1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
|
import warnings
import numpy as np
from ..base import BaseEstimator, TransformerMixin
from ..utils.metaestimators import available_if
from ..utils.validation import (
_allclose_dense_sparse,
_check_feature_names_in,
check_array,
)
from ..utils._param_validation import StrOptions
def _identity(X):
"""The identity function."""
return X
class FunctionTransformer(TransformerMixin, BaseEstimator):
"""Constructs a transformer from an arbitrary callable.
A FunctionTransformer forwards its X (and optionally y) arguments to a
user-defined function or function object and returns the result of this
function. This is useful for stateless transformations such as taking the
log of frequencies, doing custom scaling, etc.
Note: If a lambda is used as the function, then the resulting
transformer will not be pickleable.
.. versionadded:: 0.17
Read more in the :ref:`User Guide <function_transformer>`.
Parameters
----------
func : callable, default=None
The callable to use for the transformation. This will be passed
the same arguments as transform, with args and kwargs forwarded.
If func is None, then func will be the identity function.
inverse_func : callable, default=None
The callable to use for the inverse transformation. This will be
passed the same arguments as inverse transform, with args and
kwargs forwarded. If inverse_func is None, then inverse_func
will be the identity function.
validate : bool, default=False
Indicate that the input X array should be checked before calling
``func``. The possibilities are:
- If False, there is no input validation.
- If True, then X will be converted to a 2-dimensional NumPy array or
sparse matrix. If the conversion is not possible an exception is
raised.
.. versionchanged:: 0.22
The default of ``validate`` changed from True to False.
accept_sparse : bool, default=False
Indicate that func accepts a sparse matrix as input. If validate is
False, this has no effect. Otherwise, if accept_sparse is false,
sparse matrix inputs will cause an exception to be raised.
check_inverse : bool, default=True
Whether to check that or ``func`` followed by ``inverse_func`` leads to
the original inputs. It can be used for a sanity check, raising a
warning when the condition is not fulfilled.
.. versionadded:: 0.20
feature_names_out : callable, 'one-to-one' or None, default=None
Determines the list of feature names that will be returned by the
`get_feature_names_out` method. If it is 'one-to-one', then the output
feature names will be equal to the input feature names. If it is a
callable, then it must take two positional arguments: this
`FunctionTransformer` (`self`) and an array-like of input feature names
(`input_features`). It must return an array-like of output feature
names. The `get_feature_names_out` method is only defined if
`feature_names_out` is not None.
See ``get_feature_names_out`` for more details.
.. versionadded:: 1.1
kw_args : dict, default=None
Dictionary of additional keyword arguments to pass to func.
.. versionadded:: 0.18
inv_kw_args : dict, default=None
Dictionary of additional keyword arguments to pass to inverse_func.
.. versionadded:: 0.18
Attributes
----------
n_features_in_ : int
Number of features seen during :term:`fit`.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X` has feature
names that are all strings.
.. versionadded:: 1.0
See Also
--------
MaxAbsScaler : Scale each feature by its maximum absolute value.
StandardScaler : Standardize features by removing the mean and
scaling to unit variance.
LabelBinarizer : Binarize labels in a one-vs-all fashion.
MultiLabelBinarizer : Transform between iterable of iterables
and a multilabel format.
Examples
--------
>>> import numpy as np
>>> from sklearn.preprocessing import FunctionTransformer
>>> transformer = FunctionTransformer(np.log1p)
>>> X = np.array([[0, 1], [2, 3]])
>>> transformer.transform(X)
array([[0. , 0.6931...],
[1.0986..., 1.3862...]])
"""
_parameter_constraints: dict = {
"func": [callable, None],
"inverse_func": [callable, None],
"validate": ["boolean"],
"accept_sparse": ["boolean"],
"check_inverse": ["boolean"],
"feature_names_out": [callable, StrOptions({"one-to-one"}), None],
"kw_args": [dict, None],
"inv_kw_args": [dict, None],
}
def __init__(
self,
func=None,
inverse_func=None,
*,
validate=False,
accept_sparse=False,
check_inverse=True,
feature_names_out=None,
kw_args=None,
inv_kw_args=None,
):
self.func = func
self.inverse_func = inverse_func
self.validate = validate
self.accept_sparse = accept_sparse
self.check_inverse = check_inverse
self.feature_names_out = feature_names_out
self.kw_args = kw_args
self.inv_kw_args = inv_kw_args
def _check_input(self, X, *, reset):
if self.validate:
return self._validate_data(X, accept_sparse=self.accept_sparse, reset=reset)
elif reset:
# Set feature_names_in_ and n_features_in_ even if validate=False
# We run this only when reset==True to store the attributes but not
# validate them, because validate=False
self._check_n_features(X, reset=reset)
self._check_feature_names(X, reset=reset)
return X
def _check_inverse_transform(self, X):
"""Check that func and inverse_func are the inverse."""
idx_selected = slice(None, None, max(1, X.shape[0] // 100))
X_round_trip = self.inverse_transform(self.transform(X[idx_selected]))
if hasattr(X, "dtype"):
dtypes = [X.dtype]
elif hasattr(X, "dtypes"):
# Dataframes can have multiple dtypes
dtypes = X.dtypes
if not all(np.issubdtype(d, np.number) for d in dtypes):
raise ValueError(
"'check_inverse' is only supported when all the elements in `X` is"
" numerical."
)
if not _allclose_dense_sparse(X[idx_selected], X_round_trip):
warnings.warn(
"The provided functions are not strictly"
" inverse of each other. If you are sure you"
" want to proceed regardless, set"
" 'check_inverse=False'.",
UserWarning,
)
def fit(self, X, y=None):
"""Fit transformer by checking X.
If ``validate`` is ``True``, ``X`` will be checked.
Parameters
----------
X : array-like, shape (n_samples, n_features)
Input array.
y : Ignored
Not used, present here for API consistency by convention.
Returns
-------
self : object
FunctionTransformer class instance.
"""
self._validate_params()
X = self._check_input(X, reset=True)
if self.check_inverse and not (self.func is None or self.inverse_func is None):
self._check_inverse_transform(X)
return self
def transform(self, X):
"""Transform X using the forward function.
Parameters
----------
X : array-like, shape (n_samples, n_features)
Input array.
Returns
-------
X_out : array-like, shape (n_samples, n_features)
Transformed input.
"""
X = self._check_input(X, reset=False)
return self._transform(X, func=self.func, kw_args=self.kw_args)
def inverse_transform(self, X):
"""Transform X using the inverse function.
Parameters
----------
X : array-like, shape (n_samples, n_features)
Input array.
Returns
-------
X_out : array-like, shape (n_samples, n_features)
Transformed input.
"""
if self.validate:
X = check_array(X, accept_sparse=self.accept_sparse)
return self._transform(X, func=self.inverse_func, kw_args=self.inv_kw_args)
@available_if(lambda self: self.feature_names_out is not None)
def get_feature_names_out(self, input_features=None):
"""Get output feature names for transformation.
This method is only defined if `feature_names_out` is not None.
Parameters
----------
input_features : array-like of str or None, default=None
Input feature names.
- If `input_features` is None, then `feature_names_in_` is
used as the input feature names. If `feature_names_in_` is not
defined, then names are generated:
`[x0, x1, ..., x(n_features_in_ - 1)]`.
- If `input_features` is array-like, then `input_features` must
match `feature_names_in_` if `feature_names_in_` is defined.
Returns
-------
feature_names_out : ndarray of str objects
Transformed feature names.
- If `feature_names_out` is 'one-to-one', the input feature names
are returned (see `input_features` above). This requires
`feature_names_in_` and/or `n_features_in_` to be defined, which
is done automatically if `validate=True`. Alternatively, you can
set them in `func`.
- If `feature_names_out` is a callable, then it is called with two
arguments, `self` and `input_features`, and its return value is
returned by this method.
"""
if hasattr(self, "n_features_in_") or input_features is not None:
input_features = _check_feature_names_in(self, input_features)
if self.feature_names_out == "one-to-one":
names_out = input_features
elif callable(self.feature_names_out):
names_out = self.feature_names_out(self, input_features)
else:
raise ValueError(
f"feature_names_out={self.feature_names_out!r} is invalid. "
'It must either be "one-to-one" or a callable with two '
"arguments: the function transformer and an array-like of "
"input feature names. The callable must return an array-like "
"of output feature names."
)
return np.asarray(names_out, dtype=object)
def _transform(self, X, func=None, kw_args=None):
if func is None:
func = _identity
return func(X, **(kw_args if kw_args else {}))
def __sklearn_is_fitted__(self):
"""Return True since FunctionTransfomer is stateless."""
return True
def _more_tags(self):
return {"no_validation": not self.validate, "stateless": True}
def set_output(self, *, transform=None):
"""Set output container.
See :ref:`sphx_glr_auto_examples_miscellaneous_plot_set_output.py`
for an example on how to use the API.
Parameters
----------
transform : {"default", "pandas"}, default=None
Configure output of `transform` and `fit_transform`.
- `"default"`: Default output format of a transformer
- `"pandas"`: DataFrame output
- `None`: Transform configuration is unchanged
Returns
-------
self : estimator instance
Estimator instance.
"""
if hasattr(super(), "set_output"):
return super().set_output(transform=transform)
if transform == "pandas" and self.feature_names_out is None:
warnings.warn(
'With transform="pandas", `func` should return a DataFrame to follow'
" the set_output API."
)
return self
|