1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
|
"""
This is testing the equivalence between some estimators with internal nearest
neighbors computations, and the corresponding pipeline versions with
KNeighborsTransformer or RadiusNeighborsTransformer to precompute the
neighbors.
"""
import numpy as np
from sklearn.utils._testing import assert_array_almost_equal
from sklearn.cluster.tests.common import generate_clustered_data
from sklearn.datasets import make_blobs
from sklearn.pipeline import make_pipeline
from sklearn.base import clone
from sklearn.neighbors import KNeighborsTransformer
from sklearn.neighbors import RadiusNeighborsTransformer
from sklearn.cluster import DBSCAN
from sklearn.cluster import SpectralClustering
from sklearn.neighbors import KNeighborsRegressor
from sklearn.neighbors import RadiusNeighborsRegressor
from sklearn.neighbors import LocalOutlierFactor
from sklearn.manifold import SpectralEmbedding
from sklearn.manifold import Isomap
from sklearn.manifold import TSNE
def test_spectral_clustering():
# Test chaining KNeighborsTransformer and SpectralClustering
n_neighbors = 5
X, _ = make_blobs(random_state=0)
# compare the chained version and the compact version
est_chain = make_pipeline(
KNeighborsTransformer(n_neighbors=n_neighbors, mode="connectivity"),
SpectralClustering(
n_neighbors=n_neighbors, affinity="precomputed", random_state=42
),
)
est_compact = SpectralClustering(
n_neighbors=n_neighbors, affinity="nearest_neighbors", random_state=42
)
labels_compact = est_compact.fit_predict(X)
labels_chain = est_chain.fit_predict(X)
assert_array_almost_equal(labels_chain, labels_compact)
def test_spectral_embedding():
# Test chaining KNeighborsTransformer and SpectralEmbedding
n_neighbors = 5
n_samples = 1000
centers = np.array(
[
[0.0, 5.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 4.0, 0.0, 0.0],
[1.0, 0.0, 0.0, 5.0, 1.0],
]
)
S, true_labels = make_blobs(
n_samples=n_samples, centers=centers, cluster_std=1.0, random_state=42
)
# compare the chained version and the compact version
est_chain = make_pipeline(
KNeighborsTransformer(n_neighbors=n_neighbors, mode="connectivity"),
SpectralEmbedding(
n_neighbors=n_neighbors, affinity="precomputed", random_state=42
),
)
est_compact = SpectralEmbedding(
n_neighbors=n_neighbors, affinity="nearest_neighbors", random_state=42
)
St_compact = est_compact.fit_transform(S)
St_chain = est_chain.fit_transform(S)
assert_array_almost_equal(St_chain, St_compact)
def test_dbscan():
# Test chaining RadiusNeighborsTransformer and DBSCAN
radius = 0.3
n_clusters = 3
X = generate_clustered_data(n_clusters=n_clusters)
# compare the chained version and the compact version
est_chain = make_pipeline(
RadiusNeighborsTransformer(radius=radius, mode="distance"),
DBSCAN(metric="precomputed", eps=radius),
)
est_compact = DBSCAN(eps=radius)
labels_chain = est_chain.fit_predict(X)
labels_compact = est_compact.fit_predict(X)
assert_array_almost_equal(labels_chain, labels_compact)
def test_isomap():
# Test chaining KNeighborsTransformer and Isomap with
# neighbors_algorithm='precomputed'
algorithm = "auto"
n_neighbors = 10
X, _ = make_blobs(random_state=0)
X2, _ = make_blobs(random_state=1)
# compare the chained version and the compact version
est_chain = make_pipeline(
KNeighborsTransformer(
n_neighbors=n_neighbors, algorithm=algorithm, mode="distance"
),
Isomap(n_neighbors=n_neighbors, metric="precomputed"),
)
est_compact = Isomap(n_neighbors=n_neighbors, neighbors_algorithm=algorithm)
Xt_chain = est_chain.fit_transform(X)
Xt_compact = est_compact.fit_transform(X)
assert_array_almost_equal(Xt_chain, Xt_compact)
Xt_chain = est_chain.transform(X2)
Xt_compact = est_compact.transform(X2)
assert_array_almost_equal(Xt_chain, Xt_compact)
def test_tsne():
# Test chaining KNeighborsTransformer and TSNE
n_iter = 250
perplexity = 5
n_neighbors = int(3.0 * perplexity + 1)
rng = np.random.RandomState(0)
X = rng.randn(20, 2)
for metric in ["minkowski", "sqeuclidean"]:
# compare the chained version and the compact version
est_chain = make_pipeline(
KNeighborsTransformer(
n_neighbors=n_neighbors, mode="distance", metric=metric
),
TSNE(
init="random",
metric="precomputed",
perplexity=perplexity,
method="barnes_hut",
random_state=42,
n_iter=n_iter,
),
)
est_compact = TSNE(
init="random",
metric=metric,
perplexity=perplexity,
n_iter=n_iter,
method="barnes_hut",
random_state=42,
)
Xt_chain = est_chain.fit_transform(X)
Xt_compact = est_compact.fit_transform(X)
assert_array_almost_equal(Xt_chain, Xt_compact)
def test_lof_novelty_false():
# Test chaining KNeighborsTransformer and LocalOutlierFactor
n_neighbors = 4
rng = np.random.RandomState(0)
X = rng.randn(40, 2)
# compare the chained version and the compact version
est_chain = make_pipeline(
KNeighborsTransformer(n_neighbors=n_neighbors, mode="distance"),
LocalOutlierFactor(
metric="precomputed",
n_neighbors=n_neighbors,
novelty=False,
contamination="auto",
),
)
est_compact = LocalOutlierFactor(
n_neighbors=n_neighbors, novelty=False, contamination="auto"
)
pred_chain = est_chain.fit_predict(X)
pred_compact = est_compact.fit_predict(X)
assert_array_almost_equal(pred_chain, pred_compact)
def test_lof_novelty_true():
# Test chaining KNeighborsTransformer and LocalOutlierFactor
n_neighbors = 4
rng = np.random.RandomState(0)
X1 = rng.randn(40, 2)
X2 = rng.randn(40, 2)
# compare the chained version and the compact version
est_chain = make_pipeline(
KNeighborsTransformer(n_neighbors=n_neighbors, mode="distance"),
LocalOutlierFactor(
metric="precomputed",
n_neighbors=n_neighbors,
novelty=True,
contamination="auto",
),
)
est_compact = LocalOutlierFactor(
n_neighbors=n_neighbors, novelty=True, contamination="auto"
)
pred_chain = est_chain.fit(X1).predict(X2)
pred_compact = est_compact.fit(X1).predict(X2)
assert_array_almost_equal(pred_chain, pred_compact)
def test_kneighbors_regressor():
# Test chaining KNeighborsTransformer and classifiers/regressors
rng = np.random.RandomState(0)
X = 2 * rng.rand(40, 5) - 1
X2 = 2 * rng.rand(40, 5) - 1
y = rng.rand(40, 1)
n_neighbors = 12
radius = 1.5
# We precompute more neighbors than necessary, to have equivalence between
# k-neighbors estimator after radius-neighbors transformer, and vice-versa.
factor = 2
k_trans = KNeighborsTransformer(n_neighbors=n_neighbors, mode="distance")
k_trans_factor = KNeighborsTransformer(
n_neighbors=int(n_neighbors * factor), mode="distance"
)
r_trans = RadiusNeighborsTransformer(radius=radius, mode="distance")
r_trans_factor = RadiusNeighborsTransformer(
radius=int(radius * factor), mode="distance"
)
k_reg = KNeighborsRegressor(n_neighbors=n_neighbors)
r_reg = RadiusNeighborsRegressor(radius=radius)
test_list = [
(k_trans, k_reg),
(k_trans_factor, r_reg),
(r_trans, r_reg),
(r_trans_factor, k_reg),
]
for trans, reg in test_list:
# compare the chained version and the compact version
reg_compact = clone(reg)
reg_precomp = clone(reg)
reg_precomp.set_params(metric="precomputed")
reg_chain = make_pipeline(clone(trans), reg_precomp)
y_pred_chain = reg_chain.fit(X, y).predict(X2)
y_pred_compact = reg_compact.fit(X, y).predict(X2)
assert_array_almost_equal(y_pred_chain, y_pred_compact)
|