File: pipeline.py

package info (click to toggle)
scikit-learn 1.2.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 23,280 kB
  • sloc: python: 184,491; cpp: 5,783; ansic: 854; makefile: 307; sh: 45; javascript: 1
file content (1333 lines) | stat: -rw-r--r-- 48,136 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
"""
The :mod:`sklearn.pipeline` module implements utilities to build a composite
estimator, as a chain of transforms and estimators.
"""
# Author: Edouard Duchesnay
#         Gael Varoquaux
#         Virgile Fritsch
#         Alexandre Gramfort
#         Lars Buitinck
# License: BSD

from collections import defaultdict
from itertools import islice

import numpy as np
from scipy import sparse

from .base import clone, TransformerMixin
from .preprocessing import FunctionTransformer
from .utils._estimator_html_repr import _VisualBlock
from .utils.metaestimators import available_if
from .utils import (
    Bunch,
    _print_elapsed_time,
)
from .utils._tags import _safe_tags
from .utils.validation import check_memory
from .utils.validation import check_is_fitted
from .utils import check_pandas_support
from .utils._set_output import _safe_set_output, _get_output_config
from .utils.parallel import delayed, Parallel
from .exceptions import NotFittedError

from .utils.metaestimators import _BaseComposition

__all__ = ["Pipeline", "FeatureUnion", "make_pipeline", "make_union"]


def _final_estimator_has(attr):
    """Check that final_estimator has `attr`.

    Used together with `avaliable_if` in `Pipeline`."""

    def check(self):
        # raise original `AttributeError` if `attr` does not exist
        getattr(self._final_estimator, attr)
        return True

    return check


class Pipeline(_BaseComposition):
    """
    Pipeline of transforms with a final estimator.

    Sequentially apply a list of transforms and a final estimator.
    Intermediate steps of the pipeline must be 'transforms', that is, they
    must implement `fit` and `transform` methods.
    The final estimator only needs to implement `fit`.
    The transformers in the pipeline can be cached using ``memory`` argument.

    The purpose of the pipeline is to assemble several steps that can be
    cross-validated together while setting different parameters. For this, it
    enables setting parameters of the various steps using their names and the
    parameter name separated by a `'__'`, as in the example below. A step's
    estimator may be replaced entirely by setting the parameter with its name
    to another estimator, or a transformer removed by setting it to
    `'passthrough'` or `None`.

    Read more in the :ref:`User Guide <pipeline>`.

    .. versionadded:: 0.5

    Parameters
    ----------
    steps : list of tuple
        List of (name, transform) tuples (implementing `fit`/`transform`) that
        are chained in sequential order. The last transform must be an
        estimator.

    memory : str or object with the joblib.Memory interface, default=None
        Used to cache the fitted transformers of the pipeline. By default,
        no caching is performed. If a string is given, it is the path to
        the caching directory. Enabling caching triggers a clone of
        the transformers before fitting. Therefore, the transformer
        instance given to the pipeline cannot be inspected
        directly. Use the attribute ``named_steps`` or ``steps`` to
        inspect estimators within the pipeline. Caching the
        transformers is advantageous when fitting is time consuming.

    verbose : bool, default=False
        If True, the time elapsed while fitting each step will be printed as it
        is completed.

    Attributes
    ----------
    named_steps : :class:`~sklearn.utils.Bunch`
        Dictionary-like object, with the following attributes.
        Read-only attribute to access any step parameter by user given name.
        Keys are step names and values are steps parameters.

    classes_ : ndarray of shape (n_classes,)
        The classes labels. Only exist if the last step of the pipeline is a
        classifier.

    n_features_in_ : int
        Number of features seen during :term:`fit`. Only defined if the
        underlying first estimator in `steps` exposes such an attribute
        when fit.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Only defined if the
        underlying estimator exposes such an attribute when fit.

        .. versionadded:: 1.0

    See Also
    --------
    make_pipeline : Convenience function for simplified pipeline construction.

    Examples
    --------
    >>> from sklearn.svm import SVC
    >>> from sklearn.preprocessing import StandardScaler
    >>> from sklearn.datasets import make_classification
    >>> from sklearn.model_selection import train_test_split
    >>> from sklearn.pipeline import Pipeline
    >>> X, y = make_classification(random_state=0)
    >>> X_train, X_test, y_train, y_test = train_test_split(X, y,
    ...                                                     random_state=0)
    >>> pipe = Pipeline([('scaler', StandardScaler()), ('svc', SVC())])
    >>> # The pipeline can be used as any other estimator
    >>> # and avoids leaking the test set into the train set
    >>> pipe.fit(X_train, y_train)
    Pipeline(steps=[('scaler', StandardScaler()), ('svc', SVC())])
    >>> pipe.score(X_test, y_test)
    0.88
    """

    # BaseEstimator interface
    _required_parameters = ["steps"]

    def __init__(self, steps, *, memory=None, verbose=False):
        self.steps = steps
        self.memory = memory
        self.verbose = verbose

    def set_output(self, *, transform=None):
        """Set the output container when `"transform"` and `"fit_transform"` are called.

        Calling `set_output` will set the output of all estimators in `steps`.

        Parameters
        ----------
        transform : {"default", "pandas"}, default=None
            Configure output of `transform` and `fit_transform`.

            - `"default"`: Default output format of a transformer
            - `"pandas"`: DataFrame output
            - `None`: Transform configuration is unchanged

        Returns
        -------
        self : estimator instance
            Estimator instance.
        """
        for _, _, step in self._iter():
            _safe_set_output(step, transform=transform)
        return self

    def get_params(self, deep=True):
        """Get parameters for this estimator.

        Returns the parameters given in the constructor as well as the
        estimators contained within the `steps` of the `Pipeline`.

        Parameters
        ----------
        deep : bool, default=True
            If True, will return the parameters for this estimator and
            contained subobjects that are estimators.

        Returns
        -------
        params : mapping of string to any
            Parameter names mapped to their values.
        """
        return self._get_params("steps", deep=deep)

    def set_params(self, **kwargs):
        """Set the parameters of this estimator.

        Valid parameter keys can be listed with ``get_params()``. Note that
        you can directly set the parameters of the estimators contained in
        `steps`.

        Parameters
        ----------
        **kwargs : dict
            Parameters of this estimator or parameters of estimators contained
            in `steps`. Parameters of the steps may be set using its name and
            the parameter name separated by a '__'.

        Returns
        -------
        self : object
            Pipeline class instance.
        """
        self._set_params("steps", **kwargs)
        return self

    def _validate_steps(self):
        names, estimators = zip(*self.steps)

        # validate names
        self._validate_names(names)

        # validate estimators
        transformers = estimators[:-1]
        estimator = estimators[-1]

        for t in transformers:
            if t is None or t == "passthrough":
                continue
            if not (hasattr(t, "fit") or hasattr(t, "fit_transform")) or not hasattr(
                t, "transform"
            ):
                raise TypeError(
                    "All intermediate steps should be "
                    "transformers and implement fit and transform "
                    "or be the string 'passthrough' "
                    "'%s' (type %s) doesn't" % (t, type(t))
                )

        # We allow last estimator to be None as an identity transformation
        if (
            estimator is not None
            and estimator != "passthrough"
            and not hasattr(estimator, "fit")
        ):
            raise TypeError(
                "Last step of Pipeline should implement fit "
                "or be the string 'passthrough'. "
                "'%s' (type %s) doesn't" % (estimator, type(estimator))
            )

    def _iter(self, with_final=True, filter_passthrough=True):
        """
        Generate (idx, (name, trans)) tuples from self.steps

        When filter_passthrough is True, 'passthrough' and None transformers
        are filtered out.
        """
        stop = len(self.steps)
        if not with_final:
            stop -= 1

        for idx, (name, trans) in enumerate(islice(self.steps, 0, stop)):
            if not filter_passthrough:
                yield idx, name, trans
            elif trans is not None and trans != "passthrough":
                yield idx, name, trans

    def __len__(self):
        """
        Returns the length of the Pipeline
        """
        return len(self.steps)

    def __getitem__(self, ind):
        """Returns a sub-pipeline or a single estimator in the pipeline

        Indexing with an integer will return an estimator; using a slice
        returns another Pipeline instance which copies a slice of this
        Pipeline. This copy is shallow: modifying (or fitting) estimators in
        the sub-pipeline will affect the larger pipeline and vice-versa.
        However, replacing a value in `step` will not affect a copy.
        """
        if isinstance(ind, slice):
            if ind.step not in (1, None):
                raise ValueError("Pipeline slicing only supports a step of 1")
            return self.__class__(
                self.steps[ind], memory=self.memory, verbose=self.verbose
            )
        try:
            name, est = self.steps[ind]
        except TypeError:
            # Not an int, try get step by name
            return self.named_steps[ind]
        return est

    @property
    def _estimator_type(self):
        return self.steps[-1][1]._estimator_type

    @property
    def named_steps(self):
        """Access the steps by name.

        Read-only attribute to access any step by given name.
        Keys are steps names and values are the steps objects."""
        # Use Bunch object to improve autocomplete
        return Bunch(**dict(self.steps))

    @property
    def _final_estimator(self):
        estimator = self.steps[-1][1]
        return "passthrough" if estimator is None else estimator

    def _log_message(self, step_idx):
        if not self.verbose:
            return None
        name, _ = self.steps[step_idx]

        return "(step %d of %d) Processing %s" % (step_idx + 1, len(self.steps), name)

    def _check_fit_params(self, **fit_params):
        fit_params_steps = {name: {} for name, step in self.steps if step is not None}
        for pname, pval in fit_params.items():
            if "__" not in pname:
                raise ValueError(
                    "Pipeline.fit does not accept the {} parameter. "
                    "You can pass parameters to specific steps of your "
                    "pipeline using the stepname__parameter format, e.g. "
                    "`Pipeline.fit(X, y, logisticregression__sample_weight"
                    "=sample_weight)`.".format(pname)
                )
            step, param = pname.split("__", 1)
            fit_params_steps[step][param] = pval
        return fit_params_steps

    # Estimator interface

    def _fit(self, X, y=None, **fit_params_steps):
        # shallow copy of steps - this should really be steps_
        self.steps = list(self.steps)
        self._validate_steps()
        # Setup the memory
        memory = check_memory(self.memory)

        fit_transform_one_cached = memory.cache(_fit_transform_one)

        for step_idx, name, transformer in self._iter(
            with_final=False, filter_passthrough=False
        ):
            if transformer is None or transformer == "passthrough":
                with _print_elapsed_time("Pipeline", self._log_message(step_idx)):
                    continue

            if hasattr(memory, "location") and memory.location is None:
                # we do not clone when caching is disabled to
                # preserve backward compatibility
                cloned_transformer = transformer
            else:
                cloned_transformer = clone(transformer)
            # Fit or load from cache the current transformer
            X, fitted_transformer = fit_transform_one_cached(
                cloned_transformer,
                X,
                y,
                None,
                message_clsname="Pipeline",
                message=self._log_message(step_idx),
                **fit_params_steps[name],
            )
            # Replace the transformer of the step with the fitted
            # transformer. This is necessary when loading the transformer
            # from the cache.
            self.steps[step_idx] = (name, fitted_transformer)
        return X

    def fit(self, X, y=None, **fit_params):
        """Fit the model.

        Fit all the transformers one after the other and transform the
        data. Finally, fit the transformed data using the final estimator.

        Parameters
        ----------
        X : iterable
            Training data. Must fulfill input requirements of first step of the
            pipeline.

        y : iterable, default=None
            Training targets. Must fulfill label requirements for all steps of
            the pipeline.

        **fit_params : dict of string -> object
            Parameters passed to the ``fit`` method of each step, where
            each parameter name is prefixed such that parameter ``p`` for step
            ``s`` has key ``s__p``.

        Returns
        -------
        self : object
            Pipeline with fitted steps.
        """
        fit_params_steps = self._check_fit_params(**fit_params)
        Xt = self._fit(X, y, **fit_params_steps)
        with _print_elapsed_time("Pipeline", self._log_message(len(self.steps) - 1)):
            if self._final_estimator != "passthrough":
                fit_params_last_step = fit_params_steps[self.steps[-1][0]]
                self._final_estimator.fit(Xt, y, **fit_params_last_step)

        return self

    def fit_transform(self, X, y=None, **fit_params):
        """Fit the model and transform with the final estimator.

        Fits all the transformers one after the other and transform the
        data. Then uses `fit_transform` on transformed data with the final
        estimator.

        Parameters
        ----------
        X : iterable
            Training data. Must fulfill input requirements of first step of the
            pipeline.

        y : iterable, default=None
            Training targets. Must fulfill label requirements for all steps of
            the pipeline.

        **fit_params : dict of string -> object
            Parameters passed to the ``fit`` method of each step, where
            each parameter name is prefixed such that parameter ``p`` for step
            ``s`` has key ``s__p``.

        Returns
        -------
        Xt : ndarray of shape (n_samples, n_transformed_features)
            Transformed samples.
        """
        fit_params_steps = self._check_fit_params(**fit_params)
        Xt = self._fit(X, y, **fit_params_steps)

        last_step = self._final_estimator
        with _print_elapsed_time("Pipeline", self._log_message(len(self.steps) - 1)):
            if last_step == "passthrough":
                return Xt
            fit_params_last_step = fit_params_steps[self.steps[-1][0]]
            if hasattr(last_step, "fit_transform"):
                return last_step.fit_transform(Xt, y, **fit_params_last_step)
            else:
                return last_step.fit(Xt, y, **fit_params_last_step).transform(Xt)

    @available_if(_final_estimator_has("predict"))
    def predict(self, X, **predict_params):
        """Transform the data, and apply `predict` with the final estimator.

        Call `transform` of each transformer in the pipeline. The transformed
        data are finally passed to the final estimator that calls `predict`
        method. Only valid if the final estimator implements `predict`.

        Parameters
        ----------
        X : iterable
            Data to predict on. Must fulfill input requirements of first step
            of the pipeline.

        **predict_params : dict of string -> object
            Parameters to the ``predict`` called at the end of all
            transformations in the pipeline. Note that while this may be
            used to return uncertainties from some models with return_std
            or return_cov, uncertainties that are generated by the
            transformations in the pipeline are not propagated to the
            final estimator.

            .. versionadded:: 0.20

        Returns
        -------
        y_pred : ndarray
            Result of calling `predict` on the final estimator.
        """
        Xt = X
        for _, name, transform in self._iter(with_final=False):
            Xt = transform.transform(Xt)
        return self.steps[-1][1].predict(Xt, **predict_params)

    @available_if(_final_estimator_has("fit_predict"))
    def fit_predict(self, X, y=None, **fit_params):
        """Transform the data, and apply `fit_predict` with the final estimator.

        Call `fit_transform` of each transformer in the pipeline. The
        transformed data are finally passed to the final estimator that calls
        `fit_predict` method. Only valid if the final estimator implements
        `fit_predict`.

        Parameters
        ----------
        X : iterable
            Training data. Must fulfill input requirements of first step of
            the pipeline.

        y : iterable, default=None
            Training targets. Must fulfill label requirements for all steps
            of the pipeline.

        **fit_params : dict of string -> object
            Parameters passed to the ``fit`` method of each step, where
            each parameter name is prefixed such that parameter ``p`` for step
            ``s`` has key ``s__p``.

        Returns
        -------
        y_pred : ndarray
            Result of calling `fit_predict` on the final estimator.
        """
        fit_params_steps = self._check_fit_params(**fit_params)
        Xt = self._fit(X, y, **fit_params_steps)

        fit_params_last_step = fit_params_steps[self.steps[-1][0]]
        with _print_elapsed_time("Pipeline", self._log_message(len(self.steps) - 1)):
            y_pred = self.steps[-1][1].fit_predict(Xt, y, **fit_params_last_step)
        return y_pred

    @available_if(_final_estimator_has("predict_proba"))
    def predict_proba(self, X, **predict_proba_params):
        """Transform the data, and apply `predict_proba` with the final estimator.

        Call `transform` of each transformer in the pipeline. The transformed
        data are finally passed to the final estimator that calls
        `predict_proba` method. Only valid if the final estimator implements
        `predict_proba`.

        Parameters
        ----------
        X : iterable
            Data to predict on. Must fulfill input requirements of first step
            of the pipeline.

        **predict_proba_params : dict of string -> object
            Parameters to the `predict_proba` called at the end of all
            transformations in the pipeline.

        Returns
        -------
        y_proba : ndarray of shape (n_samples, n_classes)
            Result of calling `predict_proba` on the final estimator.
        """
        Xt = X
        for _, name, transform in self._iter(with_final=False):
            Xt = transform.transform(Xt)
        return self.steps[-1][1].predict_proba(Xt, **predict_proba_params)

    @available_if(_final_estimator_has("decision_function"))
    def decision_function(self, X):
        """Transform the data, and apply `decision_function` with the final estimator.

        Call `transform` of each transformer in the pipeline. The transformed
        data are finally passed to the final estimator that calls
        `decision_function` method. Only valid if the final estimator
        implements `decision_function`.

        Parameters
        ----------
        X : iterable
            Data to predict on. Must fulfill input requirements of first step
            of the pipeline.

        Returns
        -------
        y_score : ndarray of shape (n_samples, n_classes)
            Result of calling `decision_function` on the final estimator.
        """
        Xt = X
        for _, name, transform in self._iter(with_final=False):
            Xt = transform.transform(Xt)
        return self.steps[-1][1].decision_function(Xt)

    @available_if(_final_estimator_has("score_samples"))
    def score_samples(self, X):
        """Transform the data, and apply `score_samples` with the final estimator.

        Call `transform` of each transformer in the pipeline. The transformed
        data are finally passed to the final estimator that calls
        `score_samples` method. Only valid if the final estimator implements
        `score_samples`.

        Parameters
        ----------
        X : iterable
            Data to predict on. Must fulfill input requirements of first step
            of the pipeline.

        Returns
        -------
        y_score : ndarray of shape (n_samples,)
            Result of calling `score_samples` on the final estimator.
        """
        Xt = X
        for _, _, transformer in self._iter(with_final=False):
            Xt = transformer.transform(Xt)
        return self.steps[-1][1].score_samples(Xt)

    @available_if(_final_estimator_has("predict_log_proba"))
    def predict_log_proba(self, X, **predict_log_proba_params):
        """Transform the data, and apply `predict_log_proba` with the final estimator.

        Call `transform` of each transformer in the pipeline. The transformed
        data are finally passed to the final estimator that calls
        `predict_log_proba` method. Only valid if the final estimator
        implements `predict_log_proba`.

        Parameters
        ----------
        X : iterable
            Data to predict on. Must fulfill input requirements of first step
            of the pipeline.

        **predict_log_proba_params : dict of string -> object
            Parameters to the ``predict_log_proba`` called at the end of all
            transformations in the pipeline.

        Returns
        -------
        y_log_proba : ndarray of shape (n_samples, n_classes)
            Result of calling `predict_log_proba` on the final estimator.
        """
        Xt = X
        for _, name, transform in self._iter(with_final=False):
            Xt = transform.transform(Xt)
        return self.steps[-1][1].predict_log_proba(Xt, **predict_log_proba_params)

    def _can_transform(self):
        return self._final_estimator == "passthrough" or hasattr(
            self._final_estimator, "transform"
        )

    @available_if(_can_transform)
    def transform(self, X):
        """Transform the data, and apply `transform` with the final estimator.

        Call `transform` of each transformer in the pipeline. The transformed
        data are finally passed to the final estimator that calls
        `transform` method. Only valid if the final estimator
        implements `transform`.

        This also works where final estimator is `None` in which case all prior
        transformations are applied.

        Parameters
        ----------
        X : iterable
            Data to transform. Must fulfill input requirements of first step
            of the pipeline.

        Returns
        -------
        Xt : ndarray of shape (n_samples, n_transformed_features)
            Transformed data.
        """
        Xt = X
        for _, _, transform in self._iter():
            Xt = transform.transform(Xt)
        return Xt

    def _can_inverse_transform(self):
        return all(hasattr(t, "inverse_transform") for _, _, t in self._iter())

    @available_if(_can_inverse_transform)
    def inverse_transform(self, Xt):
        """Apply `inverse_transform` for each step in a reverse order.

        All estimators in the pipeline must support `inverse_transform`.

        Parameters
        ----------
        Xt : array-like of shape (n_samples, n_transformed_features)
            Data samples, where ``n_samples`` is the number of samples and
            ``n_features`` is the number of features. Must fulfill
            input requirements of last step of pipeline's
            ``inverse_transform`` method.

        Returns
        -------
        Xt : ndarray of shape (n_samples, n_features)
            Inverse transformed data, that is, data in the original feature
            space.
        """
        reverse_iter = reversed(list(self._iter()))
        for _, _, transform in reverse_iter:
            Xt = transform.inverse_transform(Xt)
        return Xt

    @available_if(_final_estimator_has("score"))
    def score(self, X, y=None, sample_weight=None):
        """Transform the data, and apply `score` with the final estimator.

        Call `transform` of each transformer in the pipeline. The transformed
        data are finally passed to the final estimator that calls
        `score` method. Only valid if the final estimator implements `score`.

        Parameters
        ----------
        X : iterable
            Data to predict on. Must fulfill input requirements of first step
            of the pipeline.

        y : iterable, default=None
            Targets used for scoring. Must fulfill label requirements for all
            steps of the pipeline.

        sample_weight : array-like, default=None
            If not None, this argument is passed as ``sample_weight`` keyword
            argument to the ``score`` method of the final estimator.

        Returns
        -------
        score : float
            Result of calling `score` on the final estimator.
        """
        Xt = X
        for _, name, transform in self._iter(with_final=False):
            Xt = transform.transform(Xt)
        score_params = {}
        if sample_weight is not None:
            score_params["sample_weight"] = sample_weight
        return self.steps[-1][1].score(Xt, y, **score_params)

    @property
    def classes_(self):
        """The classes labels. Only exist if the last step is a classifier."""
        return self.steps[-1][1].classes_

    def _more_tags(self):
        # check if first estimator expects pairwise input
        return {"pairwise": _safe_tags(self.steps[0][1], "pairwise")}

    def get_feature_names_out(self, input_features=None):
        """Get output feature names for transformation.

        Transform input features using the pipeline.

        Parameters
        ----------
        input_features : array-like of str or None, default=None
            Input features.

        Returns
        -------
        feature_names_out : ndarray of str objects
            Transformed feature names.
        """
        feature_names_out = input_features
        for _, name, transform in self._iter():
            if not hasattr(transform, "get_feature_names_out"):
                raise AttributeError(
                    "Estimator {} does not provide get_feature_names_out. "
                    "Did you mean to call pipeline[:-1].get_feature_names_out"
                    "()?".format(name)
                )
            feature_names_out = transform.get_feature_names_out(feature_names_out)
        return feature_names_out

    @property
    def n_features_in_(self):
        """Number of features seen during first step `fit` method."""
        # delegate to first step (which will call _check_is_fitted)
        return self.steps[0][1].n_features_in_

    @property
    def feature_names_in_(self):
        """Names of features seen during first step `fit` method."""
        # delegate to first step (which will call _check_is_fitted)
        return self.steps[0][1].feature_names_in_

    def __sklearn_is_fitted__(self):
        """Indicate whether pipeline has been fit."""
        try:
            # check if the last step of the pipeline is fitted
            # we only check the last step since if the last step is fit, it
            # means the previous steps should also be fit. This is faster than
            # checking if every step of the pipeline is fit.
            check_is_fitted(self.steps[-1][1])
            return True
        except NotFittedError:
            return False

    def _sk_visual_block_(self):
        _, estimators = zip(*self.steps)

        def _get_name(name, est):
            if est is None or est == "passthrough":
                return f"{name}: passthrough"
            # Is an estimator
            return f"{name}: {est.__class__.__name__}"

        names = [_get_name(name, est) for name, est in self.steps]
        name_details = [str(est) for est in estimators]
        return _VisualBlock(
            "serial",
            estimators,
            names=names,
            name_details=name_details,
            dash_wrapped=False,
        )


def _name_estimators(estimators):
    """Generate names for estimators."""

    names = [
        estimator if isinstance(estimator, str) else type(estimator).__name__.lower()
        for estimator in estimators
    ]
    namecount = defaultdict(int)
    for est, name in zip(estimators, names):
        namecount[name] += 1

    for k, v in list(namecount.items()):
        if v == 1:
            del namecount[k]

    for i in reversed(range(len(estimators))):
        name = names[i]
        if name in namecount:
            names[i] += "-%d" % namecount[name]
            namecount[name] -= 1

    return list(zip(names, estimators))


def make_pipeline(*steps, memory=None, verbose=False):
    """Construct a :class:`Pipeline` from the given estimators.

    This is a shorthand for the :class:`Pipeline` constructor; it does not
    require, and does not permit, naming the estimators. Instead, their names
    will be set to the lowercase of their types automatically.

    Parameters
    ----------
    *steps : list of Estimator objects
        List of the scikit-learn estimators that are chained together.

    memory : str or object with the joblib.Memory interface, default=None
        Used to cache the fitted transformers of the pipeline. By default,
        no caching is performed. If a string is given, it is the path to
        the caching directory. Enabling caching triggers a clone of
        the transformers before fitting. Therefore, the transformer
        instance given to the pipeline cannot be inspected
        directly. Use the attribute ``named_steps`` or ``steps`` to
        inspect estimators within the pipeline. Caching the
        transformers is advantageous when fitting is time consuming.

    verbose : bool, default=False
        If True, the time elapsed while fitting each step will be printed as it
        is completed.

    Returns
    -------
    p : Pipeline
        Returns a scikit-learn :class:`Pipeline` object.

    See Also
    --------
    Pipeline : Class for creating a pipeline of transforms with a final
        estimator.

    Examples
    --------
    >>> from sklearn.naive_bayes import GaussianNB
    >>> from sklearn.preprocessing import StandardScaler
    >>> from sklearn.pipeline import make_pipeline
    >>> make_pipeline(StandardScaler(), GaussianNB(priors=None))
    Pipeline(steps=[('standardscaler', StandardScaler()),
                    ('gaussiannb', GaussianNB())])
    """
    return Pipeline(_name_estimators(steps), memory=memory, verbose=verbose)


def _transform_one(transformer, X, y, weight, **fit_params):
    res = transformer.transform(X)
    # if we have a weight for this transformer, multiply output
    if weight is None:
        return res
    return res * weight


def _fit_transform_one(
    transformer, X, y, weight, message_clsname="", message=None, **fit_params
):
    """
    Fits ``transformer`` to ``X`` and ``y``. The transformed result is returned
    with the fitted transformer. If ``weight`` is not ``None``, the result will
    be multiplied by ``weight``.
    """
    with _print_elapsed_time(message_clsname, message):
        if hasattr(transformer, "fit_transform"):
            res = transformer.fit_transform(X, y, **fit_params)
        else:
            res = transformer.fit(X, y, **fit_params).transform(X)

    if weight is None:
        return res, transformer
    return res * weight, transformer


def _fit_one(transformer, X, y, weight, message_clsname="", message=None, **fit_params):
    """
    Fits ``transformer`` to ``X`` and ``y``.
    """
    with _print_elapsed_time(message_clsname, message):
        return transformer.fit(X, y, **fit_params)


class FeatureUnion(TransformerMixin, _BaseComposition):
    """Concatenates results of multiple transformer objects.

    This estimator applies a list of transformer objects in parallel to the
    input data, then concatenates the results. This is useful to combine
    several feature extraction mechanisms into a single transformer.

    Parameters of the transformers may be set using its name and the parameter
    name separated by a '__'. A transformer may be replaced entirely by
    setting the parameter with its name to another transformer, removed by
    setting to 'drop' or disabled by setting to 'passthrough' (features are
    passed without transformation).

    Read more in the :ref:`User Guide <feature_union>`.

    .. versionadded:: 0.13

    Parameters
    ----------
    transformer_list : list of (str, transformer) tuples
        List of transformer objects to be applied to the data. The first
        half of each tuple is the name of the transformer. The transformer can
        be 'drop' for it to be ignored or can be 'passthrough' for features to
        be passed unchanged.

        .. versionadded:: 1.1
           Added the option `"passthrough"`.

        .. versionchanged:: 0.22
           Deprecated `None` as a transformer in favor of 'drop'.

    n_jobs : int, default=None
        Number of jobs to run in parallel.
        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
        for more details.

        .. versionchanged:: v0.20
           `n_jobs` default changed from 1 to None

    transformer_weights : dict, default=None
        Multiplicative weights for features per transformer.
        Keys are transformer names, values the weights.
        Raises ValueError if key not present in ``transformer_list``.

    verbose : bool, default=False
        If True, the time elapsed while fitting each transformer will be
        printed as it is completed.

    Attributes
    ----------
    named_transformers : :class:`~sklearn.utils.Bunch`
        Dictionary-like object, with the following attributes.
        Read-only attribute to access any transformer parameter by user
        given name. Keys are transformer names and values are
        transformer parameters.

        .. versionadded:: 1.2

    n_features_in_ : int
        Number of features seen during :term:`fit`. Only defined if the
        underlying first transformer in `transformer_list` exposes such an
        attribute when fit.

        .. versionadded:: 0.24

    See Also
    --------
    make_union : Convenience function for simplified feature union
        construction.

    Examples
    --------
    >>> from sklearn.pipeline import FeatureUnion
    >>> from sklearn.decomposition import PCA, TruncatedSVD
    >>> union = FeatureUnion([("pca", PCA(n_components=1)),
    ...                       ("svd", TruncatedSVD(n_components=2))])
    >>> X = [[0., 1., 3], [2., 2., 5]]
    >>> union.fit_transform(X)
    array([[ 1.5       ,  3.0...,  0.8...],
           [-1.5       ,  5.7..., -0.4...]])
    """

    _required_parameters = ["transformer_list"]

    def __init__(
        self, transformer_list, *, n_jobs=None, transformer_weights=None, verbose=False
    ):
        self.transformer_list = transformer_list
        self.n_jobs = n_jobs
        self.transformer_weights = transformer_weights
        self.verbose = verbose

    def set_output(self, *, transform=None):
        """Set the output container when `"transform"` and `"fit_transform"` are called.

        `set_output` will set the output of all estimators in `transformer_list`.

        Parameters
        ----------
        transform : {"default", "pandas"}, default=None
            Configure output of `transform` and `fit_transform`.

            - `"default"`: Default output format of a transformer
            - `"pandas"`: DataFrame output
            - `None`: Transform configuration is unchanged

        Returns
        -------
        self : estimator instance
            Estimator instance.
        """
        super().set_output(transform=transform)
        for _, step, _ in self._iter():
            _safe_set_output(step, transform=transform)
        return self

    @property
    def named_transformers(self):
        # Use Bunch object to improve autocomplete
        return Bunch(**dict(self.transformer_list))

    def get_params(self, deep=True):
        """Get parameters for this estimator.

        Returns the parameters given in the constructor as well as the
        estimators contained within the `transformer_list` of the
        `FeatureUnion`.

        Parameters
        ----------
        deep : bool, default=True
            If True, will return the parameters for this estimator and
            contained subobjects that are estimators.

        Returns
        -------
        params : mapping of string to any
            Parameter names mapped to their values.
        """
        return self._get_params("transformer_list", deep=deep)

    def set_params(self, **kwargs):
        """Set the parameters of this estimator.

        Valid parameter keys can be listed with ``get_params()``. Note that
        you can directly set the parameters of the estimators contained in
        `transformer_list`.

        Parameters
        ----------
        **kwargs : dict
            Parameters of this estimator or parameters of estimators contained
            in `transform_list`. Parameters of the transformers may be set
            using its name and the parameter name separated by a '__'.

        Returns
        -------
        self : object
            FeatureUnion class instance.
        """
        self._set_params("transformer_list", **kwargs)
        return self

    def _validate_transformers(self):
        names, transformers = zip(*self.transformer_list)

        # validate names
        self._validate_names(names)

        # validate estimators
        for t in transformers:
            if t in ("drop", "passthrough"):
                continue
            if not (hasattr(t, "fit") or hasattr(t, "fit_transform")) or not hasattr(
                t, "transform"
            ):
                raise TypeError(
                    "All estimators should implement fit and "
                    "transform. '%s' (type %s) doesn't" % (t, type(t))
                )

    def _validate_transformer_weights(self):
        if not self.transformer_weights:
            return

        transformer_names = set(name for name, _ in self.transformer_list)
        for name in self.transformer_weights:
            if name not in transformer_names:
                raise ValueError(
                    f'Attempting to weight transformer "{name}", '
                    "but it is not present in transformer_list."
                )

    def _iter(self):
        """
        Generate (name, trans, weight) tuples excluding None and
        'drop' transformers.
        """

        get_weight = (self.transformer_weights or {}).get

        for name, trans in self.transformer_list:
            if trans == "drop":
                continue
            if trans == "passthrough":
                trans = FunctionTransformer(feature_names_out="one-to-one")
            yield (name, trans, get_weight(name))

    def get_feature_names_out(self, input_features=None):
        """Get output feature names for transformation.

        Parameters
        ----------
        input_features : array-like of str or None, default=None
            Input features.

        Returns
        -------
        feature_names_out : ndarray of str objects
            Transformed feature names.
        """
        feature_names = []
        for name, trans, _ in self._iter():
            if not hasattr(trans, "get_feature_names_out"):
                raise AttributeError(
                    "Transformer %s (type %s) does not provide get_feature_names_out."
                    % (str(name), type(trans).__name__)
                )
            feature_names.extend(
                [f"{name}__{f}" for f in trans.get_feature_names_out(input_features)]
            )
        return np.asarray(feature_names, dtype=object)

    def fit(self, X, y=None, **fit_params):
        """Fit all transformers using X.

        Parameters
        ----------
        X : iterable or array-like, depending on transformers
            Input data, used to fit transformers.

        y : array-like of shape (n_samples, n_outputs), default=None
            Targets for supervised learning.

        **fit_params : dict, default=None
            Parameters to pass to the fit method of the estimator.

        Returns
        -------
        self : object
            FeatureUnion class instance.
        """
        transformers = self._parallel_func(X, y, fit_params, _fit_one)
        if not transformers:
            # All transformers are None
            return self

        self._update_transformer_list(transformers)
        return self

    def fit_transform(self, X, y=None, **fit_params):
        """Fit all transformers, transform the data and concatenate results.

        Parameters
        ----------
        X : iterable or array-like, depending on transformers
            Input data to be transformed.

        y : array-like of shape (n_samples, n_outputs), default=None
            Targets for supervised learning.

        **fit_params : dict, default=None
            Parameters to pass to the fit method of the estimator.

        Returns
        -------
        X_t : array-like or sparse matrix of \
                shape (n_samples, sum_n_components)
            The `hstack` of results of transformers. `sum_n_components` is the
            sum of `n_components` (output dimension) over transformers.
        """
        results = self._parallel_func(X, y, fit_params, _fit_transform_one)
        if not results:
            # All transformers are None
            return np.zeros((X.shape[0], 0))

        Xs, transformers = zip(*results)
        self._update_transformer_list(transformers)

        return self._hstack(Xs)

    def _log_message(self, name, idx, total):
        if not self.verbose:
            return None
        return "(step %d of %d) Processing %s" % (idx, total, name)

    def _parallel_func(self, X, y, fit_params, func):
        """Runs func in parallel on X and y"""
        self.transformer_list = list(self.transformer_list)
        self._validate_transformers()
        self._validate_transformer_weights()
        transformers = list(self._iter())

        return Parallel(n_jobs=self.n_jobs)(
            delayed(func)(
                transformer,
                X,
                y,
                weight,
                message_clsname="FeatureUnion",
                message=self._log_message(name, idx, len(transformers)),
                **fit_params,
            )
            for idx, (name, transformer, weight) in enumerate(transformers, 1)
        )

    def transform(self, X):
        """Transform X separately by each transformer, concatenate results.

        Parameters
        ----------
        X : iterable or array-like, depending on transformers
            Input data to be transformed.

        Returns
        -------
        X_t : array-like or sparse matrix of \
                shape (n_samples, sum_n_components)
            The `hstack` of results of transformers. `sum_n_components` is the
            sum of `n_components` (output dimension) over transformers.
        """
        Xs = Parallel(n_jobs=self.n_jobs)(
            delayed(_transform_one)(trans, X, None, weight)
            for name, trans, weight in self._iter()
        )
        if not Xs:
            # All transformers are None
            return np.zeros((X.shape[0], 0))

        return self._hstack(Xs)

    def _hstack(self, Xs):
        config = _get_output_config("transform", self)
        if config["dense"] == "pandas" and all(hasattr(X, "iloc") for X in Xs):
            pd = check_pandas_support("transform")
            return pd.concat(Xs, axis=1)

        if any(sparse.issparse(f) for f in Xs):
            Xs = sparse.hstack(Xs).tocsr()
        else:
            Xs = np.hstack(Xs)
        return Xs

    def _update_transformer_list(self, transformers):
        transformers = iter(transformers)
        self.transformer_list[:] = [
            (name, old if old == "drop" else next(transformers))
            for name, old in self.transformer_list
        ]

    @property
    def n_features_in_(self):
        """Number of features seen during :term:`fit`."""

        # X is passed to all transformers so we just delegate to the first one
        return self.transformer_list[0][1].n_features_in_

    def __sklearn_is_fitted__(self):
        # Delegate whether feature union was fitted
        for _, transformer, _ in self._iter():
            check_is_fitted(transformer)
        return True

    def _sk_visual_block_(self):
        names, transformers = zip(*self.transformer_list)
        return _VisualBlock("parallel", transformers, names=names)


def make_union(*transformers, n_jobs=None, verbose=False):
    """Construct a FeatureUnion from the given transformers.

    This is a shorthand for the FeatureUnion constructor; it does not require,
    and does not permit, naming the transformers. Instead, they will be given
    names automatically based on their types. It also does not allow weighting.

    Parameters
    ----------
    *transformers : list of estimators
        One or more estimators.

    n_jobs : int, default=None
        Number of jobs to run in parallel.
        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
        for more details.

        .. versionchanged:: v0.20
           `n_jobs` default changed from 1 to None.

    verbose : bool, default=False
        If True, the time elapsed while fitting each transformer will be
        printed as it is completed.

    Returns
    -------
    f : FeatureUnion
        A :class:`FeatureUnion` object for concatenating the results of multiple
        transformer objects.

    See Also
    --------
    FeatureUnion : Class for concatenating the results of multiple transformer
        objects.

    Examples
    --------
    >>> from sklearn.decomposition import PCA, TruncatedSVD
    >>> from sklearn.pipeline import make_union
    >>> make_union(PCA(), TruncatedSVD())
     FeatureUnion(transformer_list=[('pca', PCA()),
                                   ('truncatedsvd', TruncatedSVD())])
    """
    return FeatureUnion(_name_estimators(transformers), n_jobs=n_jobs, verbose=verbose)