File: test_arrayfuncs.py

package info (click to toggle)
scikit-learn 1.2.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 23,280 kB
  • sloc: python: 184,491; cpp: 5,783; ansic: 854; makefile: 307; sh: 45; javascript: 1
file content (26 lines) | stat: -rw-r--r-- 793 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
import pytest
import numpy as np

from sklearn.utils._testing import assert_allclose
from sklearn.utils.arrayfuncs import min_pos


def test_min_pos():
    # Check that min_pos returns a positive value and that it's consistent
    # between float and double
    X = np.random.RandomState(0).randn(100)

    min_double = min_pos(X)
    min_float = min_pos(X.astype(np.float32))

    assert_allclose(min_double, min_float)
    assert min_double >= 0


@pytest.mark.parametrize("dtype", [np.float32, np.float64])
def test_min_pos_no_positive(dtype):
    # Check that the return value of min_pos is the maximum representable
    # value of the input dtype when all input elements are <= 0 (#19328)
    X = np.full(100, -1.0).astype(dtype, copy=False)

    assert min_pos(X) == np.finfo(dtype).max