File: test_function_transformer.py

package info (click to toggle)
scikit-learn 1.2.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 23,280 kB
  • sloc: python: 184,491; cpp: 5,783; ansic: 854; makefile: 307; sh: 45; javascript: 1
file content (466 lines) | stat: -rw-r--r-- 14,975 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
import warnings

import pytest
import numpy as np
from scipy import sparse
from sklearn.utils import _safe_indexing

from sklearn.preprocessing import FunctionTransformer
from sklearn.pipeline import make_pipeline
from sklearn.utils._testing import (
    assert_array_equal,
    assert_allclose_dense_sparse,
    _convert_container,
)


def _make_func(args_store, kwargs_store, func=lambda X, *a, **k: X):
    def _func(X, *args, **kwargs):
        args_store.append(X)
        args_store.extend(args)
        kwargs_store.update(kwargs)
        return func(X)

    return _func


def test_delegate_to_func():
    # (args|kwargs)_store will hold the positional and keyword arguments
    # passed to the function inside the FunctionTransformer.
    args_store = []
    kwargs_store = {}
    X = np.arange(10).reshape((5, 2))
    assert_array_equal(
        FunctionTransformer(_make_func(args_store, kwargs_store)).transform(X),
        X,
        "transform should have returned X unchanged",
    )

    # The function should only have received X.
    assert args_store == [
        X
    ], "Incorrect positional arguments passed to func: {args}".format(args=args_store)

    assert (
        not kwargs_store
    ), "Unexpected keyword arguments passed to func: {args}".format(args=kwargs_store)

    # reset the argument stores.
    args_store[:] = []
    kwargs_store.clear()
    transformed = FunctionTransformer(
        _make_func(args_store, kwargs_store),
    ).transform(X)

    assert_array_equal(
        transformed, X, err_msg="transform should have returned X unchanged"
    )

    # The function should have received X
    assert args_store == [
        X
    ], "Incorrect positional arguments passed to func: {args}".format(args=args_store)

    assert (
        not kwargs_store
    ), "Unexpected keyword arguments passed to func: {args}".format(args=kwargs_store)


def test_np_log():
    X = np.arange(10).reshape((5, 2))

    # Test that the numpy.log example still works.
    assert_array_equal(
        FunctionTransformer(np.log1p).transform(X),
        np.log1p(X),
    )


def test_kw_arg():
    X = np.linspace(0, 1, num=10).reshape((5, 2))

    F = FunctionTransformer(np.around, kw_args=dict(decimals=3))

    # Test that rounding is correct
    assert_array_equal(F.transform(X), np.around(X, decimals=3))


def test_kw_arg_update():
    X = np.linspace(0, 1, num=10).reshape((5, 2))

    F = FunctionTransformer(np.around, kw_args=dict(decimals=3))

    F.kw_args["decimals"] = 1

    # Test that rounding is correct
    assert_array_equal(F.transform(X), np.around(X, decimals=1))


def test_kw_arg_reset():
    X = np.linspace(0, 1, num=10).reshape((5, 2))

    F = FunctionTransformer(np.around, kw_args=dict(decimals=3))

    F.kw_args = dict(decimals=1)

    # Test that rounding is correct
    assert_array_equal(F.transform(X), np.around(X, decimals=1))


def test_inverse_transform():
    X = np.array([1, 4, 9, 16]).reshape((2, 2))

    # Test that inverse_transform works correctly
    F = FunctionTransformer(
        func=np.sqrt,
        inverse_func=np.around,
        inv_kw_args=dict(decimals=3),
    )
    assert_array_equal(
        F.inverse_transform(F.transform(X)),
        np.around(np.sqrt(X), decimals=3),
    )


def test_check_inverse():
    X_dense = np.array([1, 4, 9, 16], dtype=np.float64).reshape((2, 2))

    X_list = [X_dense, sparse.csr_matrix(X_dense), sparse.csc_matrix(X_dense)]

    for X in X_list:
        if sparse.issparse(X):
            accept_sparse = True
        else:
            accept_sparse = False
        trans = FunctionTransformer(
            func=np.sqrt,
            inverse_func=np.around,
            accept_sparse=accept_sparse,
            check_inverse=True,
            validate=True,
        )
        warning_message = (
            "The provided functions are not strictly"
            " inverse of each other. If you are sure you"
            " want to proceed regardless, set"
            " 'check_inverse=False'."
        )
        with pytest.warns(UserWarning, match=warning_message):
            trans.fit(X)

        trans = FunctionTransformer(
            func=np.expm1,
            inverse_func=np.log1p,
            accept_sparse=accept_sparse,
            check_inverse=True,
            validate=True,
        )
        with warnings.catch_warnings():
            warnings.simplefilter("error", UserWarning)
            Xt = trans.fit_transform(X)

        assert_allclose_dense_sparse(X, trans.inverse_transform(Xt))

    # check that we don't check inverse when one of the func or inverse is not
    # provided.
    trans = FunctionTransformer(
        func=np.expm1, inverse_func=None, check_inverse=True, validate=True
    )
    with warnings.catch_warnings():
        warnings.simplefilter("error", UserWarning)
        trans.fit(X_dense)
    trans = FunctionTransformer(
        func=None, inverse_func=np.expm1, check_inverse=True, validate=True
    )
    with warnings.catch_warnings():
        warnings.simplefilter("error", UserWarning)
        trans.fit(X_dense)


def test_function_transformer_frame():
    pd = pytest.importorskip("pandas")
    X_df = pd.DataFrame(np.random.randn(100, 10))
    transformer = FunctionTransformer()
    X_df_trans = transformer.fit_transform(X_df)
    assert hasattr(X_df_trans, "loc")


@pytest.mark.parametrize("X_type", ["array", "series"])
def test_function_transformer_raise_error_with_mixed_dtype(X_type):
    """Check that `FunctionTransformer.check_inverse` raises error on mixed dtype."""
    mapping = {"one": 1, "two": 2, "three": 3, 5: "five", 6: "six"}
    inverse_mapping = {value: key for key, value in mapping.items()}
    dtype = "object"

    data = ["one", "two", "three", "one", "one", 5, 6]
    data = _convert_container(data, X_type, columns_name=["value"], dtype=dtype)

    def func(X):
        return np.array(
            [mapping[_safe_indexing(X, i)] for i in range(X.size)], dtype=object
        )

    def inverse_func(X):
        return _convert_container(
            [inverse_mapping[x] for x in X],
            X_type,
            columns_name=["value"],
            dtype=dtype,
        )

    transformer = FunctionTransformer(
        func=func, inverse_func=inverse_func, validate=False, check_inverse=True
    )

    msg = "'check_inverse' is only supported when all the elements in `X` is numerical."
    with pytest.raises(ValueError, match=msg):
        transformer.fit(data)


def test_function_transformer_support_all_nummerical_dataframes_check_inverse_True():
    """Check support for dataframes with only numerical values."""
    pd = pytest.importorskip("pandas")

    df = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
    transformer = FunctionTransformer(
        func=lambda x: x + 2, inverse_func=lambda x: x - 2, check_inverse=True
    )

    # Does not raise an error
    df_out = transformer.fit_transform(df)
    assert_allclose_dense_sparse(df_out, df + 2)


def test_function_transformer_with_dataframe_and_check_inverse_True():
    """Check error is raised when check_inverse=True.

    Non-regresion test for gh-25261.
    """
    pd = pytest.importorskip("pandas")
    transformer = FunctionTransformer(
        func=lambda x: x, inverse_func=lambda x: x, check_inverse=True
    )

    df_mixed = pd.DataFrame({"a": [1, 2, 3], "b": ["a", "b", "c"]})
    msg = "'check_inverse' is only supported when all the elements in `X` is numerical."
    with pytest.raises(ValueError, match=msg):
        transformer.fit(df_mixed)


@pytest.mark.parametrize(
    "X, feature_names_out, input_features, expected",
    [
        (
            # NumPy inputs, default behavior: generate names
            np.random.rand(100, 3),
            "one-to-one",
            None,
            ("x0", "x1", "x2"),
        ),
        (
            # Pandas input, default behavior: use input feature names
            {"a": np.random.rand(100), "b": np.random.rand(100)},
            "one-to-one",
            None,
            ("a", "b"),
        ),
        (
            # NumPy input, feature_names_out=callable
            np.random.rand(100, 3),
            lambda transformer, input_features: ("a", "b"),
            None,
            ("a", "b"),
        ),
        (
            # Pandas input, feature_names_out=callable
            {"a": np.random.rand(100), "b": np.random.rand(100)},
            lambda transformer, input_features: ("c", "d", "e"),
            None,
            ("c", "d", "e"),
        ),
        (
            # NumPy input, feature_names_out=callable – default input_features
            np.random.rand(100, 3),
            lambda transformer, input_features: tuple(input_features) + ("a",),
            None,
            ("x0", "x1", "x2", "a"),
        ),
        (
            # Pandas input, feature_names_out=callable – default input_features
            {"a": np.random.rand(100), "b": np.random.rand(100)},
            lambda transformer, input_features: tuple(input_features) + ("c",),
            None,
            ("a", "b", "c"),
        ),
        (
            # NumPy input, input_features=list of names
            np.random.rand(100, 3),
            "one-to-one",
            ("a", "b", "c"),
            ("a", "b", "c"),
        ),
        (
            # Pandas input, input_features=list of names
            {"a": np.random.rand(100), "b": np.random.rand(100)},
            "one-to-one",
            ("a", "b"),  # must match feature_names_in_
            ("a", "b"),
        ),
        (
            # NumPy input, feature_names_out=callable, input_features=list
            np.random.rand(100, 3),
            lambda transformer, input_features: tuple(input_features) + ("d",),
            ("a", "b", "c"),
            ("a", "b", "c", "d"),
        ),
        (
            # Pandas input, feature_names_out=callable, input_features=list
            {"a": np.random.rand(100), "b": np.random.rand(100)},
            lambda transformer, input_features: tuple(input_features) + ("c",),
            ("a", "b"),  # must match feature_names_in_
            ("a", "b", "c"),
        ),
    ],
)
@pytest.mark.parametrize("validate", [True, False])
def test_function_transformer_get_feature_names_out(
    X, feature_names_out, input_features, expected, validate
):
    if isinstance(X, dict):
        pd = pytest.importorskip("pandas")
        X = pd.DataFrame(X)

    transformer = FunctionTransformer(
        feature_names_out=feature_names_out, validate=validate
    )
    transformer.fit_transform(X)
    names = transformer.get_feature_names_out(input_features)
    assert isinstance(names, np.ndarray)
    assert names.dtype == object
    assert_array_equal(names, expected)


def test_function_transformer_get_feature_names_out_without_validation():
    transformer = FunctionTransformer(feature_names_out="one-to-one", validate=False)
    X = np.random.rand(100, 2)
    transformer.fit_transform(X)

    names = transformer.get_feature_names_out(("a", "b"))
    assert isinstance(names, np.ndarray)
    assert names.dtype == object
    assert_array_equal(names, ("a", "b"))


def test_function_transformer_feature_names_out_is_None():
    transformer = FunctionTransformer()
    X = np.random.rand(100, 2)
    transformer.fit_transform(X)

    msg = "This 'FunctionTransformer' has no attribute 'get_feature_names_out'"
    with pytest.raises(AttributeError, match=msg):
        transformer.get_feature_names_out()


def test_function_transformer_feature_names_out_uses_estimator():
    def add_n_random_features(X, n):
        return np.concatenate([X, np.random.rand(len(X), n)], axis=1)

    def feature_names_out(transformer, input_features):
        n = transformer.kw_args["n"]
        return list(input_features) + [f"rnd{i}" for i in range(n)]

    transformer = FunctionTransformer(
        func=add_n_random_features,
        feature_names_out=feature_names_out,
        kw_args=dict(n=3),
        validate=True,
    )
    pd = pytest.importorskip("pandas")
    df = pd.DataFrame({"a": np.random.rand(100), "b": np.random.rand(100)})
    transformer.fit_transform(df)
    names = transformer.get_feature_names_out()

    assert isinstance(names, np.ndarray)
    assert names.dtype == object
    assert_array_equal(names, ("a", "b", "rnd0", "rnd1", "rnd2"))


def test_function_transformer_validate_inverse():
    """Test that function transformer does not reset estimator in
    `inverse_transform`."""

    def add_constant_feature(X):
        X_one = np.ones((X.shape[0], 1))
        return np.concatenate((X, X_one), axis=1)

    def inverse_add_constant(X):
        return X[:, :-1]

    X = np.array([[1, 2], [3, 4], [3, 4]])
    trans = FunctionTransformer(
        func=add_constant_feature,
        inverse_func=inverse_add_constant,
        validate=True,
    )
    X_trans = trans.fit_transform(X)
    assert trans.n_features_in_ == X.shape[1]

    trans.inverse_transform(X_trans)
    assert trans.n_features_in_ == X.shape[1]


@pytest.mark.parametrize(
    "feature_names_out, expected",
    [
        ("one-to-one", ["pet", "color"]),
        [lambda est, names: [f"{n}_out" for n in names], ["pet_out", "color_out"]],
    ],
)
@pytest.mark.parametrize("in_pipeline", [True, False])
def test_get_feature_names_out_dataframe_with_string_data(
    feature_names_out, expected, in_pipeline
):
    """Check that get_feature_names_out works with DataFrames with string data."""
    pd = pytest.importorskip("pandas")
    X = pd.DataFrame({"pet": ["dog", "cat"], "color": ["red", "green"]})

    transformer = FunctionTransformer(feature_names_out=feature_names_out)
    if in_pipeline:
        transformer = make_pipeline(transformer)

    X_trans = transformer.fit_transform(X)
    assert isinstance(X_trans, pd.DataFrame)

    names = transformer.get_feature_names_out()
    assert isinstance(names, np.ndarray)
    assert names.dtype == object
    assert_array_equal(names, expected)


def test_set_output_func():
    """Check behavior of set_output with different settings."""
    pd = pytest.importorskip("pandas")

    X = pd.DataFrame({"a": [1, 2, 3], "b": [10, 20, 100]})

    ft = FunctionTransformer(np.log, feature_names_out="one-to-one")

    # no warning is raised when feature_names_out is defined
    with warnings.catch_warnings():
        warnings.simplefilter("error", UserWarning)
        ft.set_output(transform="pandas")

    X_trans = ft.fit_transform(X)
    assert isinstance(X_trans, pd.DataFrame)
    assert_array_equal(X_trans.columns, ["a", "b"])

    # If feature_names_out is not defined, then a warning is raised in
    # `set_output`
    ft = FunctionTransformer(lambda x: 2 * x)
    msg = "should return a DataFrame to follow the set_output API"
    with pytest.warns(UserWarning, match=msg):
        ft.set_output(transform="pandas")

    X_trans = ft.fit_transform(X)
    assert isinstance(X_trans, pd.DataFrame)
    assert_array_equal(X_trans.columns, ["a", "b"])