File: test_base.py

package info (click to toggle)
scikit-learn 1.2.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 23,280 kB
  • sloc: python: 184,491; cpp: 5,783; ansic: 854; makefile: 307; sh: 45; javascript: 1
file content (30 lines) | stat: -rw-r--r-- 836 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import pytest
import numpy as np

from sklearn.neural_network._base import binary_log_loss
from sklearn.neural_network._base import log_loss


def test_binary_log_loss_1_prob_finite():
    # y_proba is equal to one should result in a finite logloss
    y_true = np.array([[0, 0, 1]]).T
    y_prob = np.array([[0.9, 1.0, 1.0]]).T

    loss = binary_log_loss(y_true, y_prob)
    assert np.isfinite(loss)


@pytest.mark.parametrize(
    "y_true, y_prob",
    [
        (
            np.array([[1, 0, 0], [0, 1, 0]]),
            np.array([[0.0, 1.0, 0.0], [0.9, 0.05, 0.05]]),
        ),
        (np.array([[0, 0, 1]]).T, np.array([[0.9, 1.0, 1.0]]).T),
    ],
)
def test_log_loss_1_prob_finite(y_true, y_prob):
    # y_proba is equal to 1 should result in a finite logloss
    loss = log_loss(y_true, y_prob)
    assert np.isfinite(loss)