File: _label_propagation.py

package info (click to toggle)
scikit-learn 1.2.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 23,280 kB
  • sloc: python: 184,491; cpp: 5,783; ansic: 854; makefile: 307; sh: 45; javascript: 1
file content (621 lines) | stat: -rw-r--r-- 21,155 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
# coding=utf8
"""
Label propagation in the context of this module refers to a set of
semi-supervised classification algorithms. At a high level, these algorithms
work by forming a fully-connected graph between all points given and solving
for the steady-state distribution of labels at each point.

These algorithms perform very well in practice. The cost of running can be very
expensive, at approximately O(N^3) where N is the number of (labeled and
unlabeled) points. The theory (why they perform so well) is motivated by
intuitions from random walk algorithms and geometric relationships in the data.
For more information see the references below.

Model Features
--------------
Label clamping:
  The algorithm tries to learn distributions of labels over the dataset given
  label assignments over an initial subset. In one variant, the algorithm does
  not allow for any errors in the initial assignment (hard-clamping) while
  in another variant, the algorithm allows for some wiggle room for the initial
  assignments, allowing them to change by a fraction alpha in each iteration
  (soft-clamping).

Kernel:
  A function which projects a vector into some higher dimensional space. This
  implementation supports RBF and KNN kernels. Using the RBF kernel generates
  a dense matrix of size O(N^2). KNN kernel will generate a sparse matrix of
  size O(k*N) which will run much faster. See the documentation for SVMs for
  more info on kernels.

Examples
--------
>>> import numpy as np
>>> from sklearn import datasets
>>> from sklearn.semi_supervised import LabelPropagation
>>> label_prop_model = LabelPropagation()
>>> iris = datasets.load_iris()
>>> rng = np.random.RandomState(42)
>>> random_unlabeled_points = rng.rand(len(iris.target)) < 0.3
>>> labels = np.copy(iris.target)
>>> labels[random_unlabeled_points] = -1
>>> label_prop_model.fit(iris.data, labels)
LabelPropagation(...)

Notes
-----
References:
[1] Yoshua Bengio, Olivier Delalleau, Nicolas Le Roux. In Semi-Supervised
Learning (2006), pp. 193-216

[2] Olivier Delalleau, Yoshua Bengio, Nicolas Le Roux. Efficient
Non-Parametric Function Induction in Semi-Supervised Learning. AISTAT 2005
"""

# Authors: Clay Woolam <clay@woolam.org>
#          Utkarsh Upadhyay <mail@musicallyut.in>
# License: BSD
from abc import ABCMeta, abstractmethod
from numbers import Integral, Real

import warnings
import numpy as np
from scipy import sparse
from scipy.sparse import csgraph

from ..base import BaseEstimator, ClassifierMixin
from ..metrics.pairwise import rbf_kernel
from ..neighbors import NearestNeighbors
from ..utils.extmath import safe_sparse_dot
from ..utils.multiclass import check_classification_targets
from ..utils.validation import check_is_fitted
from ..utils._param_validation import Interval, StrOptions
from ..exceptions import ConvergenceWarning


class BaseLabelPropagation(ClassifierMixin, BaseEstimator, metaclass=ABCMeta):
    """Base class for label propagation module.

     Parameters
     ----------
     kernel : {'knn', 'rbf'} or callable, default='rbf'
         String identifier for kernel function to use or the kernel function
         itself. Only 'rbf' and 'knn' strings are valid inputs. The function
         passed should take two inputs, each of shape (n_samples, n_features),
         and return a (n_samples, n_samples) shaped weight matrix.

     gamma : float, default=20
         Parameter for rbf kernel.

     n_neighbors : int, default=7
         Parameter for knn kernel. Need to be strictly positive.

     alpha : float, default=1.0
         Clamping factor.

     max_iter : int, default=30
         Change maximum number of iterations allowed.

     tol : float, default=1e-3
         Convergence tolerance: threshold to consider the system at steady
         state.

    n_jobs : int, default=None
         The number of parallel jobs to run.
         ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
         ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
         for more details.
    """

    _parameter_constraints: dict = {
        "kernel": [StrOptions({"knn", "rbf"}), callable],
        "gamma": [Interval(Real, 0, None, closed="left")],
        "n_neighbors": [Interval(Integral, 0, None, closed="neither")],
        "alpha": [None, Interval(Real, 0, 1, closed="neither")],
        "max_iter": [Interval(Integral, 0, None, closed="neither")],
        "tol": [Interval(Real, 0, None, closed="left")],
        "n_jobs": [None, Integral],
    }

    def __init__(
        self,
        kernel="rbf",
        *,
        gamma=20,
        n_neighbors=7,
        alpha=1,
        max_iter=30,
        tol=1e-3,
        n_jobs=None,
    ):

        self.max_iter = max_iter
        self.tol = tol

        # kernel parameters
        self.kernel = kernel
        self.gamma = gamma
        self.n_neighbors = n_neighbors

        # clamping factor
        self.alpha = alpha

        self.n_jobs = n_jobs

    def _get_kernel(self, X, y=None):
        if self.kernel == "rbf":
            if y is None:
                return rbf_kernel(X, X, gamma=self.gamma)
            else:
                return rbf_kernel(X, y, gamma=self.gamma)
        elif self.kernel == "knn":
            if self.nn_fit is None:
                self.nn_fit = NearestNeighbors(
                    n_neighbors=self.n_neighbors, n_jobs=self.n_jobs
                ).fit(X)
            if y is None:
                return self.nn_fit.kneighbors_graph(
                    self.nn_fit._fit_X, self.n_neighbors, mode="connectivity"
                )
            else:
                return self.nn_fit.kneighbors(y, return_distance=False)
        elif callable(self.kernel):
            if y is None:
                return self.kernel(X, X)
            else:
                return self.kernel(X, y)

    @abstractmethod
    def _build_graph(self):
        raise NotImplementedError(
            "Graph construction must be implemented to fit a label propagation model."
        )

    def predict(self, X):
        """Perform inductive inference across the model.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            The data matrix.

        Returns
        -------
        y : ndarray of shape (n_samples,)
            Predictions for input data.
        """
        # Note: since `predict` does not accept semi-supervised labels as input,
        # `fit(X, y).predict(X) != fit(X, y).transduction_`.
        # Hence, `fit_predict` is not implemented.
        # See https://github.com/scikit-learn/scikit-learn/pull/24898
        probas = self.predict_proba(X)
        return self.classes_[np.argmax(probas, axis=1)].ravel()

    def predict_proba(self, X):
        """Predict probability for each possible outcome.

        Compute the probability estimates for each single sample in X
        and each possible outcome seen during training (categorical
        distribution).

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            The data matrix.

        Returns
        -------
        probabilities : ndarray of shape (n_samples, n_classes)
            Normalized probability distributions across
            class labels.
        """
        check_is_fitted(self)

        X_2d = self._validate_data(
            X,
            accept_sparse=["csc", "csr", "coo", "dok", "bsr", "lil", "dia"],
            reset=False,
        )
        weight_matrices = self._get_kernel(self.X_, X_2d)
        if self.kernel == "knn":
            probabilities = np.array(
                [
                    np.sum(self.label_distributions_[weight_matrix], axis=0)
                    for weight_matrix in weight_matrices
                ]
            )
        else:
            weight_matrices = weight_matrices.T
            probabilities = safe_sparse_dot(weight_matrices, self.label_distributions_)
        normalizer = np.atleast_2d(np.sum(probabilities, axis=1)).T
        probabilities /= normalizer
        return probabilities

    def fit(self, X, y):
        """Fit a semi-supervised label propagation model to X.

        The input samples (labeled and unlabeled) are provided by matrix X,
        and target labels are provided by matrix y. We conventionally apply the
        label -1 to unlabeled samples in matrix y in a semi-supervised
        classification.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Training data, where `n_samples` is the number of samples
            and `n_features` is the number of features.

        y : array-like of shape (n_samples,)
            Target class values with unlabeled points marked as -1.
            All unlabeled samples will be transductively assigned labels
            internally, which are stored in `transduction_`.

        Returns
        -------
        self : object
            Returns the instance itself.
        """
        self._validate_params()
        X, y = self._validate_data(X, y)
        self.X_ = X
        check_classification_targets(y)

        # actual graph construction (implementations should override this)
        graph_matrix = self._build_graph()

        # label construction
        # construct a categorical distribution for classification only
        classes = np.unique(y)
        classes = classes[classes != -1]
        self.classes_ = classes

        n_samples, n_classes = len(y), len(classes)

        y = np.asarray(y)
        unlabeled = y == -1

        # initialize distributions
        self.label_distributions_ = np.zeros((n_samples, n_classes))
        for label in classes:
            self.label_distributions_[y == label, classes == label] = 1

        y_static = np.copy(self.label_distributions_)
        if self._variant == "propagation":
            # LabelPropagation
            y_static[unlabeled] = 0
        else:
            # LabelSpreading
            y_static *= 1 - self.alpha

        l_previous = np.zeros((self.X_.shape[0], n_classes))

        unlabeled = unlabeled[:, np.newaxis]
        if sparse.isspmatrix(graph_matrix):
            graph_matrix = graph_matrix.tocsr()

        for self.n_iter_ in range(self.max_iter):
            if np.abs(self.label_distributions_ - l_previous).sum() < self.tol:
                break

            l_previous = self.label_distributions_
            self.label_distributions_ = safe_sparse_dot(
                graph_matrix, self.label_distributions_
            )

            if self._variant == "propagation":
                normalizer = np.sum(self.label_distributions_, axis=1)[:, np.newaxis]
                normalizer[normalizer == 0] = 1
                self.label_distributions_ /= normalizer
                self.label_distributions_ = np.where(
                    unlabeled, self.label_distributions_, y_static
                )
            else:
                # clamp
                self.label_distributions_ = (
                    np.multiply(self.alpha, self.label_distributions_) + y_static
                )
        else:
            warnings.warn(
                "max_iter=%d was reached without convergence." % self.max_iter,
                category=ConvergenceWarning,
            )
            self.n_iter_ += 1

        normalizer = np.sum(self.label_distributions_, axis=1)[:, np.newaxis]
        normalizer[normalizer == 0] = 1
        self.label_distributions_ /= normalizer

        # set the transduction item
        transduction = self.classes_[np.argmax(self.label_distributions_, axis=1)]
        self.transduction_ = transduction.ravel()
        return self


class LabelPropagation(BaseLabelPropagation):
    """Label Propagation classifier.

    Read more in the :ref:`User Guide <label_propagation>`.

    Parameters
    ----------
    kernel : {'knn', 'rbf'} or callable, default='rbf'
        String identifier for kernel function to use or the kernel function
        itself. Only 'rbf' and 'knn' strings are valid inputs. The function
        passed should take two inputs, each of shape (n_samples, n_features),
        and return a (n_samples, n_samples) shaped weight matrix.

    gamma : float, default=20
        Parameter for rbf kernel.

    n_neighbors : int, default=7
        Parameter for knn kernel which need to be strictly positive.

    max_iter : int, default=1000
        Change maximum number of iterations allowed.

    tol : float, 1e-3
        Convergence tolerance: threshold to consider the system at steady
        state.

    n_jobs : int, default=None
        The number of parallel jobs to run.
        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
        for more details.

    Attributes
    ----------
    X_ : ndarray of shape (n_samples, n_features)
        Input array.

    classes_ : ndarray of shape (n_classes,)
        The distinct labels used in classifying instances.

    label_distributions_ : ndarray of shape (n_samples, n_classes)
        Categorical distribution for each item.

    transduction_ : ndarray of shape (n_samples)
        Label assigned to each item during :term:`fit`.

    n_features_in_ : int
        Number of features seen during :term:`fit`.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    n_iter_ : int
        Number of iterations run.

    See Also
    --------
    BaseLabelPropagation : Base class for label propagation module.
    LabelSpreading : Alternate label propagation strategy more robust to noise.

    References
    ----------
    Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and unlabeled data
    with label propagation. Technical Report CMU-CALD-02-107, Carnegie Mellon
    University, 2002 http://pages.cs.wisc.edu/~jerryzhu/pub/CMU-CALD-02-107.pdf

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn import datasets
    >>> from sklearn.semi_supervised import LabelPropagation
    >>> label_prop_model = LabelPropagation()
    >>> iris = datasets.load_iris()
    >>> rng = np.random.RandomState(42)
    >>> random_unlabeled_points = rng.rand(len(iris.target)) < 0.3
    >>> labels = np.copy(iris.target)
    >>> labels[random_unlabeled_points] = -1
    >>> label_prop_model.fit(iris.data, labels)
    LabelPropagation(...)
    """

    _variant = "propagation"

    _parameter_constraints: dict = {**BaseLabelPropagation._parameter_constraints}
    _parameter_constraints.pop("alpha")

    def __init__(
        self,
        kernel="rbf",
        *,
        gamma=20,
        n_neighbors=7,
        max_iter=1000,
        tol=1e-3,
        n_jobs=None,
    ):
        super().__init__(
            kernel=kernel,
            gamma=gamma,
            n_neighbors=n_neighbors,
            max_iter=max_iter,
            tol=tol,
            n_jobs=n_jobs,
            alpha=None,
        )

    def _build_graph(self):
        """Matrix representing a fully connected graph between each sample

        This basic implementation creates a non-stochastic affinity matrix, so
        class distributions will exceed 1 (normalization may be desired).
        """
        if self.kernel == "knn":
            self.nn_fit = None
        affinity_matrix = self._get_kernel(self.X_)
        normalizer = affinity_matrix.sum(axis=0)
        if sparse.isspmatrix(affinity_matrix):
            affinity_matrix.data /= np.diag(np.array(normalizer))
        else:
            affinity_matrix /= normalizer[:, np.newaxis]
        return affinity_matrix

    def fit(self, X, y):
        """Fit a semi-supervised label propagation model to X.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            Training data, where `n_samples` is the number of samples
            and `n_features` is the number of features.

        y : array-like of shape (n_samples,)
            Target class values with unlabeled points marked as -1.
            All unlabeled samples will be transductively assigned labels
            internally, which are stored in `transduction_`.

        Returns
        -------
        self : object
            Returns the instance itself.
        """
        return super().fit(X, y)


class LabelSpreading(BaseLabelPropagation):
    """LabelSpreading model for semi-supervised learning.

    This model is similar to the basic Label Propagation algorithm,
    but uses affinity matrix based on the normalized graph Laplacian
    and soft clamping across the labels.

    Read more in the :ref:`User Guide <label_propagation>`.

    Parameters
    ----------
    kernel : {'knn', 'rbf'} or callable, default='rbf'
        String identifier for kernel function to use or the kernel function
        itself. Only 'rbf' and 'knn' strings are valid inputs. The function
        passed should take two inputs, each of shape (n_samples, n_features),
        and return a (n_samples, n_samples) shaped weight matrix.

    gamma : float, default=20
      Parameter for rbf kernel.

    n_neighbors : int, default=7
      Parameter for knn kernel which is a strictly positive integer.

    alpha : float, default=0.2
      Clamping factor. A value in (0, 1) that specifies the relative amount
      that an instance should adopt the information from its neighbors as
      opposed to its initial label.
      alpha=0 means keeping the initial label information; alpha=1 means
      replacing all initial information.

    max_iter : int, default=30
      Maximum number of iterations allowed.

    tol : float, default=1e-3
      Convergence tolerance: threshold to consider the system at steady
      state.

    n_jobs : int, default=None
        The number of parallel jobs to run.
        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
        for more details.

    Attributes
    ----------
    X_ : ndarray of shape (n_samples, n_features)
        Input array.

    classes_ : ndarray of shape (n_classes,)
        The distinct labels used in classifying instances.

    label_distributions_ : ndarray of shape (n_samples, n_classes)
        Categorical distribution for each item.

    transduction_ : ndarray of shape (n_samples,)
        Label assigned to each item during :term:`fit`.

    n_features_in_ : int
        Number of features seen during :term:`fit`.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    n_iter_ : int
        Number of iterations run.

    See Also
    --------
    LabelPropagation : Unregularized graph based semi-supervised learning.

    References
    ----------
    `Dengyong Zhou, Olivier Bousquet, Thomas Navin Lal, Jason Weston,
    Bernhard Schoelkopf. Learning with local and global consistency (2004)
    <https://citeseerx.ist.psu.edu/doc_view/pid/d74c37aabf2d5cae663007cbd8718175466aea8c>`_

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn import datasets
    >>> from sklearn.semi_supervised import LabelSpreading
    >>> label_prop_model = LabelSpreading()
    >>> iris = datasets.load_iris()
    >>> rng = np.random.RandomState(42)
    >>> random_unlabeled_points = rng.rand(len(iris.target)) < 0.3
    >>> labels = np.copy(iris.target)
    >>> labels[random_unlabeled_points] = -1
    >>> label_prop_model.fit(iris.data, labels)
    LabelSpreading(...)
    """

    _variant = "spreading"

    _parameter_constraints: dict = {**BaseLabelPropagation._parameter_constraints}
    _parameter_constraints["alpha"] = [Interval(Real, 0, 1, closed="neither")]

    def __init__(
        self,
        kernel="rbf",
        *,
        gamma=20,
        n_neighbors=7,
        alpha=0.2,
        max_iter=30,
        tol=1e-3,
        n_jobs=None,
    ):

        # this one has different base parameters
        super().__init__(
            kernel=kernel,
            gamma=gamma,
            n_neighbors=n_neighbors,
            alpha=alpha,
            max_iter=max_iter,
            tol=tol,
            n_jobs=n_jobs,
        )

    def _build_graph(self):
        """Graph matrix for Label Spreading computes the graph laplacian"""
        # compute affinity matrix (or gram matrix)
        if self.kernel == "knn":
            self.nn_fit = None
        n_samples = self.X_.shape[0]
        affinity_matrix = self._get_kernel(self.X_)
        laplacian = csgraph.laplacian(affinity_matrix, normed=True)
        laplacian = -laplacian
        if sparse.isspmatrix(laplacian):
            diag_mask = laplacian.row == laplacian.col
            laplacian.data[diag_mask] = 0.0
        else:
            laplacian.flat[:: n_samples + 1] = 0.0  # set diag to 0.0
        return laplacian