,
"predict_log_proba": float_min,
"predict_proba": 0,
}
n_targets = y.shape[1]
expected_preds = []
for i_col in range(n_targets):
n_classes_in_label = len(set(y[:, i_col]))
if n_classes_in_label == 2 and method == "decision_function":
exp_shape = (len(X),)
else:
exp_shape = (len(X), n_classes_in_label)
expected_preds.append(
np.full(exp_shape, default_values[method], dtype=np.float64)
)
# Generate expected outputs
y_enc_cols = [
np.unique(y[:, i], return_inverse=True)[1][:, np.newaxis]
for i in range(y.shape[1])
]
y_enc = np.concatenate(y_enc_cols, axis=1)
for train, test in cv.split(X, y_enc):
est = clone(est).fit(X[train], y_enc[train])
fold_preds = getattr(est, method)(X[test])
for i_col in range(n_targets):
fold_cols = np.unique(y_enc[train][:, i_col])
if expected_preds[i_col].ndim == 1:
# Decision function with <=2 classes
expected_preds[i_col][test] = fold_preds[i_col]
else:
idx = np.ix_(test, fold_cols)
expected_preds[i_col][idx] = fold_preds[i_col]
# Check actual outputs for several representations of y
for tg in [y, y + 1, y - 2, y.astype("str")]:
cv_predict_output = cross_val_predict(est, X, tg, method=method, cv=cv)
assert len(cv_predict_output) == len(expected_preds)
for i in range(len(cv_predict_output)):
assert_allclose(cv_predict_output[i], expected_preds[i])
def check_cross_val_predict_with_method_binary(est):
# This test includes the decision_function with two classes.
# This is a special case: it has only one column of output.
X, y = make_classification(n_classes=2, random_state=0)
for method in ["decision_function", "predict_proba", "predict_log_proba"]:
check_cross_val_predict_binary(est, X, y, method)
def check_cross_val_predict_with_method_multiclass(est):
iris = load_iris()
X, y = iris.data, iris.target
X, y = shuffle(X, y, random_state=0)
for method in ["decision_function", "predict_proba", "predict_log_proba"]:
check_cross_val_predict_multiclass(est, X, y, method)
def test_cross_val_predict_with_method():
check_cross_val_predict_with_method_binary(LogisticRegression(solver="liblinear"))
check_cross_val_predict_with_method_multiclass(
LogisticRegression(solver="liblinear")
)
def test_cross_val_predict_method_checking():
# Regression test for issue #9639. Tests that cross_val_predict does not
# check estimator methods (e.g. predict_proba) before fitting
iris = load_iris()
X, y = iris.data, iris.target
X, y = shuffle(X, y, random_state=0)
for method in ["decision_function", "predict_proba", "predict_log_proba"]:
est = SGDClassifier(loss="log_loss", random_state=2)
check_cross_val_predict_multiclass(est, X, y, method)
def test_gridsearchcv_cross_val_predict_with_method():
iris = load_iris()
X, y = iris.data, iris.target
X, y = shuffle(X, y, random_state=0)
est = GridSearchCV(
LogisticRegression(random_state=42, solver="liblinear"), {"C": [0.1, 1]}, cv=2
)
for method in ["decision_function", "predict_proba", "predict_log_proba"]:
check_cross_val_predict_multiclass(est, X, y, method)
def test_cross_val_predict_with_method_multilabel_ovr():
# OVR does multilabel predictions, but only arrays of
# binary indicator columns. The output of predict_proba
# is a 2D array with shape (n_samples, n_classes).
n_samp = 100
n_classes = 4
X, y = make_multilabel_classification(
n_samples=n_samp, n_labels=3, n_classes=n_classes, n_features=5, random_state=42
)
est = OneVsRestClassifier(LogisticRegression(solver="liblinear", random_state=0))
for method in ["predict_proba", "decision_function"]:
check_cross_val_predict_binary(est, X, y, method=method)
class RFWithDecisionFunction(RandomForestClassifier):
# None of the current multioutput-multiclass estimators have
# decision function methods. Create a mock decision function
# to test the cross_val_predict function's handling of this case.
def decision_function(self, X):
probs = self.predict_proba(X)
msg = "This helper should only be used on multioutput-multiclass tasks"
assert isinstance(probs, list), msg
probs = [p[:, -1] if p.shape[1] == 2 else p for p in probs]
return probs
def test_cross_val_predict_with_method_multilabel_rf():
# The RandomForest allows multiple classes in each label.
# Output of predict_proba is a list of outputs of predict_proba
# for each individual label.
n_classes = 4
X, y = make_multilabel_classification(
n_samples=100, n_labels=3, n_classes=n_classes, n_features=5, random_state=42
)
y[:, 0] += y[:, 1] # Put three classes in the first column
for method in ["predict_proba", "predict_log_proba", "decision_function"]:
est = RFWithDecisionFunction(n_estimators=5, random_state=0)
with warnings.catch_warnings():
# Suppress "RuntimeWarning: divide by zero encountered in log"
warnings.simplefilter("ignore")
check_cross_val_predict_multilabel(est, X, y, method=method)
def test_cross_val_predict_with_method_rare_class():
# Test a multiclass problem where one class will be missing from
# one of the CV training sets.
rng = np.random.RandomState(0)
X = rng.normal(0, 1, size=(14, 10))
y = np.array([0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 3])
est = LogisticRegression(solver="liblinear")
for method in ["predict_proba", "predict_log_proba", "decision_function"]:
with warnings.catch_warnings():
# Suppress warning about too few examples of a class
warnings.simplefilter("ignore")
check_cross_val_predict_multiclass(est, X, y, method)
def test_cross_val_predict_with_method_multilabel_rf_rare_class():
# The RandomForest allows anything for the contents of the labels.
# Output of predict_proba is a list of outputs of predict_proba
# for each individual label.
# In this test, the first label has a class with a single example.
# We'll have one CV fold where the training data don't include it.
rng = np.random.RandomState(0)
X = rng.normal(0, 1, size=(5, 10))
y = np.array([[0, 0], [1, 1], [2, 1], [0, 1], [1, 0]])
for method in ["predict_proba", "predict_log_proba"]:
est = RFWithDecisionFunction(n_estimators=5, random_state=0)
with warnings.catch_warnings():
# Suppress "RuntimeWarning: divide by zero encountered in log"
warnings.simplefilter("ignore")
check_cross_val_predict_multilabel(est, X, y, method=method)
def get_expected_predictions(X, y, cv, classes, est, method):
expected_predictions = np.zeros([len(y), classes])
func = getattr(est, method)
for train, test in cv.split(X, y):
est.fit(X[train], y[train])
expected_predictions_ = func(X[test])
# To avoid 2 dimensional indexing
if method == "predict_proba":
exp_pred_test = np.zeros((len(test), classes))
else:
exp_pred_test = np.full(
(len(test), classes), np.finfo(expected_predictions.dtype).min
)
exp_pred_test[:, est.classes_] = expected_predictions_
expected_predictions[test] = exp_pred_test
return expected_predictions
def test_cross_val_predict_class_subset():
X = np.arange(200).reshape(100, 2)
y = np.array([x // 10 for x in range(100)])
classes = 10
kfold3 = KFold(n_splits=3)
kfold4 = KFold(n_splits=4)
le = LabelEncoder()
methods = ["decision_function", "predict_proba", "predict_log_proba"]
for method in methods:
est = LogisticRegression(solver="liblinear")
# Test with n_splits=3
predictions = cross_val_predict(est, X, y, method=method, cv=kfold3)
# Runs a naive loop (should be same as cross_val_predict):
expected_predictions = get_expected_predictions(
X, y, kfold3, classes, est, method
)
assert_array_almost_equal(expected_predictions, predictions)
# Test with n_splits=4
predictions = cross_val_predict(est, X, y, method=method, cv=kfold4)
expected_predictions = get_expected_predictions(
X, y, kfold4, classes, est, method
)
assert_array_almost_equal(expected_predictions, predictions)
# Testing unordered labels
y = shuffle(np.repeat(range(10), 10), random_state=0)
predictions = cross_val_predict(est, X, y, method=method, cv=kfold3)
y = le.fit_transform(y)
expected_predictions = get_expected_predictions(
X, y, kfold3, classes, est, method
)
assert_array_almost_equal(expected_predictions, predictions)
def test_score_memmap():
# Ensure a scalar score of memmap type is accepted
iris = load_iris()
X, y = iris.data, iris.target
clf = MockClassifier()
tf = tempfile.NamedTemporaryFile(mode="wb", delete=False)
tf.write(b"Hello world!!!!!")
tf.close()
scores = np.memmap(tf.name, dtype=np.float64)
score = np.memmap(tf.name, shape=(), mode="r", dtype=np.float64)
try:
cross_val_score(clf, X, y, scoring=lambda est, X, y: score)
with pytest.raises(ValueError):
cross_val_score(clf, X, y, scoring=lambda est, X, y: scores)
finally:
# Best effort to release the mmap file handles before deleting the
# backing file under Windows
scores, score = None, None
for _ in range(3):
try:
os.unlink(tf.name)
break
except WindowsError:
sleep(1.0)
@pytest.mark.filterwarnings("ignore: Using or importing the ABCs from")
def test_permutation_test_score_pandas():
# check permutation_test_score doesn't destroy pandas dataframe
types = [(MockDataFrame, MockDataFrame)]
try:
from pandas import Series, DataFrame
types.append((Series, DataFrame))
except ImportError:
pass
for TargetType, InputFeatureType in types:
# X dataframe, y series
iris = load_iris()
X, y = iris.data, iris.target
X_df, y_ser = InputFeatureType(X), TargetType(y)
check_df = lambda x: isinstance(x, InputFeatureType)
check_series = lambda x: isinstance(x, TargetType)
clf = CheckingClassifier(check_X=check_df, check_y=check_series)
permutation_test_score(clf, X_df, y_ser)
def test_fit_and_score_failing():
# Create a failing classifier to deliberately fail
failing_clf = FailingClassifier(FailingClassifier.FAILING_PARAMETER)
# dummy X data
X = np.arange(1, 10)
y = np.ones(9)
fit_and_score_args = [failing_clf, X, None, dict(), None, None, 0, None, None]
# passing error score to trigger the warning message
fit_and_score_kwargs = {"error_score": "raise"}
# check if exception was raised, with default error_score='raise'
with pytest.raises(ValueError, match="Failing classifier failed as required"):
_fit_and_score(*fit_and_score_args, **fit_and_score_kwargs)
# check that functions upstream pass error_score param to _fit_and_score
error_message = re.escape(
"error_score must be the string 'raise' or a numeric value. (Hint: if "
"using 'raise', please make sure that it has been spelled correctly.)"
)
with pytest.raises(ValueError, match=error_message):
cross_validate(failing_clf, X, cv=3, error_score="unvalid-string")
with pytest.raises(ValueError, match=error_message):
cross_val_score(failing_clf, X, cv=3, error_score="unvalid-string")
with pytest.raises(ValueError, match=error_message):
learning_curve(failing_clf, X, y, cv=3, error_score="unvalid-string")
with pytest.raises(ValueError, match=error_message):
validation_curve(
failing_clf,
X,
y,
param_name="parameter",
param_range=[FailingClassifier.FAILING_PARAMETER],
cv=3,
error_score="unvalid-string",
)
assert failing_clf.score() == 0.0 # FailingClassifier coverage
def test_fit_and_score_working():
X, y = make_classification(n_samples=30, random_state=0)
clf = SVC(kernel="linear", random_state=0)
train, test = next(ShuffleSplit().split(X))
# Test return_parameters option
fit_and_score_args = [clf, X, y, dict(), train, test, 0]
fit_and_score_kwargs = {
"parameters": {"max_iter": 100, "tol": 0.1},
"fit_params": None,
"return_parameters": True,
}
result = _fit_and_score(*fit_and_score_args, **fit_and_score_kwargs)
assert result["parameters"] == fit_and_score_kwargs["parameters"]
class DataDependentFailingClassifier(BaseEstimator):
def __init__(self, max_x_value=None):
self.max_x_value = max_x_value
def fit(self, X, y=None):
num_values_too_high = (X > self.max_x_value).sum()
if num_values_too_high:
raise ValueError(
f"Classifier fit failed with {num_values_too_high} values too high"
)
def score(self, X=None, Y=None):
return 0.0
@pytest.mark.parametrize("error_score", [np.nan, 0])
def test_cross_validate_some_failing_fits_warning(error_score):
# Create a failing classifier to deliberately fail
failing_clf = DataDependentFailingClassifier(max_x_value=8)
# dummy X data
X = np.arange(1, 10)
y = np.ones(9)
# passing error score to trigger the warning message
cross_validate_args = [failing_clf, X, y]
cross_validate_kwargs = {"cv": 3, "error_score": error_score}
# check if the warning message type is as expected
individual_fit_error_message = (
"ValueError: Classifier fit failed with 1 values too high"
)
warning_message = re.compile(
"2 fits failed.+total of 3.+The score on these"
" train-test partitions for these parameters will be set to"
f" {cross_validate_kwargs['error_score']}.+{individual_fit_error_message}",
flags=re.DOTALL,
)
with pytest.warns(FitFailedWarning, match=warning_message):
cross_validate(*cross_validate_args, **cross_validate_kwargs)
@pytest.mark.parametrize("error_score", [np.nan, 0])
def test_cross_validate_all_failing_fits_error(error_score):
# Create a failing classifier to deliberately fail
failing_clf = FailingClassifier(FailingClassifier.FAILING_PARAMETER)
# dummy X data
X = np.arange(1, 10)
y = np.ones(9)
cross_validate_args = [failing_clf, X, y]
cross_validate_kwargs = {"cv": 7, "error_score": error_score}
individual_fit_error_message = "ValueError: Failing classifier failed as required"
error_message = re.compile(
"All the 7 fits failed.+your model is misconfigured.+"
f"{individual_fit_error_message}",
flags=re.DOTALL,
)
with pytest.raises(ValueError, match=error_message):
cross_validate(*cross_validate_args, **cross_validate_kwargs)
def _failing_scorer(estimator, X, y, error_msg):
raise ValueError(error_msg)
@pytest.mark.filterwarnings("ignore:lbfgs failed to converge")
@pytest.mark.parametrize("error_score", [np.nan, 0, "raise"])
def test_cross_val_score_failing_scorer(error_score):
# check that an estimator can fail during scoring in `cross_val_score` and
# that we can optionally replaced it with `error_score`
X, y = load_iris(return_X_y=True)
clf = LogisticRegression(max_iter=5).fit(X, y)
error_msg = "This scorer is supposed to fail!!!"
failing_scorer = partial(_failing_scorer, error_msg=error_msg)
if error_score == "raise":
with pytest.raises(ValueError, match=error_msg):
cross_val_score(
clf, X, y, cv=3, scoring=failing_scorer, error_score=error_score
)
else:
warning_msg = (
"Scoring failed. The score on this train-test partition for "
f"these parameters will be set to {error_score}"
)
with pytest.warns(UserWarning, match=warning_msg):
scores = cross_val_score(
clf, X, y, cv=3, scoring=failing_scorer, error_score=error_score
)
assert_allclose(scores, error_score)
@pytest.mark.filterwarnings("ignore:lbfgs failed to converge")
@pytest.mark.parametrize("error_score", [np.nan, 0, "raise"])
@pytest.mark.parametrize("return_train_score", [True, False])
@pytest.mark.parametrize("with_multimetric", [False, True])
def test_cross_validate_failing_scorer(
error_score, return_train_score, with_multimetric
):
# Check that an estimator can fail during scoring in `cross_validate` and
# that we can optionally replace it with `error_score`. In the multimetric
# case also check the result of a non-failing scorer where the other scorers
# are failing.
X, y = load_iris(return_X_y=True)
clf = LogisticRegression(max_iter=5).fit(X, y)
error_msg = "This scorer is supposed to fail!!!"
failing_scorer = partial(_failing_scorer, error_msg=error_msg)
if with_multimetric:
non_failing_scorer = make_scorer(mean_squared_error)
scoring = {
"score_1": failing_scorer,
"score_2": non_failing_scorer,
"score_3": failing_scorer,
}
else:
scoring = failing_scorer
if error_score == "raise":
with pytest.raises(ValueError, match=error_msg):
cross_validate(
clf,
X,
y,
cv=3,
scoring=scoring,
return_train_score=return_train_score,
error_score=error_score,
)
else:
warning_msg = (
"Scoring failed. The score on this train-test partition for "
f"these parameters will be set to {error_score}"
)
with pytest.warns(UserWarning, match=warning_msg):
results = cross_validate(
clf,
X,
y,
cv=3,
scoring=scoring,
return_train_score=return_train_score,
error_score=error_score,
)
for key in results:
if "_score" in key:
if "_score_2" in key:
# check the test (and optionally train) score for the
# scorer that should be non-failing
for i in results[key]:
assert isinstance(i, float)
else:
# check the test (and optionally train) score for all
# scorers that should be assigned to `error_score`.
assert_allclose(results[key], error_score)
def three_params_scorer(i, j, k):
return 3.4213
@pytest.mark.parametrize(
"train_score, scorer, verbose, split_prg, cdt_prg, expected",
[
(
False,
three_params_scorer,
2,
(1, 3),
(0, 1),
r"\[CV\] END ...................................................."
r" total time= 0.\ds",
),
(
True,
{"sc1": three_params_scorer, "sc2": three_params_scorer},
3,
(1, 3),
(0, 1),
r"\[CV 2/3\] END sc1: \(train=3.421, test=3.421\) sc2: "
r"\(train=3.421, test=3.421\) total time= 0.\ds",
),
(
False,
{"sc1": three_params_scorer, "sc2": three_params_scorer},
10,
(1, 3),
(0, 1),
r"\[CV 2/3; 1/1\] END ....... sc1: \(test=3.421\) sc2: \(test=3.421\)"
r" total time= 0.\ds",
),
],
)
def test_fit_and_score_verbosity(
capsys, train_score, scorer, verbose, split_prg, cdt_prg, expected
):
X, y = make_classification(n_samples=30, random_state=0)
clf = SVC(kernel="linear", random_state=0)
train, test = next(ShuffleSplit().split(X))
# test print without train score
fit_and_score_args = [clf, X, y, scorer, train, test, verbose, None, None]
fit_and_score_kwargs = {
"return_train_score": train_score,
"split_progress": split_prg,
"candidate_progress": cdt_prg,
}
_fit_and_score(*fit_and_score_args, **fit_and_score_kwargs)
out, _ = capsys.readouterr()
outlines = out.split("\n")
if len(outlines) > 2:
assert re.match(expected, outlines[1])
else:
assert re.match(expected, outlines[0])
def test_score():
error_message = "scoring must return a number, got None"
def two_params_scorer(estimator, X_test):
return None
fit_and_score_args = [None, None, None, two_params_scorer]
with pytest.raises(ValueError, match=error_message):
_score(*fit_and_score_args, error_score=np.nan)
def test_callable_multimetric_confusion_matrix_cross_validate():
def custom_scorer(clf, X, y):
y_pred = clf.predict(X)
cm = confusion_matrix(y, y_pred)
return {"tn": cm[0, 0], "fp": cm[0, 1], "fn": cm[1, 0], "tp": cm[1, 1]}
X, y = make_classification(n_samples=40, n_features=4, random_state=42)
est = LinearSVC(random_state=42)
est.fit(X, y)
cv_results = cross_validate(est, X, y, cv=5, scoring=custom_scorer)
score_names = ["tn", "fp", "fn", "tp"]
for name in score_names:
assert "test_{}".format(name) in cv_results
def test_learning_curve_partial_fit_regressors():
"""Check that regressors with partial_fit is supported.
Non-regression test for #22981.
"""
X, y = make_regression(random_state=42)
# Does not error
learning_curve(MLPRegressor(), X, y, exploit_incremental_learning=True, cv=2)
|