File: test_optimize.py

package info (click to toggle)
scikit-learn 1.2.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 23,280 kB
  • sloc: python: 184,491; cpp: 5,783; ansic: 854; makefile: 307; sh: 45; javascript: 1
file content (32 lines) | stat: -rw-r--r-- 769 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import numpy as np

from sklearn.utils.optimize import _newton_cg
from scipy.optimize import fmin_ncg

from sklearn.utils._testing import assert_array_almost_equal


def test_newton_cg():
    # Test that newton_cg gives same result as scipy's fmin_ncg

    rng = np.random.RandomState(0)
    A = rng.normal(size=(10, 10))
    x0 = np.ones(10)

    def func(x):
        Ax = A.dot(x)
        return 0.5 * (Ax).dot(Ax)

    def grad(x):
        return A.T.dot(A.dot(x))

    def hess(x, p):
        return p.dot(A.T.dot(A.dot(x.all())))

    def grad_hess(x):
        return grad(x), lambda x: A.T.dot(A.dot(x))

    assert_array_almost_equal(
        _newton_cg(grad_hess, func, grad, x0, tol=1e-10)[0],
        fmin_ncg(f=func, x0=x0, fprime=grad, fhess_p=hess),
    )