File: test_nca.py

package info (click to toggle)
scikit-learn 1.2.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 23,280 kB
  • sloc: python: 184,491; cpp: 5,783; ansic: 854; makefile: 307; sh: 45; javascript: 1
file content (547 lines) | stat: -rw-r--r-- 19,051 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
"""
Testing for Neighborhood Component Analysis module (sklearn.neighbors.nca)
"""

# Authors: William de Vazelhes <wdevazelhes@gmail.com>
#          John Chiotellis <ioannis.chiotellis@in.tum.de>
# License: BSD 3 clause

import pytest
import re
import numpy as np
from numpy.testing import assert_array_equal, assert_array_almost_equal
from scipy.optimize import check_grad
from sklearn import clone
from sklearn.exceptions import ConvergenceWarning
from sklearn.utils import check_random_state
from sklearn.datasets import load_iris, make_classification, make_blobs
from sklearn.neighbors import NeighborhoodComponentsAnalysis
from sklearn.metrics import pairwise_distances
from sklearn.preprocessing import LabelEncoder


rng = check_random_state(0)
# load and shuffle iris dataset
iris = load_iris()
perm = rng.permutation(iris.target.size)
iris_data = iris.data[perm]
iris_target = iris.target[perm]
EPS = np.finfo(float).eps


def test_simple_example():
    """Test on a simple example.

    Puts four points in the input space where the opposite labels points are
    next to each other. After transform the samples from the same class
    should be next to each other.

    """
    X = np.array([[0, 0], [0, 1], [2, 0], [2, 1]])
    y = np.array([1, 0, 1, 0])
    nca = NeighborhoodComponentsAnalysis(
        n_components=2, init="identity", random_state=42
    )
    nca.fit(X, y)
    X_t = nca.transform(X)
    assert_array_equal(pairwise_distances(X_t).argsort()[:, 1], np.array([2, 3, 0, 1]))


def test_toy_example_collapse_points():
    """Test on a toy example of three points that should collapse

    We build a simple example: two points from the same class and a point from
    a different class in the middle of them. On this simple example, the new
    (transformed) points should all collapse into one single point. Indeed, the
    objective is 2/(1 + exp(d/2)), with d the euclidean distance between the
    two samples from the same class. This is maximized for d=0 (because d>=0),
    with an objective equal to 1 (loss=-1.).

    """
    rng = np.random.RandomState(42)
    input_dim = 5
    two_points = rng.randn(2, input_dim)
    X = np.vstack([two_points, two_points.mean(axis=0)[np.newaxis, :]])
    y = [0, 0, 1]

    class LossStorer:
        def __init__(self, X, y):
            self.loss = np.inf  # initialize the loss to very high
            # Initialize a fake NCA and variables needed to compute the loss:
            self.fake_nca = NeighborhoodComponentsAnalysis()
            self.fake_nca.n_iter_ = np.inf
            self.X, y = self.fake_nca._validate_data(X, y, ensure_min_samples=2)
            y = LabelEncoder().fit_transform(y)
            self.same_class_mask = y[:, np.newaxis] == y[np.newaxis, :]

        def callback(self, transformation, n_iter):
            """Stores the last value of the loss function"""
            self.loss, _ = self.fake_nca._loss_grad_lbfgs(
                transformation, self.X, self.same_class_mask, -1.0
            )

    loss_storer = LossStorer(X, y)
    nca = NeighborhoodComponentsAnalysis(random_state=42, callback=loss_storer.callback)
    X_t = nca.fit_transform(X, y)
    print(X_t)
    # test that points are collapsed into one point
    assert_array_almost_equal(X_t - X_t[0], 0.0)
    assert abs(loss_storer.loss + 1) < 1e-10


def test_finite_differences(global_random_seed):
    """Test gradient of loss function

    Assert that the gradient is almost equal to its finite differences
    approximation.
    """
    # Initialize the transformation `M`, as well as `X` and `y` and `NCA`
    rng = np.random.RandomState(global_random_seed)
    X, y = make_classification(random_state=global_random_seed)
    M = rng.randn(rng.randint(1, X.shape[1] + 1), X.shape[1])
    nca = NeighborhoodComponentsAnalysis()
    nca.n_iter_ = 0
    mask = y[:, np.newaxis] == y[np.newaxis, :]

    def fun(M):
        return nca._loss_grad_lbfgs(M, X, mask)[0]

    def grad(M):
        return nca._loss_grad_lbfgs(M, X, mask)[1]

    # compare the gradient to a finite difference approximation
    diff = check_grad(fun, grad, M.ravel())
    assert diff == pytest.approx(0.0, abs=1e-4)


def test_params_validation():
    # Test that invalid parameters raise value error
    X = np.arange(12).reshape(4, 3)
    y = [1, 1, 2, 2]
    NCA = NeighborhoodComponentsAnalysis
    rng = np.random.RandomState(42)

    init = rng.rand(5, 3)
    msg = (
        f"The output dimensionality ({init.shape[0]}) "
        "of the given linear transformation `init` cannot be "
        f"greater than its input dimensionality ({init.shape[1]})."
    )
    with pytest.raises(ValueError, match=re.escape(msg)):
        NCA(init=init).fit(X, y)
    n_components = 10
    msg = (
        "The preferred dimensionality of the projected space "
        f"`n_components` ({n_components}) cannot be greater "
        f"than the given data dimensionality ({X.shape[1]})!"
    )
    with pytest.raises(ValueError, match=re.escape(msg)):
        NCA(n_components=n_components).fit(X, y)


def test_transformation_dimensions():
    X = np.arange(12).reshape(4, 3)
    y = [1, 1, 2, 2]

    # Fail if transformation input dimension does not match inputs dimensions
    transformation = np.array([[1, 2], [3, 4]])
    with pytest.raises(ValueError):
        NeighborhoodComponentsAnalysis(init=transformation).fit(X, y)

    # Fail if transformation output dimension is larger than
    # transformation input dimension
    transformation = np.array([[1, 2], [3, 4], [5, 6]])
    # len(transformation) > len(transformation[0])
    with pytest.raises(ValueError):
        NeighborhoodComponentsAnalysis(init=transformation).fit(X, y)

    # Pass otherwise
    transformation = np.arange(9).reshape(3, 3)
    NeighborhoodComponentsAnalysis(init=transformation).fit(X, y)


def test_n_components():
    rng = np.random.RandomState(42)
    X = np.arange(12).reshape(4, 3)
    y = [1, 1, 2, 2]

    init = rng.rand(X.shape[1] - 1, 3)

    # n_components = X.shape[1] != transformation.shape[0]
    n_components = X.shape[1]
    nca = NeighborhoodComponentsAnalysis(init=init, n_components=n_components)
    msg = (
        "The preferred dimensionality of the projected space "
        f"`n_components` ({n_components}) does not match the output "
        "dimensionality of the given linear transformation "
        f"`init` ({init.shape[0]})!"
    )
    with pytest.raises(ValueError, match=re.escape(msg)):
        nca.fit(X, y)

    # n_components > X.shape[1]
    n_components = X.shape[1] + 2
    nca = NeighborhoodComponentsAnalysis(init=init, n_components=n_components)
    msg = (
        "The preferred dimensionality of the projected space "
        f"`n_components` ({n_components}) cannot be greater than "
        f"the given data dimensionality ({X.shape[1]})!"
    )
    with pytest.raises(ValueError, match=re.escape(msg)):
        nca.fit(X, y)

    # n_components < X.shape[1]
    nca = NeighborhoodComponentsAnalysis(n_components=2, init="identity")
    nca.fit(X, y)


def test_init_transformation():
    rng = np.random.RandomState(42)
    X, y = make_blobs(n_samples=30, centers=6, n_features=5, random_state=0)

    # Start learning from scratch
    nca = NeighborhoodComponentsAnalysis(init="identity")
    nca.fit(X, y)

    # Initialize with random
    nca_random = NeighborhoodComponentsAnalysis(init="random")
    nca_random.fit(X, y)

    # Initialize with auto
    nca_auto = NeighborhoodComponentsAnalysis(init="auto")
    nca_auto.fit(X, y)

    # Initialize with PCA
    nca_pca = NeighborhoodComponentsAnalysis(init="pca")
    nca_pca.fit(X, y)

    # Initialize with LDA
    nca_lda = NeighborhoodComponentsAnalysis(init="lda")
    nca_lda.fit(X, y)

    init = rng.rand(X.shape[1], X.shape[1])
    nca = NeighborhoodComponentsAnalysis(init=init)
    nca.fit(X, y)

    # init.shape[1] must match X.shape[1]
    init = rng.rand(X.shape[1], X.shape[1] + 1)
    nca = NeighborhoodComponentsAnalysis(init=init)
    msg = (
        f"The input dimensionality ({init.shape[1]}) of the given "
        "linear transformation `init` must match the "
        f"dimensionality of the given inputs `X` ({X.shape[1]})."
    )
    with pytest.raises(ValueError, match=re.escape(msg)):
        nca.fit(X, y)

    # init.shape[0] must be <= init.shape[1]
    init = rng.rand(X.shape[1] + 1, X.shape[1])
    nca = NeighborhoodComponentsAnalysis(init=init)
    msg = (
        f"The output dimensionality ({init.shape[0]}) of the given "
        "linear transformation `init` cannot be "
        f"greater than its input dimensionality ({init.shape[1]})."
    )
    with pytest.raises(ValueError, match=re.escape(msg)):
        nca.fit(X, y)

    # init.shape[0] must match n_components
    init = rng.rand(X.shape[1], X.shape[1])
    n_components = X.shape[1] - 2
    nca = NeighborhoodComponentsAnalysis(init=init, n_components=n_components)
    msg = (
        "The preferred dimensionality of the "
        f"projected space `n_components` ({n_components}) "
        "does not match the output dimensionality of the given "
        f"linear transformation `init` ({init.shape[0]})!"
    )
    with pytest.raises(ValueError, match=re.escape(msg)):
        nca.fit(X, y)


@pytest.mark.parametrize("n_samples", [3, 5, 7, 11])
@pytest.mark.parametrize("n_features", [3, 5, 7, 11])
@pytest.mark.parametrize("n_classes", [5, 7, 11])
@pytest.mark.parametrize("n_components", [3, 5, 7, 11])
def test_auto_init(n_samples, n_features, n_classes, n_components):
    # Test that auto choose the init as expected with every configuration
    # of order of n_samples, n_features, n_classes and n_components.
    rng = np.random.RandomState(42)
    nca_base = NeighborhoodComponentsAnalysis(
        init="auto", n_components=n_components, max_iter=1, random_state=rng
    )
    if n_classes >= n_samples:
        pass
        # n_classes > n_samples is impossible, and n_classes == n_samples
        # throws an error from lda but is an absurd case
    else:
        X = rng.randn(n_samples, n_features)
        y = np.tile(range(n_classes), n_samples // n_classes + 1)[:n_samples]
        if n_components > n_features:
            # this would return a ValueError, which is already tested in
            # test_params_validation
            pass
        else:
            nca = clone(nca_base)
            nca.fit(X, y)
            if n_components <= min(n_classes - 1, n_features):
                nca_other = clone(nca_base).set_params(init="lda")
            elif n_components < min(n_features, n_samples):
                nca_other = clone(nca_base).set_params(init="pca")
            else:
                nca_other = clone(nca_base).set_params(init="identity")
            nca_other.fit(X, y)
            assert_array_almost_equal(nca.components_, nca_other.components_)


def test_warm_start_validation():
    X, y = make_classification(
        n_samples=30,
        n_features=5,
        n_classes=4,
        n_redundant=0,
        n_informative=5,
        random_state=0,
    )

    nca = NeighborhoodComponentsAnalysis(warm_start=True, max_iter=5)
    nca.fit(X, y)

    X_less_features, y = make_classification(
        n_samples=30,
        n_features=4,
        n_classes=4,
        n_redundant=0,
        n_informative=4,
        random_state=0,
    )
    msg = (
        f"The new inputs dimensionality ({X_less_features.shape[1]}) "
        "does not match the input dimensionality of the previously learned "
        f"transformation ({nca.components_.shape[1]})."
    )
    with pytest.raises(ValueError, match=re.escape(msg)):
        nca.fit(X_less_features, y)


def test_warm_start_effectiveness():
    # A 1-iteration second fit on same data should give almost same result
    # with warm starting, and quite different result without warm starting.

    nca_warm = NeighborhoodComponentsAnalysis(warm_start=True, random_state=0)
    nca_warm.fit(iris_data, iris_target)
    transformation_warm = nca_warm.components_
    nca_warm.max_iter = 1
    nca_warm.fit(iris_data, iris_target)
    transformation_warm_plus_one = nca_warm.components_

    nca_cold = NeighborhoodComponentsAnalysis(warm_start=False, random_state=0)
    nca_cold.fit(iris_data, iris_target)
    transformation_cold = nca_cold.components_
    nca_cold.max_iter = 1
    nca_cold.fit(iris_data, iris_target)
    transformation_cold_plus_one = nca_cold.components_

    diff_warm = np.sum(np.abs(transformation_warm_plus_one - transformation_warm))
    diff_cold = np.sum(np.abs(transformation_cold_plus_one - transformation_cold))
    assert diff_warm < 3.0, (
        "Transformer changed significantly after one "
        "iteration even though it was warm-started."
    )

    assert diff_cold > diff_warm, (
        "Cold-started transformer changed less "
        "significantly than warm-started "
        "transformer after one iteration."
    )


@pytest.mark.parametrize(
    "init_name", ["pca", "lda", "identity", "random", "precomputed"]
)
def test_verbose(init_name, capsys):
    # assert there is proper output when verbose = 1, for every initialization
    # except auto because auto will call one of the others
    rng = np.random.RandomState(42)
    X, y = make_blobs(n_samples=30, centers=6, n_features=5, random_state=0)
    regexp_init = r"... done in \ *\d+\.\d{2}s"
    msgs = {
        "pca": "Finding principal components" + regexp_init,
        "lda": "Finding most discriminative components" + regexp_init,
    }
    if init_name == "precomputed":
        init = rng.randn(X.shape[1], X.shape[1])
    else:
        init = init_name
    nca = NeighborhoodComponentsAnalysis(verbose=1, init=init)
    nca.fit(X, y)
    out, _ = capsys.readouterr()

    # check output
    lines = re.split("\n+", out)
    # if pca or lda init, an additional line is printed, so we test
    # it and remove it to test the rest equally among initializations
    if init_name in ["pca", "lda"]:
        assert re.match(msgs[init_name], lines[0])
        lines = lines[1:]
    assert lines[0] == "[NeighborhoodComponentsAnalysis]"
    header = "{:>10} {:>20} {:>10}".format("Iteration", "Objective Value", "Time(s)")
    assert lines[1] == "[NeighborhoodComponentsAnalysis] {}".format(header)
    assert lines[2] == "[NeighborhoodComponentsAnalysis] {}".format("-" * len(header))
    for line in lines[3:-2]:
        # The following regex will match for instance:
        # '[NeighborhoodComponentsAnalysis]  0    6.988936e+01   0.01'
        assert re.match(
            r"\[NeighborhoodComponentsAnalysis\] *\d+ *\d\.\d{6}e"
            r"[+|-]\d+\ *\d+\.\d{2}",
            line,
        )
    assert re.match(
        r"\[NeighborhoodComponentsAnalysis\] Training took\ *" r"\d+\.\d{2}s\.",
        lines[-2],
    )
    assert lines[-1] == ""


def test_no_verbose(capsys):
    # assert by default there is no output (verbose=0)
    nca = NeighborhoodComponentsAnalysis()
    nca.fit(iris_data, iris_target)
    out, _ = capsys.readouterr()
    # check output
    assert out == ""


def test_singleton_class():
    X = iris_data
    y = iris_target

    # one singleton class
    singleton_class = 1
    (ind_singleton,) = np.where(y == singleton_class)
    y[ind_singleton] = 2
    y[ind_singleton[0]] = singleton_class

    nca = NeighborhoodComponentsAnalysis(max_iter=30)
    nca.fit(X, y)

    # One non-singleton class
    (ind_1,) = np.where(y == 1)
    (ind_2,) = np.where(y == 2)
    y[ind_1] = 0
    y[ind_1[0]] = 1
    y[ind_2] = 0
    y[ind_2[0]] = 2

    nca = NeighborhoodComponentsAnalysis(max_iter=30)
    nca.fit(X, y)

    # Only singleton classes
    (ind_0,) = np.where(y == 0)
    (ind_1,) = np.where(y == 1)
    (ind_2,) = np.where(y == 2)
    X = X[[ind_0[0], ind_1[0], ind_2[0]]]
    y = y[[ind_0[0], ind_1[0], ind_2[0]]]

    nca = NeighborhoodComponentsAnalysis(init="identity", max_iter=30)
    nca.fit(X, y)
    assert_array_equal(X, nca.transform(X))


def test_one_class():
    X = iris_data[iris_target == 0]
    y = iris_target[iris_target == 0]

    nca = NeighborhoodComponentsAnalysis(
        max_iter=30, n_components=X.shape[1], init="identity"
    )
    nca.fit(X, y)
    assert_array_equal(X, nca.transform(X))


def test_callback(capsys):
    max_iter = 10

    def my_cb(transformation, n_iter):
        assert transformation.shape == (iris_data.shape[1] ** 2,)
        rem_iter = max_iter - n_iter
        print("{} iterations remaining...".format(rem_iter))

    # assert that my_cb is called
    nca = NeighborhoodComponentsAnalysis(max_iter=max_iter, callback=my_cb, verbose=1)
    nca.fit(iris_data, iris_target)
    out, _ = capsys.readouterr()

    # check output
    assert "{} iterations remaining...".format(max_iter - 1) in out


def test_expected_transformation_shape():
    """Test that the transformation has the expected shape."""
    X = iris_data
    y = iris_target

    class TransformationStorer:
        def __init__(self, X, y):
            # Initialize a fake NCA and variables needed to call the loss
            # function:
            self.fake_nca = NeighborhoodComponentsAnalysis()
            self.fake_nca.n_iter_ = np.inf
            self.X, y = self.fake_nca._validate_data(X, y, ensure_min_samples=2)
            y = LabelEncoder().fit_transform(y)
            self.same_class_mask = y[:, np.newaxis] == y[np.newaxis, :]

        def callback(self, transformation, n_iter):
            """Stores the last value of the transformation taken as input by
            the optimizer"""
            self.transformation = transformation

    transformation_storer = TransformationStorer(X, y)
    cb = transformation_storer.callback
    nca = NeighborhoodComponentsAnalysis(max_iter=5, callback=cb)
    nca.fit(X, y)
    assert transformation_storer.transformation.size == X.shape[1] ** 2


def test_convergence_warning():
    nca = NeighborhoodComponentsAnalysis(max_iter=2, verbose=1)
    cls_name = nca.__class__.__name__
    msg = "[{}] NCA did not converge".format(cls_name)
    with pytest.warns(ConvergenceWarning, match=re.escape(msg)):
        nca.fit(iris_data, iris_target)


@pytest.mark.parametrize(
    "param, value",
    [
        ("n_components", np.int32(3)),
        ("max_iter", np.int32(100)),
        ("tol", np.float32(0.0001)),
    ],
)
def test_parameters_valid_types(param, value):
    # check that no error is raised when parameters have numpy integer or
    # floating types.
    nca = NeighborhoodComponentsAnalysis(**{param: value})

    X = iris_data
    y = iris_target

    nca.fit(X, y)


def test_nca_feature_names_out():
    """Check `get_feature_names_out` for `NeighborhoodComponentsAnalysis`."""

    X = iris_data
    y = iris_target

    est = NeighborhoodComponentsAnalysis().fit(X, y)
    names_out = est.get_feature_names_out()

    class_name_lower = est.__class__.__name__.lower()
    expected_names_out = np.array(
        [f"{class_name_lower}{i}" for i in range(est.components_.shape[1])],
        dtype=object,
    )
    assert_array_equal(names_out, expected_names_out)