1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
|
# Authors: Nicolas Goix <nicolas.goix@telecom-paristech.fr>
# Alexandre Gramfort <alexandre.gramfort@telecom-paristech.fr>
# License: BSD 3 clause
from math import sqrt
import numpy as np
from scipy.sparse import csr_matrix
from sklearn import neighbors
import re
import pytest
from sklearn import metrics
from sklearn.metrics import roc_auc_score
from sklearn.utils import check_random_state
from sklearn.utils._testing import assert_allclose
from sklearn.utils._testing import assert_array_equal
from sklearn.utils.estimator_checks import check_outlier_corruption
from sklearn.utils.estimator_checks import parametrize_with_checks
from sklearn.datasets import load_iris
# load the iris dataset
# and randomly permute it
rng = check_random_state(0)
iris = load_iris()
perm = rng.permutation(iris.target.size)
iris.data = iris.data[perm]
iris.target = iris.target[perm]
def test_lof(global_dtype):
# Toy sample (the last two samples are outliers):
X = np.asarray(
[[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1], [5, 3], [-4, 2]],
dtype=global_dtype,
)
# Test LocalOutlierFactor:
clf = neighbors.LocalOutlierFactor(n_neighbors=5)
score = clf.fit(X).negative_outlier_factor_
assert_array_equal(clf._fit_X, X)
# Assert largest outlier score is smaller than smallest inlier score:
assert np.min(score[:-2]) > np.max(score[-2:])
# Assert predict() works:
clf = neighbors.LocalOutlierFactor(contamination=0.25, n_neighbors=5).fit(X)
expected_predictions = 6 * [1] + 2 * [-1]
assert_array_equal(clf._predict(), expected_predictions)
assert_array_equal(clf.fit_predict(X), expected_predictions)
def test_lof_performance(global_dtype):
# Generate train/test data
rng = check_random_state(2)
X = 0.3 * rng.randn(120, 2).astype(global_dtype, copy=False)
X_train = X[:100]
# Generate some abnormal novel observations
X_outliers = rng.uniform(low=-4, high=4, size=(20, 2)).astype(
global_dtype, copy=False
)
X_test = np.r_[X[100:], X_outliers]
y_test = np.array([0] * 20 + [1] * 20)
# fit the model for novelty detection
clf = neighbors.LocalOutlierFactor(novelty=True).fit(X_train)
# predict scores (the lower, the more normal)
y_pred = -clf.decision_function(X_test)
# check that roc_auc is good
assert roc_auc_score(y_test, y_pred) > 0.99
def test_lof_values(global_dtype):
# toy samples:
X_train = np.asarray([[1, 1], [1, 2], [2, 1]], dtype=global_dtype)
clf1 = neighbors.LocalOutlierFactor(
n_neighbors=2, contamination=0.1, novelty=True
).fit(X_train)
clf2 = neighbors.LocalOutlierFactor(n_neighbors=2, novelty=True).fit(X_train)
s_0 = 2.0 * sqrt(2.0) / (1.0 + sqrt(2.0))
s_1 = (1.0 + sqrt(2)) * (1.0 / (4.0 * sqrt(2.0)) + 1.0 / (2.0 + 2.0 * sqrt(2)))
# check predict()
assert_allclose(-clf1.negative_outlier_factor_, [s_0, s_1, s_1])
assert_allclose(-clf2.negative_outlier_factor_, [s_0, s_1, s_1])
# check predict(one sample not in train)
assert_allclose(-clf1.score_samples([[2.0, 2.0]]), [s_0])
assert_allclose(-clf2.score_samples([[2.0, 2.0]]), [s_0])
# check predict(one sample already in train)
assert_allclose(-clf1.score_samples([[1.0, 1.0]]), [s_1])
assert_allclose(-clf2.score_samples([[1.0, 1.0]]), [s_1])
def test_lof_precomputed(global_dtype, random_state=42):
"""Tests LOF with a distance matrix."""
# Note: smaller samples may result in spurious test success
rng = np.random.RandomState(random_state)
X = rng.random_sample((10, 4)).astype(global_dtype, copy=False)
Y = rng.random_sample((3, 4)).astype(global_dtype, copy=False)
DXX = metrics.pairwise_distances(X, metric="euclidean")
DYX = metrics.pairwise_distances(Y, X, metric="euclidean")
# As a feature matrix (n_samples by n_features)
lof_X = neighbors.LocalOutlierFactor(n_neighbors=3, novelty=True)
lof_X.fit(X)
pred_X_X = lof_X._predict()
pred_X_Y = lof_X.predict(Y)
# As a dense distance matrix (n_samples by n_samples)
lof_D = neighbors.LocalOutlierFactor(
n_neighbors=3, algorithm="brute", metric="precomputed", novelty=True
)
lof_D.fit(DXX)
pred_D_X = lof_D._predict()
pred_D_Y = lof_D.predict(DYX)
assert_allclose(pred_X_X, pred_D_X)
assert_allclose(pred_X_Y, pred_D_Y)
def test_n_neighbors_attribute():
X = iris.data
clf = neighbors.LocalOutlierFactor(n_neighbors=500).fit(X)
assert clf.n_neighbors_ == X.shape[0] - 1
clf = neighbors.LocalOutlierFactor(n_neighbors=500)
msg = "n_neighbors will be set to (n_samples - 1)"
with pytest.warns(UserWarning, match=re.escape(msg)):
clf.fit(X)
assert clf.n_neighbors_ == X.shape[0] - 1
def test_score_samples(global_dtype):
X_train = np.asarray([[1, 1], [1, 2], [2, 1]], dtype=global_dtype)
X_test = np.asarray([[2.0, 2.0]], dtype=global_dtype)
clf1 = neighbors.LocalOutlierFactor(
n_neighbors=2, contamination=0.1, novelty=True
).fit(X_train)
clf2 = neighbors.LocalOutlierFactor(n_neighbors=2, novelty=True).fit(X_train)
clf1_scores = clf1.score_samples(X_test)
clf1_decisions = clf1.decision_function(X_test)
clf2_scores = clf2.score_samples(X_test)
clf2_decisions = clf2.decision_function(X_test)
assert_allclose(
clf1_scores,
clf1_decisions + clf1.offset_,
)
assert_allclose(
clf2_scores,
clf2_decisions + clf2.offset_,
)
assert_allclose(clf1_scores, clf2_scores)
def test_novelty_errors():
X = iris.data
# check errors for novelty=False
clf = neighbors.LocalOutlierFactor()
clf.fit(X)
# predict, decision_function and score_samples raise ValueError
for method in ["predict", "decision_function", "score_samples"]:
msg = "{} is not available when novelty=False".format(method)
with pytest.raises(AttributeError, match=msg):
getattr(clf, method)
# check errors for novelty=True
clf = neighbors.LocalOutlierFactor(novelty=True)
msg = "fit_predict is not available when novelty=True"
with pytest.raises(AttributeError, match=msg):
getattr(clf, "fit_predict")
def test_novelty_training_scores(global_dtype):
# check that the scores of the training samples are still accessible
# when novelty=True through the negative_outlier_factor_ attribute
X = iris.data.astype(global_dtype)
# fit with novelty=False
clf_1 = neighbors.LocalOutlierFactor()
clf_1.fit(X)
scores_1 = clf_1.negative_outlier_factor_
# fit with novelty=True
clf_2 = neighbors.LocalOutlierFactor(novelty=True)
clf_2.fit(X)
scores_2 = clf_2.negative_outlier_factor_
assert_allclose(scores_1, scores_2)
def test_hasattr_prediction():
# check availability of prediction methods depending on novelty value.
X = [[1, 1], [1, 2], [2, 1]]
# when novelty=True
clf = neighbors.LocalOutlierFactor(novelty=True)
clf.fit(X)
assert hasattr(clf, "predict")
assert hasattr(clf, "decision_function")
assert hasattr(clf, "score_samples")
assert not hasattr(clf, "fit_predict")
# when novelty=False
clf = neighbors.LocalOutlierFactor(novelty=False)
clf.fit(X)
assert hasattr(clf, "fit_predict")
assert not hasattr(clf, "predict")
assert not hasattr(clf, "decision_function")
assert not hasattr(clf, "score_samples")
@parametrize_with_checks([neighbors.LocalOutlierFactor(novelty=True)])
def test_novelty_true_common_tests(estimator, check):
# the common tests are run for the default LOF (novelty=False).
# here we run these common tests for LOF when novelty=True
check(estimator)
@pytest.mark.parametrize("expected_outliers", [30, 53])
def test_predicted_outlier_number(expected_outliers):
# the number of predicted outliers should be equal to the number of
# expected outliers unless there are ties in the abnormality scores.
X = iris.data
n_samples = X.shape[0]
contamination = float(expected_outliers) / n_samples
clf = neighbors.LocalOutlierFactor(contamination=contamination)
y_pred = clf.fit_predict(X)
num_outliers = np.sum(y_pred != 1)
if num_outliers != expected_outliers:
y_dec = clf.negative_outlier_factor_
check_outlier_corruption(num_outliers, expected_outliers, y_dec)
def test_sparse():
# LocalOutlierFactor must support CSR inputs
# TODO: compare results on dense and sparse data as proposed in:
# https://github.com/scikit-learn/scikit-learn/pull/23585#discussion_r968388186
X = csr_matrix(iris.data)
lof = neighbors.LocalOutlierFactor(novelty=True)
lof.fit(X)
lof.predict(X)
lof.score_samples(X)
lof.decision_function(X)
lof = neighbors.LocalOutlierFactor(novelty=False)
lof.fit_predict(X)
@pytest.mark.parametrize("algorithm", ["auto", "ball_tree", "kd_tree", "brute"])
@pytest.mark.parametrize("novelty", [True, False])
@pytest.mark.parametrize("contamination", [0.5, "auto"])
def test_lof_input_dtype_preservation(global_dtype, algorithm, contamination, novelty):
"""Check that the fitted attributes are stored using the data type of X."""
X = iris.data.astype(global_dtype, copy=False)
iso = neighbors.LocalOutlierFactor(
n_neighbors=5, algorithm=algorithm, contamination=contamination, novelty=novelty
)
iso.fit(X)
assert iso.negative_outlier_factor_.dtype == global_dtype
for method in ("score_samples", "decision_function"):
if hasattr(iso, method):
y_pred = getattr(iso, method)(X)
assert y_pred.dtype == global_dtype
@pytest.mark.parametrize("algorithm", ["auto", "ball_tree", "kd_tree", "brute"])
@pytest.mark.parametrize("novelty", [True, False])
@pytest.mark.parametrize("contamination", [0.5, "auto"])
def test_lof_dtype_equivalence(algorithm, novelty, contamination):
"""Check the equivalence of the results with 32 and 64 bits input."""
inliers = iris.data[:50] # setosa iris are really distinct from others
outliers = iris.data[-5:] # virginica will be considered as outliers
# lower the precision of the input data to check that we have an equivalence when
# making the computation in 32 and 64 bits.
X = np.concatenate([inliers, outliers], axis=0).astype(np.float32)
lof_32 = neighbors.LocalOutlierFactor(
algorithm=algorithm, novelty=novelty, contamination=contamination
)
X_32 = X.astype(np.float32, copy=True)
lof_32.fit(X_32)
lof_64 = neighbors.LocalOutlierFactor(
algorithm=algorithm, novelty=novelty, contamination=contamination
)
X_64 = X.astype(np.float64, copy=True)
lof_64.fit(X_64)
assert_allclose(lof_32.negative_outlier_factor_, lof_64.negative_outlier_factor_)
for method in ("score_samples", "decision_function", "predict", "fit_predict"):
if hasattr(lof_32, method):
y_pred_32 = getattr(lof_32, method)(X_32)
y_pred_64 = getattr(lof_64, method)(X_64)
assert_allclose(y_pred_32, y_pred_64, atol=0.0002)
|