1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
|
# coding=utf8
"""
Label propagation in the context of this module refers to a set of
semi-supervised classification algorithms. At a high level, these algorithms
work by forming a fully-connected graph between all points given and solving
for the steady-state distribution of labels at each point.
These algorithms perform very well in practice. The cost of running can be very
expensive, at approximately O(N^3) where N is the number of (labeled and
unlabeled) points. The theory (why they perform so well) is motivated by
intuitions from random walk algorithms and geometric relationships in the data.
For more information see the references below.
Model Features
--------------
Label clamping:
The algorithm tries to learn distributions of labels over the dataset given
label assignments over an initial subset. In one variant, the algorithm does
not allow for any errors in the initial assignment (hard-clamping) while
in another variant, the algorithm allows for some wiggle room for the initial
assignments, allowing them to change by a fraction alpha in each iteration
(soft-clamping).
Kernel:
A function which projects a vector into some higher dimensional space. This
implementation supports RBF and KNN kernels. Using the RBF kernel generates
a dense matrix of size O(N^2). KNN kernel will generate a sparse matrix of
size O(k*N) which will run much faster. See the documentation for SVMs for
more info on kernels.
Examples
--------
>>> import numpy as np
>>> from sklearn import datasets
>>> from sklearn.semi_supervised import LabelPropagation
>>> label_prop_model = LabelPropagation()
>>> iris = datasets.load_iris()
>>> rng = np.random.RandomState(42)
>>> random_unlabeled_points = rng.rand(len(iris.target)) < 0.3
>>> labels = np.copy(iris.target)
>>> labels[random_unlabeled_points] = -1
>>> label_prop_model.fit(iris.data, labels)
LabelPropagation(...)
Notes
-----
References:
[1] Yoshua Bengio, Olivier Delalleau, Nicolas Le Roux. In Semi-Supervised
Learning (2006), pp. 193-216
[2] Olivier Delalleau, Yoshua Bengio, Nicolas Le Roux. Efficient
Non-Parametric Function Induction in Semi-Supervised Learning. AISTAT 2005
"""
# Authors: Clay Woolam <clay@woolam.org>
# Utkarsh Upadhyay <mail@musicallyut.in>
# License: BSD
from abc import ABCMeta, abstractmethod
from numbers import Integral, Real
import warnings
import numpy as np
from scipy import sparse
from scipy.sparse import csgraph
from ..base import BaseEstimator, ClassifierMixin
from ..metrics.pairwise import rbf_kernel
from ..neighbors import NearestNeighbors
from ..utils.extmath import safe_sparse_dot
from ..utils.multiclass import check_classification_targets
from ..utils.validation import check_is_fitted
from ..utils._param_validation import Interval, StrOptions
from ..exceptions import ConvergenceWarning
class BaseLabelPropagation(ClassifierMixin, BaseEstimator, metaclass=ABCMeta):
"""Base class for label propagation module.
Parameters
----------
kernel : {'knn', 'rbf'} or callable, default='rbf'
String identifier for kernel function to use or the kernel function
itself. Only 'rbf' and 'knn' strings are valid inputs. The function
passed should take two inputs, each of shape (n_samples, n_features),
and return a (n_samples, n_samples) shaped weight matrix.
gamma : float, default=20
Parameter for rbf kernel.
n_neighbors : int, default=7
Parameter for knn kernel. Need to be strictly positive.
alpha : float, default=1.0
Clamping factor.
max_iter : int, default=30
Change maximum number of iterations allowed.
tol : float, default=1e-3
Convergence tolerance: threshold to consider the system at steady
state.
n_jobs : int, default=None
The number of parallel jobs to run.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
"""
_parameter_constraints: dict = {
"kernel": [StrOptions({"knn", "rbf"}), callable],
"gamma": [Interval(Real, 0, None, closed="left")],
"n_neighbors": [Interval(Integral, 0, None, closed="neither")],
"alpha": [None, Interval(Real, 0, 1, closed="neither")],
"max_iter": [Interval(Integral, 0, None, closed="neither")],
"tol": [Interval(Real, 0, None, closed="left")],
"n_jobs": [None, Integral],
}
def __init__(
self,
kernel="rbf",
*,
gamma=20,
n_neighbors=7,
alpha=1,
max_iter=30,
tol=1e-3,
n_jobs=None,
):
self.max_iter = max_iter
self.tol = tol
# kernel parameters
self.kernel = kernel
self.gamma = gamma
self.n_neighbors = n_neighbors
# clamping factor
self.alpha = alpha
self.n_jobs = n_jobs
def _get_kernel(self, X, y=None):
if self.kernel == "rbf":
if y is None:
return rbf_kernel(X, X, gamma=self.gamma)
else:
return rbf_kernel(X, y, gamma=self.gamma)
elif self.kernel == "knn":
if self.nn_fit is None:
self.nn_fit = NearestNeighbors(
n_neighbors=self.n_neighbors, n_jobs=self.n_jobs
).fit(X)
if y is None:
return self.nn_fit.kneighbors_graph(
self.nn_fit._fit_X, self.n_neighbors, mode="connectivity"
)
else:
return self.nn_fit.kneighbors(y, return_distance=False)
elif callable(self.kernel):
if y is None:
return self.kernel(X, X)
else:
return self.kernel(X, y)
@abstractmethod
def _build_graph(self):
raise NotImplementedError(
"Graph construction must be implemented to fit a label propagation model."
)
def predict(self, X):
"""Perform inductive inference across the model.
Parameters
----------
X : array-like of shape (n_samples, n_features)
The data matrix.
Returns
-------
y : ndarray of shape (n_samples,)
Predictions for input data.
"""
# Note: since `predict` does not accept semi-supervised labels as input,
# `fit(X, y).predict(X) != fit(X, y).transduction_`.
# Hence, `fit_predict` is not implemented.
# See https://github.com/scikit-learn/scikit-learn/pull/24898
probas = self.predict_proba(X)
return self.classes_[np.argmax(probas, axis=1)].ravel()
def predict_proba(self, X):
"""Predict probability for each possible outcome.
Compute the probability estimates for each single sample in X
and each possible outcome seen during training (categorical
distribution).
Parameters
----------
X : array-like of shape (n_samples, n_features)
The data matrix.
Returns
-------
probabilities : ndarray of shape (n_samples, n_classes)
Normalized probability distributions across
class labels.
"""
check_is_fitted(self)
X_2d = self._validate_data(
X,
accept_sparse=["csc", "csr", "coo", "dok", "bsr", "lil", "dia"],
reset=False,
)
weight_matrices = self._get_kernel(self.X_, X_2d)
if self.kernel == "knn":
probabilities = np.array(
[
np.sum(self.label_distributions_[weight_matrix], axis=0)
for weight_matrix in weight_matrices
]
)
else:
weight_matrices = weight_matrices.T
probabilities = safe_sparse_dot(weight_matrices, self.label_distributions_)
normalizer = np.atleast_2d(np.sum(probabilities, axis=1)).T
probabilities /= normalizer
return probabilities
def fit(self, X, y):
"""Fit a semi-supervised label propagation model to X.
The input samples (labeled and unlabeled) are provided by matrix X,
and target labels are provided by matrix y. We conventionally apply the
label -1 to unlabeled samples in matrix y in a semi-supervised
classification.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Training data, where `n_samples` is the number of samples
and `n_features` is the number of features.
y : array-like of shape (n_samples,)
Target class values with unlabeled points marked as -1.
All unlabeled samples will be transductively assigned labels
internally, which are stored in `transduction_`.
Returns
-------
self : object
Returns the instance itself.
"""
self._validate_params()
X, y = self._validate_data(X, y)
self.X_ = X
check_classification_targets(y)
# actual graph construction (implementations should override this)
graph_matrix = self._build_graph()
# label construction
# construct a categorical distribution for classification only
classes = np.unique(y)
classes = classes[classes != -1]
self.classes_ = classes
n_samples, n_classes = len(y), len(classes)
y = np.asarray(y)
unlabeled = y == -1
# initialize distributions
self.label_distributions_ = np.zeros((n_samples, n_classes))
for label in classes:
self.label_distributions_[y == label, classes == label] = 1
y_static = np.copy(self.label_distributions_)
if self._variant == "propagation":
# LabelPropagation
y_static[unlabeled] = 0
else:
# LabelSpreading
y_static *= 1 - self.alpha
l_previous = np.zeros((self.X_.shape[0], n_classes))
unlabeled = unlabeled[:, np.newaxis]
if sparse.isspmatrix(graph_matrix):
graph_matrix = graph_matrix.tocsr()
for self.n_iter_ in range(self.max_iter):
if np.abs(self.label_distributions_ - l_previous).sum() < self.tol:
break
l_previous = self.label_distributions_
self.label_distributions_ = safe_sparse_dot(
graph_matrix, self.label_distributions_
)
if self._variant == "propagation":
normalizer = np.sum(self.label_distributions_, axis=1)[:, np.newaxis]
normalizer[normalizer == 0] = 1
self.label_distributions_ /= normalizer
self.label_distributions_ = np.where(
unlabeled, self.label_distributions_, y_static
)
else:
# clamp
self.label_distributions_ = (
np.multiply(self.alpha, self.label_distributions_) + y_static
)
else:
warnings.warn(
"max_iter=%d was reached without convergence." % self.max_iter,
category=ConvergenceWarning,
)
self.n_iter_ += 1
normalizer = np.sum(self.label_distributions_, axis=1)[:, np.newaxis]
normalizer[normalizer == 0] = 1
self.label_distributions_ /= normalizer
# set the transduction item
transduction = self.classes_[np.argmax(self.label_distributions_, axis=1)]
self.transduction_ = transduction.ravel()
return self
class LabelPropagation(BaseLabelPropagation):
"""Label Propagation classifier.
Read more in the :ref:`User Guide <label_propagation>`.
Parameters
----------
kernel : {'knn', 'rbf'} or callable, default='rbf'
String identifier for kernel function to use or the kernel function
itself. Only 'rbf' and 'knn' strings are valid inputs. The function
passed should take two inputs, each of shape (n_samples, n_features),
and return a (n_samples, n_samples) shaped weight matrix.
gamma : float, default=20
Parameter for rbf kernel.
n_neighbors : int, default=7
Parameter for knn kernel which need to be strictly positive.
max_iter : int, default=1000
Change maximum number of iterations allowed.
tol : float, 1e-3
Convergence tolerance: threshold to consider the system at steady
state.
n_jobs : int, default=None
The number of parallel jobs to run.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
Attributes
----------
X_ : ndarray of shape (n_samples, n_features)
Input array.
classes_ : ndarray of shape (n_classes,)
The distinct labels used in classifying instances.
label_distributions_ : ndarray of shape (n_samples, n_classes)
Categorical distribution for each item.
transduction_ : ndarray of shape (n_samples)
Label assigned to each item during :term:`fit`.
n_features_in_ : int
Number of features seen during :term:`fit`.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
.. versionadded:: 1.0
n_iter_ : int
Number of iterations run.
See Also
--------
BaseLabelPropagation : Base class for label propagation module.
LabelSpreading : Alternate label propagation strategy more robust to noise.
References
----------
Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and unlabeled data
with label propagation. Technical Report CMU-CALD-02-107, Carnegie Mellon
University, 2002 http://pages.cs.wisc.edu/~jerryzhu/pub/CMU-CALD-02-107.pdf
Examples
--------
>>> import numpy as np
>>> from sklearn import datasets
>>> from sklearn.semi_supervised import LabelPropagation
>>> label_prop_model = LabelPropagation()
>>> iris = datasets.load_iris()
>>> rng = np.random.RandomState(42)
>>> random_unlabeled_points = rng.rand(len(iris.target)) < 0.3
>>> labels = np.copy(iris.target)
>>> labels[random_unlabeled_points] = -1
>>> label_prop_model.fit(iris.data, labels)
LabelPropagation(...)
"""
_variant = "propagation"
_parameter_constraints: dict = {**BaseLabelPropagation._parameter_constraints}
_parameter_constraints.pop("alpha")
def __init__(
self,
kernel="rbf",
*,
gamma=20,
n_neighbors=7,
max_iter=1000,
tol=1e-3,
n_jobs=None,
):
super().__init__(
kernel=kernel,
gamma=gamma,
n_neighbors=n_neighbors,
max_iter=max_iter,
tol=tol,
n_jobs=n_jobs,
alpha=None,
)
def _build_graph(self):
"""Matrix representing a fully connected graph between each sample
This basic implementation creates a non-stochastic affinity matrix, so
class distributions will exceed 1 (normalization may be desired).
"""
if self.kernel == "knn":
self.nn_fit = None
affinity_matrix = self._get_kernel(self.X_)
normalizer = affinity_matrix.sum(axis=0)
if sparse.isspmatrix(affinity_matrix):
affinity_matrix.data /= np.diag(np.array(normalizer))
else:
affinity_matrix /= normalizer[:, np.newaxis]
return affinity_matrix
def fit(self, X, y):
"""Fit a semi-supervised label propagation model to X.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Training data, where `n_samples` is the number of samples
and `n_features` is the number of features.
y : array-like of shape (n_samples,)
Target class values with unlabeled points marked as -1.
All unlabeled samples will be transductively assigned labels
internally, which are stored in `transduction_`.
Returns
-------
self : object
Returns the instance itself.
"""
return super().fit(X, y)
class LabelSpreading(BaseLabelPropagation):
"""LabelSpreading model for semi-supervised learning.
This model is similar to the basic Label Propagation algorithm,
but uses affinity matrix based on the normalized graph Laplacian
and soft clamping across the labels.
Read more in the :ref:`User Guide <label_propagation>`.
Parameters
----------
kernel : {'knn', 'rbf'} or callable, default='rbf'
String identifier for kernel function to use or the kernel function
itself. Only 'rbf' and 'knn' strings are valid inputs. The function
passed should take two inputs, each of shape (n_samples, n_features),
and return a (n_samples, n_samples) shaped weight matrix.
gamma : float, default=20
Parameter for rbf kernel.
n_neighbors : int, default=7
Parameter for knn kernel which is a strictly positive integer.
alpha : float, default=0.2
Clamping factor. A value in (0, 1) that specifies the relative amount
that an instance should adopt the information from its neighbors as
opposed to its initial label.
alpha=0 means keeping the initial label information; alpha=1 means
replacing all initial information.
max_iter : int, default=30
Maximum number of iterations allowed.
tol : float, default=1e-3
Convergence tolerance: threshold to consider the system at steady
state.
n_jobs : int, default=None
The number of parallel jobs to run.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
Attributes
----------
X_ : ndarray of shape (n_samples, n_features)
Input array.
classes_ : ndarray of shape (n_classes,)
The distinct labels used in classifying instances.
label_distributions_ : ndarray of shape (n_samples, n_classes)
Categorical distribution for each item.
transduction_ : ndarray of shape (n_samples,)
Label assigned to each item during :term:`fit`.
n_features_in_ : int
Number of features seen during :term:`fit`.
.. versionadded:: 0.24
feature_names_in_ : ndarray of shape (`n_features_in_`,)
Names of features seen during :term:`fit`. Defined only when `X`
has feature names that are all strings.
.. versionadded:: 1.0
n_iter_ : int
Number of iterations run.
See Also
--------
LabelPropagation : Unregularized graph based semi-supervised learning.
References
----------
`Dengyong Zhou, Olivier Bousquet, Thomas Navin Lal, Jason Weston,
Bernhard Schoelkopf. Learning with local and global consistency (2004)
<https://citeseerx.ist.psu.edu/doc_view/pid/d74c37aabf2d5cae663007cbd8718175466aea8c>`_
Examples
--------
>>> import numpy as np
>>> from sklearn import datasets
>>> from sklearn.semi_supervised import LabelSpreading
>>> label_prop_model = LabelSpreading()
>>> iris = datasets.load_iris()
>>> rng = np.random.RandomState(42)
>>> random_unlabeled_points = rng.rand(len(iris.target)) < 0.3
>>> labels = np.copy(iris.target)
>>> labels[random_unlabeled_points] = -1
>>> label_prop_model.fit(iris.data, labels)
LabelSpreading(...)
"""
_variant = "spreading"
_parameter_constraints: dict = {**BaseLabelPropagation._parameter_constraints}
_parameter_constraints["alpha"] = [Interval(Real, 0, 1, closed="neither")]
def __init__(
self,
kernel="rbf",
*,
gamma=20,
n_neighbors=7,
alpha=0.2,
max_iter=30,
tol=1e-3,
n_jobs=None,
):
# this one has different base parameters
super().__init__(
kernel=kernel,
gamma=gamma,
n_neighbors=n_neighbors,
alpha=alpha,
max_iter=max_iter,
tol=tol,
n_jobs=n_jobs,
)
def _build_graph(self):
"""Graph matrix for Label Spreading computes the graph laplacian"""
# compute affinity matrix (or gram matrix)
if self.kernel == "knn":
self.nn_fit = None
n_samples = self.X_.shape[0]
affinity_matrix = self._get_kernel(self.X_)
laplacian = csgraph.laplacian(affinity_matrix, normed=True)
laplacian = -laplacian
if sparse.isspmatrix(laplacian):
diag_mask = laplacian.row == laplacian.col
laplacian.data[diag_mask] = 0.0
else:
laplacian.flat[:: n_samples + 1] = 0.0 # set diag to 0.0
return laplacian
|