File: _seq_dataset.pxd.tp

package info (click to toggle)
scikit-learn 1.2.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 23,280 kB
  • sloc: python: 184,491; cpp: 5,783; ansic: 854; makefile: 307; sh: 45; javascript: 1
file content (80 lines) | stat: -rw-r--r-- 2,477 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
{{py:

"""
Dataset abstractions for sequential data access.

Template file for easily generate fused types consistent code using Tempita
(https://github.com/cython/cython/blob/master/Cython/Tempita/_tempita.py).

Generated file: _seq_dataset.pxd

Each class is duplicated for all dtypes (float and double). The keywords
between double braces are substituted in setup.py.
"""

# name_suffix, c_type
dtypes = [('64', 'double'),
          ('32', 'float')]

}}
{{for name_suffix, c_type in dtypes}}

#------------------------------------------------------------------------------

"""
Dataset abstractions for sequential data access.
WARNING: Do not edit .pxd file directly, it is generated from .pxd.tp
"""

cimport numpy as cnp

# SequentialDataset and its two concrete subclasses are (optionally randomized)
# iterators over the rows of a matrix X and corresponding target values y.


cdef class SequentialDataset{{name_suffix}}:
    cdef int current_index
    cdef cnp.ndarray index
    cdef int *index_data_ptr
    cdef Py_ssize_t n_samples
    cdef cnp.uint32_t seed

    cdef void shuffle(self, cnp.uint32_t seed) nogil
    cdef int _get_next_index(self) nogil
    cdef int _get_random_index(self) nogil

    cdef void _sample(self, {{c_type}} **x_data_ptr, int **x_ind_ptr,
                      int *nnz, {{c_type}} *y, {{c_type}} *sample_weight,
                      int current_index) nogil
    cdef void next(self, {{c_type}} **x_data_ptr, int **x_ind_ptr,
                   int *nnz, {{c_type}} *y, {{c_type}} *sample_weight) nogil
    cdef int random(self, {{c_type}} **x_data_ptr, int **x_ind_ptr,
                    int *nnz, {{c_type}} *y, {{c_type}} *sample_weight) nogil


cdef class ArrayDataset{{name_suffix}}(SequentialDataset{{name_suffix}}):
    cdef cnp.ndarray X
    cdef cnp.ndarray Y
    cdef cnp.ndarray sample_weights
    cdef Py_ssize_t n_features
    cdef cnp.npy_intp X_stride
    cdef {{c_type}} *X_data_ptr
    cdef {{c_type}} *Y_data_ptr
    cdef cnp.ndarray feature_indices
    cdef int *feature_indices_ptr
    cdef {{c_type}} *sample_weight_data


cdef class CSRDataset{{name_suffix}}(SequentialDataset{{name_suffix}}):
    cdef cnp.ndarray X_data
    cdef cnp.ndarray X_indptr
    cdef cnp.ndarray X_indices
    cdef cnp.ndarray Y
    cdef cnp.ndarray sample_weights
    cdef {{c_type}} *X_data_ptr
    cdef int *X_indptr_ptr
    cdef int *X_indices_ptr
    cdef {{c_type}} *Y_data_ptr
    cdef {{c_type}} *sample_weight_data

{{endfor}}