1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769
|
# Authors: Gilles Louppe <g.louppe@gmail.com>
# Peter Prettenhofer <peter.prettenhofer@gmail.com>
# Brian Holt <bdholt1@gmail.com>
# Noel Dawe <noel@dawe.me>
# Satrajit Gosh <satrajit.ghosh@gmail.com>
# Lars Buitinck
# Arnaud Joly <arnaud.v.joly@gmail.com>
# Joel Nothman <joel.nothman@gmail.com>
# Fares Hedayati <fares.hedayati@gmail.com>
# Jacob Schreiber <jmschreiber91@gmail.com>
# Nelson Liu <nelson@nelsonliu.me>
#
# License: BSD 3 clause
from cpython cimport Py_INCREF, PyObject, PyTypeObject
from libc.stdlib cimport free
from libc.string cimport memcpy
from libc.string cimport memset
from libc.stdint cimport SIZE_MAX
from libcpp.vector cimport vector
from libcpp.algorithm cimport pop_heap
from libcpp.algorithm cimport push_heap
from libcpp cimport bool
import struct
import numpy as np
cimport numpy as cnp
cnp.import_array()
from scipy.sparse import issparse
from scipy.sparse import csr_matrix
from ._utils cimport safe_realloc
from ._utils cimport sizet_ptr_to_ndarray
cdef extern from "numpy/arrayobject.h":
object PyArray_NewFromDescr(PyTypeObject* subtype, cnp.dtype descr,
int nd, cnp.npy_intp* dims,
cnp.npy_intp* strides,
void* data, int flags, object obj)
int PyArray_SetBaseObject(cnp.ndarray arr, PyObject* obj)
cdef extern from "<stack>" namespace "std" nogil:
cdef cppclass stack[T]:
ctypedef T value_type
stack() except +
bint empty()
void pop()
void push(T&) except + # Raise c++ exception for bad_alloc -> MemoryError
T& top()
# =============================================================================
# Types and constants
# =============================================================================
from numpy import float32 as DTYPE
from numpy import float64 as DOUBLE
cdef double INFINITY = np.inf
cdef double EPSILON = np.finfo('double').eps
# Some handy constants (BestFirstTreeBuilder)
cdef int IS_FIRST = 1
cdef int IS_NOT_FIRST = 0
cdef int IS_LEFT = 1
cdef int IS_NOT_LEFT = 0
TREE_LEAF = -1
TREE_UNDEFINED = -2
cdef SIZE_t _TREE_LEAF = TREE_LEAF
cdef SIZE_t _TREE_UNDEFINED = TREE_UNDEFINED
# Build the corresponding numpy dtype for Node.
# This works by casting `dummy` to an array of Node of length 1, which numpy
# can construct a `dtype`-object for. See https://stackoverflow.com/q/62448946
# for a more detailed explanation.
cdef Node dummy;
NODE_DTYPE = np.asarray(<Node[:1]>(&dummy)).dtype
# =============================================================================
# TreeBuilder
# =============================================================================
cdef class TreeBuilder:
"""Interface for different tree building strategies."""
cpdef build(self, Tree tree, object X, cnp.ndarray y,
cnp.ndarray sample_weight=None):
"""Build a decision tree from the training set (X, y)."""
pass
cdef inline _check_input(self, object X, cnp.ndarray y,
cnp.ndarray sample_weight):
"""Check input dtype, layout and format"""
if issparse(X):
X = X.tocsc()
X.sort_indices()
if X.data.dtype != DTYPE:
X.data = np.ascontiguousarray(X.data, dtype=DTYPE)
if X.indices.dtype != np.int32 or X.indptr.dtype != np.int32:
raise ValueError("No support for np.int64 index based "
"sparse matrices")
elif X.dtype != DTYPE:
# since we have to copy we will make it fortran for efficiency
X = np.asfortranarray(X, dtype=DTYPE)
if y.dtype != DOUBLE or not y.flags.contiguous:
y = np.ascontiguousarray(y, dtype=DOUBLE)
if (sample_weight is not None and
(sample_weight.dtype != DOUBLE or
not sample_weight.flags.contiguous)):
sample_weight = np.asarray(sample_weight, dtype=DOUBLE,
order="C")
return X, y, sample_weight
# Depth first builder ---------------------------------------------------------
# A record on the stack for depth-first tree growing
cdef struct StackRecord:
SIZE_t start
SIZE_t end
SIZE_t depth
SIZE_t parent
bint is_left
double impurity
SIZE_t n_constant_features
cdef class DepthFirstTreeBuilder(TreeBuilder):
"""Build a decision tree in depth-first fashion."""
def __cinit__(self, Splitter splitter, SIZE_t min_samples_split,
SIZE_t min_samples_leaf, double min_weight_leaf,
SIZE_t max_depth, double min_impurity_decrease):
self.splitter = splitter
self.min_samples_split = min_samples_split
self.min_samples_leaf = min_samples_leaf
self.min_weight_leaf = min_weight_leaf
self.max_depth = max_depth
self.min_impurity_decrease = min_impurity_decrease
cpdef build(self, Tree tree, object X, cnp.ndarray y,
cnp.ndarray sample_weight=None):
"""Build a decision tree from the training set (X, y)."""
# check input
X, y, sample_weight = self._check_input(X, y, sample_weight)
# Initial capacity
cdef int init_capacity
if tree.max_depth <= 10:
init_capacity = <int> (2 ** (tree.max_depth + 1)) - 1
else:
init_capacity = 2047
tree._resize(init_capacity)
# Parameters
cdef Splitter splitter = self.splitter
cdef SIZE_t max_depth = self.max_depth
cdef SIZE_t min_samples_leaf = self.min_samples_leaf
cdef double min_weight_leaf = self.min_weight_leaf
cdef SIZE_t min_samples_split = self.min_samples_split
cdef double min_impurity_decrease = self.min_impurity_decrease
# Recursive partition (without actual recursion)
splitter.init(X, y, sample_weight)
cdef SIZE_t start
cdef SIZE_t end
cdef SIZE_t depth
cdef SIZE_t parent
cdef bint is_left
cdef SIZE_t n_node_samples = splitter.n_samples
cdef double weighted_n_node_samples
cdef SplitRecord split
cdef SIZE_t node_id
cdef double impurity = INFINITY
cdef SIZE_t n_constant_features
cdef bint is_leaf
cdef bint first = 1
cdef SIZE_t max_depth_seen = -1
cdef int rc = 0
cdef stack[StackRecord] builder_stack
cdef StackRecord stack_record
with nogil:
# push root node onto stack
builder_stack.push({
"start": 0,
"end": n_node_samples,
"depth": 0,
"parent": _TREE_UNDEFINED,
"is_left": 0,
"impurity": INFINITY,
"n_constant_features": 0})
while not builder_stack.empty():
stack_record = builder_stack.top()
builder_stack.pop()
start = stack_record.start
end = stack_record.end
depth = stack_record.depth
parent = stack_record.parent
is_left = stack_record.is_left
impurity = stack_record.impurity
n_constant_features = stack_record.n_constant_features
n_node_samples = end - start
splitter.node_reset(start, end, &weighted_n_node_samples)
is_leaf = (depth >= max_depth or
n_node_samples < min_samples_split or
n_node_samples < 2 * min_samples_leaf or
weighted_n_node_samples < 2 * min_weight_leaf)
if first:
impurity = splitter.node_impurity()
first = 0
# impurity == 0 with tolerance due to rounding errors
is_leaf = is_leaf or impurity <= EPSILON
if not is_leaf:
splitter.node_split(impurity, &split, &n_constant_features)
# If EPSILON=0 in the below comparison, float precision
# issues stop splitting, producing trees that are
# dissimilar to v0.18
is_leaf = (is_leaf or split.pos >= end or
(split.improvement + EPSILON <
min_impurity_decrease))
node_id = tree._add_node(parent, is_left, is_leaf, split.feature,
split.threshold, impurity, n_node_samples,
weighted_n_node_samples)
if node_id == SIZE_MAX:
rc = -1
break
# Store value for all nodes, to facilitate tree/model
# inspection and interpretation
splitter.node_value(tree.value + node_id * tree.value_stride)
if not is_leaf:
# Push right child on stack
builder_stack.push({
"start": split.pos,
"end": end,
"depth": depth + 1,
"parent": node_id,
"is_left": 0,
"impurity": split.impurity_right,
"n_constant_features": n_constant_features})
# Push left child on stack
builder_stack.push({
"start": start,
"end": split.pos,
"depth": depth + 1,
"parent": node_id,
"is_left": 1,
"impurity": split.impurity_left,
"n_constant_features": n_constant_features})
if depth > max_depth_seen:
max_depth_seen = depth
if rc >= 0:
rc = tree._resize_c(tree.node_count)
if rc >= 0:
tree.max_depth = max_depth_seen
if rc == -1:
raise MemoryError()
# Best first builder ----------------------------------------------------------
cdef struct FrontierRecord:
# Record of information of a Node, the frontier for a split. Those records are
# maintained in a heap to access the Node with the best improvement in impurity,
# allowing growing trees greedily on this improvement.
SIZE_t node_id
SIZE_t start
SIZE_t end
SIZE_t pos
SIZE_t depth
bint is_leaf
double impurity
double impurity_left
double impurity_right
double improvement
cdef inline bool _compare_records(
const FrontierRecord& left,
const FrontierRecord& right,
):
return left.improvement < right.improvement
cdef inline void _add_to_frontier(
FrontierRecord rec,
vector[FrontierRecord]& frontier,
) nogil:
"""Adds record `rec` to the priority queue `frontier`."""
frontier.push_back(rec)
push_heap(frontier.begin(), frontier.end(), &_compare_records)
cdef class BestFirstTreeBuilder(TreeBuilder):
"""Build a decision tree in best-first fashion.
The best node to expand is given by the node at the frontier that has the
highest impurity improvement.
"""
cdef SIZE_t max_leaf_nodes
def __cinit__(self, Splitter splitter, SIZE_t min_samples_split,
SIZE_t min_samples_leaf, min_weight_leaf,
SIZE_t max_depth, SIZE_t max_leaf_nodes,
double min_impurity_decrease):
self.splitter = splitter
self.min_samples_split = min_samples_split
self.min_samples_leaf = min_samples_leaf
self.min_weight_leaf = min_weight_leaf
self.max_depth = max_depth
self.max_leaf_nodes = max_leaf_nodes
self.min_impurity_decrease = min_impurity_decrease
cpdef build(self, Tree tree, object X, cnp.ndarray y,
cnp.ndarray sample_weight=None):
"""Build a decision tree from the training set (X, y)."""
# check input
X, y, sample_weight = self._check_input(X, y, sample_weight)
# Parameters
cdef Splitter splitter = self.splitter
cdef SIZE_t max_leaf_nodes = self.max_leaf_nodes
# Recursive partition (without actual recursion)
splitter.init(X, y, sample_weight)
cdef vector[FrontierRecord] frontier
cdef FrontierRecord record
cdef FrontierRecord split_node_left
cdef FrontierRecord split_node_right
cdef SIZE_t n_node_samples = splitter.n_samples
cdef SIZE_t max_split_nodes = max_leaf_nodes - 1
cdef bint is_leaf
cdef SIZE_t max_depth_seen = -1
cdef int rc = 0
cdef Node* node
# Initial capacity
cdef SIZE_t init_capacity = max_split_nodes + max_leaf_nodes
tree._resize(init_capacity)
with nogil:
# add root to frontier
rc = self._add_split_node(splitter, tree, 0, n_node_samples,
INFINITY, IS_FIRST, IS_LEFT, NULL, 0,
&split_node_left)
if rc >= 0:
_add_to_frontier(split_node_left, frontier)
while not frontier.empty():
pop_heap(frontier.begin(), frontier.end(), &_compare_records)
record = frontier.back()
frontier.pop_back()
node = &tree.nodes[record.node_id]
is_leaf = (record.is_leaf or max_split_nodes <= 0)
if is_leaf:
# Node is not expandable; set node as leaf
node.left_child = _TREE_LEAF
node.right_child = _TREE_LEAF
node.feature = _TREE_UNDEFINED
node.threshold = _TREE_UNDEFINED
else:
# Node is expandable
# Decrement number of split nodes available
max_split_nodes -= 1
# Compute left split node
rc = self._add_split_node(splitter, tree,
record.start, record.pos,
record.impurity_left,
IS_NOT_FIRST, IS_LEFT, node,
record.depth + 1,
&split_node_left)
if rc == -1:
break
# tree.nodes may have changed
node = &tree.nodes[record.node_id]
# Compute right split node
rc = self._add_split_node(splitter, tree, record.pos,
record.end,
record.impurity_right,
IS_NOT_FIRST, IS_NOT_LEFT, node,
record.depth + 1,
&split_node_right)
if rc == -1:
break
# Add nodes to queue
_add_to_frontier(split_node_left, frontier)
_add_to_frontier(split_node_right, frontier)
if record.depth > max_depth_seen:
max_depth_seen = record.depth
if rc >= 0:
rc = tree._resize_c(tree.node_count)
if rc >= 0:
tree.max_depth = max_depth_seen
if rc == -1:
raise MemoryError()
cdef inline int _add_split_node(self, Splitter splitter, Tree tree,
SIZE_t start, SIZE_t end, double impurity,
bint is_first, bint is_left, Node* parent,
SIZE_t depth,
FrontierRecord* res) nogil except -1:
"""Adds node w/ partition ``[start, end)`` to the frontier. """
cdef SplitRecord split
cdef SIZE_t node_id
cdef SIZE_t n_node_samples
cdef SIZE_t n_constant_features = 0
cdef double min_impurity_decrease = self.min_impurity_decrease
cdef double weighted_n_node_samples
cdef bint is_leaf
splitter.node_reset(start, end, &weighted_n_node_samples)
if is_first:
impurity = splitter.node_impurity()
n_node_samples = end - start
is_leaf = (depth >= self.max_depth or
n_node_samples < self.min_samples_split or
n_node_samples < 2 * self.min_samples_leaf or
weighted_n_node_samples < 2 * self.min_weight_leaf or
impurity <= EPSILON # impurity == 0 with tolerance
)
if not is_leaf:
splitter.node_split(impurity, &split, &n_constant_features)
# If EPSILON=0 in the below comparison, float precision issues stop
# splitting early, producing trees that are dissimilar to v0.18
is_leaf = (is_leaf or split.pos >= end or
split.improvement + EPSILON < min_impurity_decrease)
node_id = tree._add_node(parent - tree.nodes
if parent != NULL
else _TREE_UNDEFINED,
is_left, is_leaf,
split.feature, split.threshold, impurity, n_node_samples,
weighted_n_node_samples)
if node_id == SIZE_MAX:
return -1
# compute values also for split nodes (might become leafs later).
splitter.node_value(tree.value + node_id * tree.value_stride)
res.node_id = node_id
res.start = start
res.end = end
res.depth = depth
res.impurity = impurity
if not is_leaf:
# is split node
res.pos = split.pos
res.is_leaf = 0
res.improvement = split.improvement
res.impurity_left = split.impurity_left
res.impurity_right = split.impurity_right
else:
# is leaf => 0 improvement
res.pos = end
res.is_leaf = 1
res.improvement = 0.0
res.impurity_left = impurity
res.impurity_right = impurity
return 0
# =============================================================================
# Tree
# =============================================================================
cdef class Tree:
"""Array-based representation of a binary decision tree.
The binary tree is represented as a number of parallel arrays. The i-th
element of each array holds information about the node `i`. Node 0 is the
tree's root. You can find a detailed description of all arrays in
`_tree.pxd`. NOTE: Some of the arrays only apply to either leaves or split
nodes, resp. In this case the values of nodes of the other type are
arbitrary!
Attributes
----------
node_count : int
The number of nodes (internal nodes + leaves) in the tree.
capacity : int
The current capacity (i.e., size) of the arrays, which is at least as
great as `node_count`.
max_depth : int
The depth of the tree, i.e. the maximum depth of its leaves.
children_left : array of int, shape [node_count]
children_left[i] holds the node id of the left child of node i.
For leaves, children_left[i] == TREE_LEAF. Otherwise,
children_left[i] > i. This child handles the case where
X[:, feature[i]] <= threshold[i].
children_right : array of int, shape [node_count]
children_right[i] holds the node id of the right child of node i.
For leaves, children_right[i] == TREE_LEAF. Otherwise,
children_right[i] > i. This child handles the case where
X[:, feature[i]] > threshold[i].
feature : array of int, shape [node_count]
feature[i] holds the feature to split on, for the internal node i.
threshold : array of double, shape [node_count]
threshold[i] holds the threshold for the internal node i.
value : array of double, shape [node_count, n_outputs, max_n_classes]
Contains the constant prediction value of each node.
impurity : array of double, shape [node_count]
impurity[i] holds the impurity (i.e., the value of the splitting
criterion) at node i.
n_node_samples : array of int, shape [node_count]
n_node_samples[i] holds the number of training samples reaching node i.
weighted_n_node_samples : array of double, shape [node_count]
weighted_n_node_samples[i] holds the weighted number of training samples
reaching node i.
"""
# Wrap for outside world.
# WARNING: these reference the current `nodes` and `value` buffers, which
# must not be freed by a subsequent memory allocation.
# (i.e. through `_resize` or `__setstate__`)
property n_classes:
def __get__(self):
return sizet_ptr_to_ndarray(self.n_classes, self.n_outputs)
property children_left:
def __get__(self):
return self._get_node_ndarray()['left_child'][:self.node_count]
property children_right:
def __get__(self):
return self._get_node_ndarray()['right_child'][:self.node_count]
property n_leaves:
def __get__(self):
return np.sum(np.logical_and(
self.children_left == -1,
self.children_right == -1))
property feature:
def __get__(self):
return self._get_node_ndarray()['feature'][:self.node_count]
property threshold:
def __get__(self):
return self._get_node_ndarray()['threshold'][:self.node_count]
property impurity:
def __get__(self):
return self._get_node_ndarray()['impurity'][:self.node_count]
property n_node_samples:
def __get__(self):
return self._get_node_ndarray()['n_node_samples'][:self.node_count]
property weighted_n_node_samples:
def __get__(self):
return self._get_node_ndarray()['weighted_n_node_samples'][:self.node_count]
property value:
def __get__(self):
return self._get_value_ndarray()[:self.node_count]
def __cinit__(self, int n_features, cnp.ndarray n_classes, int n_outputs):
"""Constructor."""
cdef SIZE_t dummy = 0
size_t_dtype = np.array(dummy).dtype
n_classes = _check_n_classes(n_classes, size_t_dtype)
# Input/Output layout
self.n_features = n_features
self.n_outputs = n_outputs
self.n_classes = NULL
safe_realloc(&self.n_classes, n_outputs)
self.max_n_classes = np.max(n_classes)
self.value_stride = n_outputs * self.max_n_classes
cdef SIZE_t k
for k in range(n_outputs):
self.n_classes[k] = n_classes[k]
# Inner structures
self.max_depth = 0
self.node_count = 0
self.capacity = 0
self.value = NULL
self.nodes = NULL
def __dealloc__(self):
"""Destructor."""
# Free all inner structures
free(self.n_classes)
free(self.value)
free(self.nodes)
def __reduce__(self):
"""Reduce re-implementation, for pickling."""
return (Tree, (self.n_features,
sizet_ptr_to_ndarray(self.n_classes, self.n_outputs),
self.n_outputs), self.__getstate__())
def __getstate__(self):
"""Getstate re-implementation, for pickling."""
d = {}
# capacity is inferred during the __setstate__ using nodes
d["max_depth"] = self.max_depth
d["node_count"] = self.node_count
d["nodes"] = self._get_node_ndarray()
d["values"] = self._get_value_ndarray()
return d
def __setstate__(self, d):
"""Setstate re-implementation, for unpickling."""
self.max_depth = d["max_depth"]
self.node_count = d["node_count"]
if 'nodes' not in d:
raise ValueError('You have loaded Tree version which '
'cannot be imported')
node_ndarray = d['nodes']
value_ndarray = d['values']
value_shape = (node_ndarray.shape[0], self.n_outputs,
self.max_n_classes)
node_ndarray = _check_node_ndarray(node_ndarray, expected_dtype=NODE_DTYPE)
value_ndarray = _check_value_ndarray(
value_ndarray,
expected_dtype=np.dtype(np.float64),
expected_shape=value_shape
)
self.capacity = node_ndarray.shape[0]
if self._resize_c(self.capacity) != 0:
raise MemoryError("resizing tree to %d" % self.capacity)
nodes = memcpy(self.nodes, (<cnp.ndarray> node_ndarray).data,
self.capacity * sizeof(Node))
value = memcpy(self.value, (<cnp.ndarray> value_ndarray).data,
self.capacity * self.value_stride * sizeof(double))
cdef int _resize(self, SIZE_t capacity) nogil except -1:
"""Resize all inner arrays to `capacity`, if `capacity` == -1, then
double the size of the inner arrays.
Returns -1 in case of failure to allocate memory (and raise MemoryError)
or 0 otherwise.
"""
if self._resize_c(capacity) != 0:
# Acquire gil only if we need to raise
with gil:
raise MemoryError()
cdef int _resize_c(self, SIZE_t capacity=SIZE_MAX) nogil except -1:
"""Guts of _resize
Returns -1 in case of failure to allocate memory (and raise MemoryError)
or 0 otherwise.
"""
if capacity == self.capacity and self.nodes != NULL:
return 0
if capacity == SIZE_MAX:
if self.capacity == 0:
capacity = 3 # default initial value
else:
capacity = 2 * self.capacity
safe_realloc(&self.nodes, capacity)
safe_realloc(&self.value, capacity * self.value_stride)
# value memory is initialised to 0 to enable classifier argmax
if capacity > self.capacity:
memset(<void*>(self.value + self.capacity * self.value_stride), 0,
(capacity - self.capacity) * self.value_stride *
sizeof(double))
# if capacity smaller than node_count, adjust the counter
if capacity < self.node_count:
self.node_count = capacity
self.capacity = capacity
return 0
cdef SIZE_t _add_node(self, SIZE_t parent, bint is_left, bint is_leaf,
SIZE_t feature, double threshold, double impurity,
SIZE_t n_node_samples,
double weighted_n_node_samples) nogil except -1:
"""Add a node to the tree.
The new node registers itself as the child of its parent.
Returns (size_t)(-1) on error.
"""
cdef SIZE_t node_id = self.node_count
if node_id >= self.capacity:
if self._resize_c() != 0:
return SIZE_MAX
cdef Node* node = &self.nodes[node_id]
node.impurity = impurity
node.n_node_samples = n_node_samples
node.weighted_n_node_samples = weighted_n_node_samples
if parent != _TREE_UNDEFINED:
if is_left:
self.nodes[parent].left_child = node_id
else:
self.nodes[parent].right_child = node_id
if is_leaf:
node.left_child = _TREE_LEAF
node.right_child = _TREE_LEAF
node.feature = _TREE_UNDEFINED
node.threshold = _TREE_UNDEFINED
else:
# left_child and right_child will be set later
node.feature = feature
node.threshold = threshold
self.node_count += 1
return node_id
cpdef cnp.ndarray predict(self, object X):
"""Predict target for X."""
out = self._get_value_ndarray().take(self.apply(X), axis=0,
mode='clip')
if self.n_outputs == 1:
out = out.reshape(X.shape[0], self.max_n_classes)
return out
cpdef cnp.ndarray apply(self, object X):
"""Finds the terminal region (=leaf node) for each sample in X."""
if issparse(X):
return self._apply_sparse_csr(X)
else:
return self._apply_dense(X)
cdef inline cnp.ndarray _apply_dense(self, object X):
"""Finds the terminal region (=leaf node) for each sample in X."""
# Check input
if not isinstance(X, np.ndarray):
raise ValueError("X should be in np.ndarray format, got %s"
% type(X))
if X.dtype != DTYPE:
raise ValueError("X.dtype should be np.float32, got %s" % X.dtype)
# Extract input
cdef const DTYPE_t[:, :] X_ndarray = X
cdef SIZE_t n_samples = X.shape[0]
# Initialize output
cdef cnp.ndarray[SIZE_t] out = np.zeros((n_samples,), dtype=np.intp)
cdef SIZE_t* out_ptr = <SIZE_t*> out.data
# Initialize auxiliary data-structure
cdef Node* node = NULL
cdef SIZE_t i = 0
with nogil:
for i in range(n_samples):
node = self.nodes
# While node not a leaf
while node.left_child != _TREE_LEAF:
# ... and node.right_child != _TREE_LEAF:
if X_ndarray[i, node.feature] <= node.threshold:
node = &self.nodes[node.left_child]
else:
node = &self.nodes[node.right_child]
out_ptr[i] = <SIZE_t>(node - self.nodes) # node offset
return out
cdef inline cnp.ndarray _apply_sparse_csr(self, object X):
"""Finds the terminal region (=leaf node) for each sample in sparse X.
"""
# Check input
if not isinstance(X, csr_matrix):
raise ValueError("X should be in csr_matrix format, got %s"
% type(X))
if X.dtype != DTYPE:
raise ValueError("X.dtype should be np.float32, got %s" % X.dtype)
# Extract input
cdef cnp.ndarray[ndim=1, dtype=DTYPE_t] X_data_ndarray = X.data
cdef cnp.ndarray[ndim=1, dtype=INT32_t] X_indices_ndarray = X.indices
cdef cnp.ndarray[ndim=1, dtype=INT32_t] X_indptr_ndarray = X.indptr
cdef DTYPE_t* X_data = <DTYPE_t*>X_data_ndarray.data
cdef INT32_t* X_indices = <INT32_t*>X_indices_ndarray.data
cdef INT32_t* X_indptr = <INT32_t*>X_indptr_ndarray.data
cdef SIZE_t n_samples = X.shape[0]
cdef SIZE_t n_features = X.shape[1]
# Initialize output
cdef cnp.ndarray[SIZE_t, ndim=1] out = np.zeros((n_samples,),
dtype=np.intp)
cdef SIZE_t* out_ptr = <SIZE_t*> out.data
# Initialize auxiliary data-structure
cdef DTYPE_t feature_value = 0.
cdef Node* node = NULL
cdef DTYPE_t* X_sample = NULL
cdef SIZE_t i = 0
cdef INT32_t k = 0
# feature_to_sample as a data structure records the last seen sample
# for each feature; functionally, it is an efficient way to identify
# which features are nonzero in the present sample.
cdef SIZE_t* feature_to_sample = NULL
safe_realloc(&X_sample, n_features)
safe_realloc(&feature_to_sample, n_features)
with nogil:
memset(feature_to_sample, -1, n_features * sizeof(SIZE_t))
for i in range(n_samples):
node = self.nodes
for k in range(X_indptr[i], X_indptr[i + 1]):
feature_to_sample[X_indices[k]] = i
X_sample[X_indices[k]] = X_data[k]
# While node not a leaf
while node.left_child != _TREE_LEAF:
# ... and node.right_child != _TREE_LEAF:
if feature_to_sample[node.feature] == i:
feature_value = X_sample[node.feature]
else:
feature_value = 0.
if feature_value <= node.threshold:
node = &self.nodes[node.left_child]
else:
node = &self.nodes[node.right_child]
out_ptr[i] = <SIZE_t>(node - self.nodes) # node offset
# Free auxiliary arrays
free(X_sample)
free(feature_to_sample)
return out
cpdef object decision_path(self, object X):
"""Finds the decision path (=node) for each sample in X."""
if issparse(X):
return self._decision_path_sparse_csr(X)
else:
return self._decision_path_dense(X)
cdef inline object _decision_path_dense(self, object X):
"""Finds the decision path (=node) for each sample in X."""
# Check input
if not isinstance(X, np.ndarray):
raise ValueError("X should be in np.ndarray format, got %s"
% type(X))
if X.dtype != DTYPE:
raise ValueError("X.dtype should be np.float32, got %s" % X.dtype)
# Extract input
cdef const DTYPE_t[:, :] X_ndarray = X
cdef SIZE_t n_samples = X.shape[0]
# Initialize output
cdef cnp.ndarray[SIZE_t] indptr = np.zeros(n_samples + 1, dtype=np.intp)
cdef SIZE_t* indptr_ptr = <SIZE_t*> indptr.data
cdef cnp.ndarray[SIZE_t] indices = np.zeros(n_samples *
(1 + self.max_depth),
dtype=np.intp)
cdef SIZE_t* indices_ptr = <SIZE_t*> indices.data
# Initialize auxiliary data-structure
cdef Node* node = NULL
cdef SIZE_t i = 0
with nogil:
for i in range(n_samples):
node = self.nodes
indptr_ptr[i + 1] = indptr_ptr[i]
# Add all external nodes
while node.left_child != _TREE_LEAF:
# ... and node.right_child != _TREE_LEAF:
indices_ptr[indptr_ptr[i + 1]] = <SIZE_t>(node - self.nodes)
indptr_ptr[i + 1] += 1
if X_ndarray[i, node.feature] <= node.threshold:
node = &self.nodes[node.left_child]
else:
node = &self.nodes[node.right_child]
# Add the leave node
indices_ptr[indptr_ptr[i + 1]] = <SIZE_t>(node - self.nodes)
indptr_ptr[i + 1] += 1
indices = indices[:indptr[n_samples]]
cdef cnp.ndarray[SIZE_t] data = np.ones(shape=len(indices),
dtype=np.intp)
out = csr_matrix((data, indices, indptr),
shape=(n_samples, self.node_count))
return out
cdef inline object _decision_path_sparse_csr(self, object X):
"""Finds the decision path (=node) for each sample in X."""
# Check input
if not isinstance(X, csr_matrix):
raise ValueError("X should be in csr_matrix format, got %s"
% type(X))
if X.dtype != DTYPE:
raise ValueError("X.dtype should be np.float32, got %s" % X.dtype)
# Extract input
cdef cnp.ndarray[ndim=1, dtype=DTYPE_t] X_data_ndarray = X.data
cdef cnp.ndarray[ndim=1, dtype=INT32_t] X_indices_ndarray = X.indices
cdef cnp.ndarray[ndim=1, dtype=INT32_t] X_indptr_ndarray = X.indptr
cdef DTYPE_t* X_data = <DTYPE_t*>X_data_ndarray.data
cdef INT32_t* X_indices = <INT32_t*>X_indices_ndarray.data
cdef INT32_t* X_indptr = <INT32_t*>X_indptr_ndarray.data
cdef SIZE_t n_samples = X.shape[0]
cdef SIZE_t n_features = X.shape[1]
# Initialize output
cdef cnp.ndarray[SIZE_t] indptr = np.zeros(n_samples + 1, dtype=np.intp)
cdef SIZE_t* indptr_ptr = <SIZE_t*> indptr.data
cdef cnp.ndarray[SIZE_t] indices = np.zeros(n_samples *
(1 + self.max_depth),
dtype=np.intp)
cdef SIZE_t* indices_ptr = <SIZE_t*> indices.data
# Initialize auxiliary data-structure
cdef DTYPE_t feature_value = 0.
cdef Node* node = NULL
cdef DTYPE_t* X_sample = NULL
cdef SIZE_t i = 0
cdef INT32_t k = 0
# feature_to_sample as a data structure records the last seen sample
# for each feature; functionally, it is an efficient way to identify
# which features are nonzero in the present sample.
cdef SIZE_t* feature_to_sample = NULL
safe_realloc(&X_sample, n_features)
safe_realloc(&feature_to_sample, n_features)
with nogil:
memset(feature_to_sample, -1, n_features * sizeof(SIZE_t))
for i in range(n_samples):
node = self.nodes
indptr_ptr[i + 1] = indptr_ptr[i]
for k in range(X_indptr[i], X_indptr[i + 1]):
feature_to_sample[X_indices[k]] = i
X_sample[X_indices[k]] = X_data[k]
# While node not a leaf
while node.left_child != _TREE_LEAF:
# ... and node.right_child != _TREE_LEAF:
indices_ptr[indptr_ptr[i + 1]] = <SIZE_t>(node - self.nodes)
indptr_ptr[i + 1] += 1
if feature_to_sample[node.feature] == i:
feature_value = X_sample[node.feature]
else:
feature_value = 0.
if feature_value <= node.threshold:
node = &self.nodes[node.left_child]
else:
node = &self.nodes[node.right_child]
# Add the leave node
indices_ptr[indptr_ptr[i + 1]] = <SIZE_t>(node - self.nodes)
indptr_ptr[i + 1] += 1
# Free auxiliary arrays
free(X_sample)
free(feature_to_sample)
indices = indices[:indptr[n_samples]]
cdef cnp.ndarray[SIZE_t] data = np.ones(shape=len(indices),
dtype=np.intp)
out = csr_matrix((data, indices, indptr),
shape=(n_samples, self.node_count))
return out
cpdef compute_feature_importances(self, normalize=True):
"""Computes the importance of each feature (aka variable)."""
cdef Node* left
cdef Node* right
cdef Node* nodes = self.nodes
cdef Node* node = nodes
cdef Node* end_node = node + self.node_count
cdef double normalizer = 0.
cdef cnp.ndarray[cnp.float64_t, ndim=1] importances
importances = np.zeros((self.n_features,))
cdef DOUBLE_t* importance_data = <DOUBLE_t*>importances.data
with nogil:
while node != end_node:
if node.left_child != _TREE_LEAF:
# ... and node.right_child != _TREE_LEAF:
left = &nodes[node.left_child]
right = &nodes[node.right_child]
importance_data[node.feature] += (
node.weighted_n_node_samples * node.impurity -
left.weighted_n_node_samples * left.impurity -
right.weighted_n_node_samples * right.impurity)
node += 1
importances /= nodes[0].weighted_n_node_samples
if normalize:
normalizer = np.sum(importances)
if normalizer > 0.0:
# Avoid dividing by zero (e.g., when root is pure)
importances /= normalizer
return importances
cdef cnp.ndarray _get_value_ndarray(self):
"""Wraps value as a 3-d NumPy array.
The array keeps a reference to this Tree, which manages the underlying
memory.
"""
cdef cnp.npy_intp shape[3]
shape[0] = <cnp.npy_intp> self.node_count
shape[1] = <cnp.npy_intp> self.n_outputs
shape[2] = <cnp.npy_intp> self.max_n_classes
cdef cnp.ndarray arr
arr = cnp.PyArray_SimpleNewFromData(3, shape, cnp.NPY_DOUBLE, self.value)
Py_INCREF(self)
if PyArray_SetBaseObject(arr, <PyObject*> self) < 0:
raise ValueError("Can't initialize array.")
return arr
cdef cnp.ndarray _get_node_ndarray(self):
"""Wraps nodes as a NumPy struct array.
The array keeps a reference to this Tree, which manages the underlying
memory. Individual fields are publicly accessible as properties of the
Tree.
"""
cdef cnp.npy_intp shape[1]
shape[0] = <cnp.npy_intp> self.node_count
cdef cnp.npy_intp strides[1]
strides[0] = sizeof(Node)
cdef cnp.ndarray arr
Py_INCREF(NODE_DTYPE)
arr = PyArray_NewFromDescr(<PyTypeObject *> cnp.ndarray,
<cnp.dtype> NODE_DTYPE, 1, shape,
strides, <void*> self.nodes,
cnp.NPY_DEFAULT, None)
Py_INCREF(self)
if PyArray_SetBaseObject(arr, <PyObject*> self) < 0:
raise ValueError("Can't initialize array.")
return arr
def compute_partial_dependence(self, DTYPE_t[:, ::1] X,
int[::1] target_features,
double[::1] out):
"""Partial dependence of the response on the ``target_feature`` set.
For each sample in ``X`` a tree traversal is performed.
Each traversal starts from the root with weight 1.0.
At each non-leaf node that splits on a target feature, either
the left child or the right child is visited based on the feature
value of the current sample, and the weight is not modified.
At each non-leaf node that splits on a complementary feature,
both children are visited and the weight is multiplied by the fraction
of training samples which went to each child.
At each leaf, the value of the node is multiplied by the current
weight (weights sum to 1 for all visited terminal nodes).
Parameters
----------
X : view on 2d ndarray, shape (n_samples, n_target_features)
The grid points on which the partial dependence should be
evaluated.
target_features : view on 1d ndarray, shape (n_target_features)
The set of target features for which the partial dependence
should be evaluated.
out : view on 1d ndarray, shape (n_samples)
The value of the partial dependence function on each grid
point.
"""
cdef:
double[::1] weight_stack = np.zeros(self.node_count,
dtype=np.float64)
SIZE_t[::1] node_idx_stack = np.zeros(self.node_count,
dtype=np.intp)
SIZE_t sample_idx
SIZE_t feature_idx
int stack_size
double left_sample_frac
double current_weight
double total_weight # used for sanity check only
Node *current_node # use a pointer to avoid copying attributes
SIZE_t current_node_idx
bint is_target_feature
SIZE_t _TREE_LEAF = TREE_LEAF # to avoid python interactions
for sample_idx in range(X.shape[0]):
# init stacks for current sample
stack_size = 1
node_idx_stack[0] = 0 # root node
weight_stack[0] = 1 # all the samples are in the root node
total_weight = 0
while stack_size > 0:
# pop the stack
stack_size -= 1
current_node_idx = node_idx_stack[stack_size]
current_node = &self.nodes[current_node_idx]
if current_node.left_child == _TREE_LEAF:
# leaf node
out[sample_idx] += (weight_stack[stack_size] *
self.value[current_node_idx])
total_weight += weight_stack[stack_size]
else:
# non-leaf node
# determine if the split feature is a target feature
is_target_feature = False
for feature_idx in range(target_features.shape[0]):
if target_features[feature_idx] == current_node.feature:
is_target_feature = True
break
if is_target_feature:
# In this case, we push left or right child on stack
if X[sample_idx, feature_idx] <= current_node.threshold:
node_idx_stack[stack_size] = current_node.left_child
else:
node_idx_stack[stack_size] = current_node.right_child
stack_size += 1
else:
# In this case, we push both children onto the stack,
# and give a weight proportional to the number of
# samples going through each branch.
# push left child
node_idx_stack[stack_size] = current_node.left_child
left_sample_frac = (
self.nodes[current_node.left_child].weighted_n_node_samples /
current_node.weighted_n_node_samples)
current_weight = weight_stack[stack_size]
weight_stack[stack_size] = current_weight * left_sample_frac
stack_size += 1
# push right child
node_idx_stack[stack_size] = current_node.right_child
weight_stack[stack_size] = (
current_weight * (1 - left_sample_frac))
stack_size += 1
# Sanity check. Should never happen.
if not (0.999 < total_weight < 1.001):
raise ValueError("Total weight should be 1.0 but was %.9f" %
total_weight)
def _check_n_classes(n_classes, expected_dtype):
if n_classes.ndim != 1:
raise ValueError(
f"Wrong dimensions for n_classes from the pickle: "
f"expected 1, got {n_classes.ndim}"
)
if n_classes.dtype == expected_dtype:
return n_classes
# Handles both different endianness and different bitness
if n_classes.dtype.kind == "i" and n_classes.dtype.itemsize in [4, 8]:
return n_classes.astype(expected_dtype, casting="same_kind")
raise ValueError(
"n_classes from the pickle has an incompatible dtype:\n"
f"- expected: {expected_dtype}\n"
f"- got: {n_classes.dtype}"
)
def _check_value_ndarray(value_ndarray, expected_dtype, expected_shape):
if value_ndarray.shape != expected_shape:
raise ValueError(
"Wrong shape for value array from the pickle: "
f"expected {expected_shape}, got {value_ndarray.shape}"
)
if not value_ndarray.flags.c_contiguous:
raise ValueError(
"value array from the pickle should be a C-contiguous array"
)
if value_ndarray.dtype == expected_dtype:
return value_ndarray
# Handles different endianness
if value_ndarray.dtype.str.endswith('f8'):
return value_ndarray.astype(expected_dtype, casting='equiv')
raise ValueError(
"value array from the pickle has an incompatible dtype:\n"
f"- expected: {expected_dtype}\n"
f"- got: {value_ndarray.dtype}"
)
def _dtype_to_dict(dtype):
return {name: dt.str for name, (dt, *rest) in dtype.fields.items()}
def _dtype_dict_with_modified_bitness(dtype_dict):
# field names in Node struct with SIZE_t types (see sklearn/tree/_tree.pxd)
indexing_field_names = ["left_child", "right_child", "feature", "n_node_samples"]
expected_dtype_size = str(struct.calcsize("P"))
allowed_dtype_size = "8" if expected_dtype_size == "4" else "4"
allowed_dtype_dict = dtype_dict.copy()
for name in indexing_field_names:
allowed_dtype_dict[name] = allowed_dtype_dict[name].replace(
expected_dtype_size, allowed_dtype_size
)
return allowed_dtype_dict
def _all_compatible_dtype_dicts(dtype):
# The Cython code for decision trees uses platform-specific SIZE_t
# typed indexing fields that correspond to either i4 or i8 dtypes for
# the matching fields in the numpy array depending on the bitness of
# the platform (32 bit or 64 bit respectively).
#
# We need to cast the indexing fields of the NODE_DTYPE-dtyped array at
# pickle load time to enable cross-bitness deployment scenarios. We
# typically want to make it possible to run the expensive fit method of
# a tree estimator on a 64 bit server platform, pickle the estimator
# for deployment and run the predict method of a low power 32 bit edge
# platform.
#
# A similar thing happens for endianness, the machine where the pickle was
# saved can have a different endianness than the machine where the pickle
# is loaded
dtype_dict = _dtype_to_dict(dtype)
dtype_dict_with_modified_bitness = _dtype_dict_with_modified_bitness(dtype_dict)
dtype_dict_with_modified_endianness = _dtype_to_dict(dtype.newbyteorder())
dtype_dict_with_modified_bitness_and_endianness = _dtype_dict_with_modified_bitness(
dtype_dict_with_modified_endianness
)
return [
dtype_dict,
dtype_dict_with_modified_bitness,
dtype_dict_with_modified_endianness,
dtype_dict_with_modified_bitness_and_endianness,
]
def _check_node_ndarray(node_ndarray, expected_dtype):
if node_ndarray.ndim != 1:
raise ValueError(
"Wrong dimensions for node array from the pickle: "
f"expected 1, got {node_ndarray.ndim}"
)
if not node_ndarray.flags.c_contiguous:
raise ValueError(
"node array from the pickle should be a C-contiguous array"
)
node_ndarray_dtype = node_ndarray.dtype
if node_ndarray_dtype == expected_dtype:
return node_ndarray
node_ndarray_dtype_dict = _dtype_to_dict(node_ndarray_dtype)
all_compatible_dtype_dicts = _all_compatible_dtype_dicts(expected_dtype)
if node_ndarray_dtype_dict not in all_compatible_dtype_dicts:
raise ValueError(
"node array from the pickle has an incompatible dtype:\n"
f"- expected: {expected_dtype}\n"
f"- got : {node_ndarray_dtype}"
)
return node_ndarray.astype(expected_dtype, casting="same_kind")
# =============================================================================
# Build Pruned Tree
# =============================================================================
cdef class _CCPPruneController:
"""Base class used by build_pruned_tree_ccp and ccp_pruning_path
to control pruning.
"""
cdef bint stop_pruning(self, DOUBLE_t effective_alpha) nogil:
"""Return 1 to stop pruning and 0 to continue pruning"""
return 0
cdef void save_metrics(self, DOUBLE_t effective_alpha,
DOUBLE_t subtree_impurities) nogil:
"""Save metrics when pruning"""
pass
cdef void after_pruning(self, unsigned char[:] in_subtree) nogil:
"""Called after pruning"""
pass
cdef class _AlphaPruner(_CCPPruneController):
"""Use alpha to control when to stop pruning."""
cdef DOUBLE_t ccp_alpha
cdef SIZE_t capacity
def __cinit__(self, DOUBLE_t ccp_alpha):
self.ccp_alpha = ccp_alpha
self.capacity = 0
cdef bint stop_pruning(self, DOUBLE_t effective_alpha) nogil:
# The subtree on the previous iteration has the greatest ccp_alpha
# less than or equal to self.ccp_alpha
return self.ccp_alpha < effective_alpha
cdef void after_pruning(self, unsigned char[:] in_subtree) nogil:
"""Updates the number of leaves in subtree"""
for i in range(in_subtree.shape[0]):
if in_subtree[i]:
self.capacity += 1
cdef class _PathFinder(_CCPPruneController):
"""Record metrics used to return the cost complexity path."""
cdef DOUBLE_t[:] ccp_alphas
cdef DOUBLE_t[:] impurities
cdef UINT32_t count
def __cinit__(self, int node_count):
self.ccp_alphas = np.zeros(shape=(node_count), dtype=np.float64)
self.impurities = np.zeros(shape=(node_count), dtype=np.float64)
self.count = 0
cdef void save_metrics(self,
DOUBLE_t effective_alpha,
DOUBLE_t subtree_impurities) nogil:
self.ccp_alphas[self.count] = effective_alpha
self.impurities[self.count] = subtree_impurities
self.count += 1
cdef struct CostComplexityPruningRecord:
SIZE_t node_idx
SIZE_t parent
cdef _cost_complexity_prune(unsigned char[:] leaves_in_subtree, # OUT
Tree orig_tree,
_CCPPruneController controller):
"""Perform cost complexity pruning.
This function takes an already grown tree, `orig_tree` and outputs a
boolean mask `leaves_in_subtree` which are the leaves in the pruned tree.
During the pruning process, the controller is passed the effective alpha and
the subtree impurities. Furthermore, the controller signals when to stop
pruning.
Parameters
----------
leaves_in_subtree : unsigned char[:]
Output for leaves of subtree
orig_tree : Tree
Original tree
ccp_controller : _CCPPruneController
Cost complexity controller
"""
cdef:
SIZE_t i
SIZE_t n_nodes = orig_tree.node_count
# prior probability using weighted samples
DOUBLE_t[:] weighted_n_node_samples = orig_tree.weighted_n_node_samples
DOUBLE_t total_sum_weights = weighted_n_node_samples[0]
DOUBLE_t[:] impurity = orig_tree.impurity
# weighted impurity of each node
DOUBLE_t[:] r_node = np.empty(shape=n_nodes, dtype=np.float64)
SIZE_t[:] child_l = orig_tree.children_left
SIZE_t[:] child_r = orig_tree.children_right
SIZE_t[:] parent = np.zeros(shape=n_nodes, dtype=np.intp)
stack[CostComplexityPruningRecord] ccp_stack
CostComplexityPruningRecord stack_record
SIZE_t node_idx
stack[SIZE_t] node_indices_stack
SIZE_t[:] n_leaves = np.zeros(shape=n_nodes, dtype=np.intp)
DOUBLE_t[:] r_branch = np.zeros(shape=n_nodes, dtype=np.float64)
DOUBLE_t current_r
SIZE_t leaf_idx
SIZE_t parent_idx
# candidate nodes that can be pruned
unsigned char[:] candidate_nodes = np.zeros(shape=n_nodes,
dtype=np.uint8)
# nodes in subtree
unsigned char[:] in_subtree = np.ones(shape=n_nodes, dtype=np.uint8)
SIZE_t pruned_branch_node_idx
DOUBLE_t subtree_alpha
DOUBLE_t effective_alpha
SIZE_t n_pruned_leaves
DOUBLE_t r_diff
DOUBLE_t max_float64 = np.finfo(np.float64).max
# find parent node ids and leaves
with nogil:
for i in range(r_node.shape[0]):
r_node[i] = (
weighted_n_node_samples[i] * impurity[i] / total_sum_weights)
# Push the root node
ccp_stack.push({"node_idx": 0, "parent": _TREE_UNDEFINED})
while not ccp_stack.empty():
stack_record = ccp_stack.top()
ccp_stack.pop()
node_idx = stack_record.node_idx
parent[node_idx] = stack_record.parent
if child_l[node_idx] == _TREE_LEAF:
# ... and child_r[node_idx] == _TREE_LEAF:
leaves_in_subtree[node_idx] = 1
else:
ccp_stack.push({"node_idx": child_l[node_idx], "parent": node_idx})
ccp_stack.push({"node_idx": child_r[node_idx], "parent": node_idx})
# computes number of leaves in all branches and the overall impurity of
# the branch. The overall impurity is the sum of r_node in its leaves.
for leaf_idx in range(leaves_in_subtree.shape[0]):
if not leaves_in_subtree[leaf_idx]:
continue
r_branch[leaf_idx] = r_node[leaf_idx]
# bubble up values to ancestor nodes
current_r = r_node[leaf_idx]
while leaf_idx != 0:
parent_idx = parent[leaf_idx]
r_branch[parent_idx] += current_r
n_leaves[parent_idx] += 1
leaf_idx = parent_idx
for i in range(leaves_in_subtree.shape[0]):
candidate_nodes[i] = not leaves_in_subtree[i]
# save metrics before pruning
controller.save_metrics(0.0, r_branch[0])
# while root node is not a leaf
while candidate_nodes[0]:
# computes ccp_alpha for subtrees and finds the minimal alpha
effective_alpha = max_float64
for i in range(n_nodes):
if not candidate_nodes[i]:
continue
subtree_alpha = (r_node[i] - r_branch[i]) / (n_leaves[i] - 1)
if subtree_alpha < effective_alpha:
effective_alpha = subtree_alpha
pruned_branch_node_idx = i
if controller.stop_pruning(effective_alpha):
break
node_indices_stack.push(pruned_branch_node_idx)
# descendants of branch are not in subtree
while not node_indices_stack.empty():
node_idx = node_indices_stack.top()
node_indices_stack.pop()
if not in_subtree[node_idx]:
continue # branch has already been marked for pruning
candidate_nodes[node_idx] = 0
leaves_in_subtree[node_idx] = 0
in_subtree[node_idx] = 0
if child_l[node_idx] != _TREE_LEAF:
# ... and child_r[node_idx] != _TREE_LEAF:
node_indices_stack.push(child_l[node_idx])
node_indices_stack.push(child_r[node_idx])
leaves_in_subtree[pruned_branch_node_idx] = 1
in_subtree[pruned_branch_node_idx] = 1
# updates number of leaves
n_pruned_leaves = n_leaves[pruned_branch_node_idx] - 1
n_leaves[pruned_branch_node_idx] = 0
# computes the increase in r_branch to bubble up
r_diff = r_node[pruned_branch_node_idx] - r_branch[pruned_branch_node_idx]
r_branch[pruned_branch_node_idx] = r_node[pruned_branch_node_idx]
# bubble up values to ancestors
node_idx = parent[pruned_branch_node_idx]
while node_idx != _TREE_UNDEFINED:
n_leaves[node_idx] -= n_pruned_leaves
r_branch[node_idx] += r_diff
node_idx = parent[node_idx]
controller.save_metrics(effective_alpha, r_branch[0])
controller.after_pruning(in_subtree)
def _build_pruned_tree_ccp(
Tree tree, # OUT
Tree orig_tree,
DOUBLE_t ccp_alpha):
"""Build a pruned tree from the original tree using cost complexity
pruning.
The values and nodes from the original tree are copied into the pruned
tree.
Parameters
----------
tree : Tree
Location to place the pruned tree
orig_tree : Tree
Original tree
ccp_alpha : positive double
Complexity parameter. The subtree with the largest cost complexity
that is smaller than ``ccp_alpha`` will be chosen. By default,
no pruning is performed.
"""
cdef:
SIZE_t n_nodes = orig_tree.node_count
unsigned char[:] leaves_in_subtree = np.zeros(
shape=n_nodes, dtype=np.uint8)
pruning_controller = _AlphaPruner(ccp_alpha=ccp_alpha)
_cost_complexity_prune(leaves_in_subtree, orig_tree, pruning_controller)
_build_pruned_tree(tree, orig_tree, leaves_in_subtree,
pruning_controller.capacity)
def ccp_pruning_path(Tree orig_tree):
"""Computes the cost complexity pruning path.
Parameters
----------
tree : Tree
Original tree.
Returns
-------
path_info : dict
Information about pruning path with attributes:
ccp_alphas : ndarray
Effective alphas of subtree during pruning.
impurities : ndarray
Sum of the impurities of the subtree leaves for the
corresponding alpha value in ``ccp_alphas``.
"""
cdef:
unsigned char[:] leaves_in_subtree = np.zeros(
shape=orig_tree.node_count, dtype=np.uint8)
path_finder = _PathFinder(orig_tree.node_count)
_cost_complexity_prune(leaves_in_subtree, orig_tree, path_finder)
cdef:
UINT32_t total_items = path_finder.count
cnp.ndarray ccp_alphas = np.empty(shape=total_items,
dtype=np.float64)
cnp.ndarray impurities = np.empty(shape=total_items,
dtype=np.float64)
UINT32_t count = 0
while count < total_items:
ccp_alphas[count] = path_finder.ccp_alphas[count]
impurities[count] = path_finder.impurities[count]
count += 1
return {'ccp_alphas': ccp_alphas, 'impurities': impurities}
cdef struct BuildPrunedRecord:
SIZE_t start
SIZE_t depth
SIZE_t parent
bint is_left
cdef _build_pruned_tree(
Tree tree, # OUT
Tree orig_tree,
const unsigned char[:] leaves_in_subtree,
SIZE_t capacity):
"""Build a pruned tree.
Build a pruned tree from the original tree by transforming the nodes in
``leaves_in_subtree`` into leaves.
Parameters
----------
tree : Tree
Location to place the pruned tree
orig_tree : Tree
Original tree
leaves_in_subtree : unsigned char memoryview, shape=(node_count, )
Boolean mask for leaves to include in subtree
capacity : SIZE_t
Number of nodes to initially allocate in pruned tree
"""
tree._resize(capacity)
cdef:
SIZE_t orig_node_id
SIZE_t new_node_id
SIZE_t depth
SIZE_t parent
bint is_left
bint is_leaf
# value_stride for original tree and new tree are the same
SIZE_t value_stride = orig_tree.value_stride
SIZE_t max_depth_seen = -1
int rc = 0
Node* node
double* orig_value_ptr
double* new_value_ptr
stack[BuildPrunedRecord] prune_stack
BuildPrunedRecord stack_record
with nogil:
# push root node onto stack
prune_stack.push({"start": 0, "depth": 0, "parent": _TREE_UNDEFINED, "is_left": 0})
while not prune_stack.empty():
stack_record = prune_stack.top()
prune_stack.pop()
orig_node_id = stack_record.start
depth = stack_record.depth
parent = stack_record.parent
is_left = stack_record.is_left
is_leaf = leaves_in_subtree[orig_node_id]
node = &orig_tree.nodes[orig_node_id]
new_node_id = tree._add_node(
parent, is_left, is_leaf, node.feature, node.threshold,
node.impurity, node.n_node_samples,
node.weighted_n_node_samples)
if new_node_id == SIZE_MAX:
rc = -1
break
# copy value from original tree to new tree
orig_value_ptr = orig_tree.value + value_stride * orig_node_id
new_value_ptr = tree.value + value_stride * new_node_id
memcpy(new_value_ptr, orig_value_ptr, sizeof(double) * value_stride)
if not is_leaf:
# Push right child on stack
prune_stack.push({"start": node.right_child, "depth": depth + 1,
"parent": new_node_id, "is_left": 0})
# push left child on stack
prune_stack.push({"start": node.left_child, "depth": depth + 1,
"parent": new_node_id, "is_left": 1})
if depth > max_depth_seen:
max_depth_seen = depth
if rc >= 0:
tree.max_depth = max_depth_seen
if rc == -1:
raise MemoryError("pruning tree")
|