File: test_seq_dataset.py

package info (click to toggle)
scikit-learn 1.2.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 23,280 kB
  • sloc: python: 184,491; cpp: 5,783; ansic: 854; makefile: 307; sh: 45; javascript: 1
file content (170 lines) | stat: -rw-r--r-- 5,167 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
# Author: Tom Dupre la Tour
#         Joan Massich <mailsik@gmail.com>
#
# License: BSD 3 clause

import numpy as np
import pytest
import scipy.sparse as sp
from numpy.testing import assert_array_equal
from sklearn.utils._seq_dataset import (
    ArrayDataset32,
    ArrayDataset64,
    CSRDataset32,
    CSRDataset64,
)

from sklearn.datasets import load_iris
from sklearn.utils._testing import assert_allclose

iris = load_iris()
X64 = iris.data.astype(np.float64)
y64 = iris.target.astype(np.float64)
X_csr64 = sp.csr_matrix(X64)
sample_weight64 = np.arange(y64.size, dtype=np.float64)

X32 = iris.data.astype(np.float32)
y32 = iris.target.astype(np.float32)
X_csr32 = sp.csr_matrix(X32)
sample_weight32 = np.arange(y32.size, dtype=np.float32)


def assert_csr_equal_values(current, expected):
    current.eliminate_zeros()
    expected.eliminate_zeros()
    expected = expected.astype(current.dtype)
    assert current.shape[0] == expected.shape[0]
    assert current.shape[1] == expected.shape[1]
    assert_array_equal(current.data, expected.data)
    assert_array_equal(current.indices, expected.indices)
    assert_array_equal(current.indptr, expected.indptr)


def make_dense_dataset_32():
    return ArrayDataset32(X32, y32, sample_weight32, seed=42)


def make_dense_dataset_64():
    return ArrayDataset64(X64, y64, sample_weight64, seed=42)


def make_sparse_dataset_32():
    return CSRDataset32(
        X_csr32.data, X_csr32.indptr, X_csr32.indices, y32, sample_weight32, seed=42
    )


def make_sparse_dataset_64():
    return CSRDataset64(
        X_csr64.data, X_csr64.indptr, X_csr64.indices, y64, sample_weight64, seed=42
    )


@pytest.mark.parametrize(
    "dataset_constructor",
    [
        make_dense_dataset_32,
        make_dense_dataset_64,
        make_sparse_dataset_32,
        make_sparse_dataset_64,
    ],
)
def test_seq_dataset_basic_iteration(dataset_constructor):
    NUMBER_OF_RUNS = 5
    dataset = dataset_constructor()
    for _ in range(NUMBER_OF_RUNS):
        # next sample
        xi_, yi, swi, idx = dataset._next_py()
        xi = sp.csr_matrix((xi_), shape=(1, X64.shape[1]))

        assert_csr_equal_values(xi, X_csr64[idx])
        assert yi == y64[idx]
        assert swi == sample_weight64[idx]

        # random sample
        xi_, yi, swi, idx = dataset._random_py()
        xi = sp.csr_matrix((xi_), shape=(1, X64.shape[1]))

        assert_csr_equal_values(xi, X_csr64[idx])
        assert yi == y64[idx]
        assert swi == sample_weight64[idx]


@pytest.mark.parametrize(
    "make_dense_dataset,make_sparse_dataset",
    [
        (make_dense_dataset_32, make_sparse_dataset_32),
        (make_dense_dataset_64, make_sparse_dataset_64),
    ],
)
def test_seq_dataset_shuffle(make_dense_dataset, make_sparse_dataset):
    dense_dataset, sparse_dataset = make_dense_dataset(), make_sparse_dataset()
    # not shuffled
    for i in range(5):
        _, _, _, idx1 = dense_dataset._next_py()
        _, _, _, idx2 = sparse_dataset._next_py()
        assert idx1 == i
        assert idx2 == i

    for i in [132, 50, 9, 18, 58]:
        _, _, _, idx1 = dense_dataset._random_py()
        _, _, _, idx2 = sparse_dataset._random_py()
        assert idx1 == i
        assert idx2 == i

    seed = 77
    dense_dataset._shuffle_py(seed)
    sparse_dataset._shuffle_py(seed)

    idx_next = [63, 91, 148, 87, 29]
    idx_shuffle = [137, 125, 56, 121, 127]
    for i, j in zip(idx_next, idx_shuffle):
        _, _, _, idx1 = dense_dataset._next_py()
        _, _, _, idx2 = sparse_dataset._next_py()
        assert idx1 == i
        assert idx2 == i

        _, _, _, idx1 = dense_dataset._random_py()
        _, _, _, idx2 = sparse_dataset._random_py()
        assert idx1 == j
        assert idx2 == j


@pytest.mark.parametrize(
    "make_dataset_32,make_dataset_64",
    [
        (make_dense_dataset_32, make_dense_dataset_64),
        (make_sparse_dataset_32, make_sparse_dataset_64),
    ],
)
def test_fused_types_consistency(make_dataset_32, make_dataset_64):
    dataset_32, dataset_64 = make_dataset_32(), make_dataset_64()
    NUMBER_OF_RUNS = 5
    for _ in range(NUMBER_OF_RUNS):
        # next sample
        (xi_data32, _, _), yi32, _, _ = dataset_32._next_py()
        (xi_data64, _, _), yi64, _, _ = dataset_64._next_py()

        assert xi_data32.dtype == np.float32
        assert xi_data64.dtype == np.float64

        assert_allclose(xi_data64, xi_data32, rtol=1e-5)
        assert_allclose(yi64, yi32, rtol=1e-5)


def test_buffer_dtype_mismatch_error():
    with pytest.raises(ValueError, match="Buffer dtype mismatch"):
        ArrayDataset64(X32, y32, sample_weight32, seed=42),

    with pytest.raises(ValueError, match="Buffer dtype mismatch"):
        ArrayDataset32(X64, y64, sample_weight64, seed=42),

    with pytest.raises(ValueError, match="Buffer dtype mismatch"):
        CSRDataset64(
            X_csr32.data, X_csr32.indptr, X_csr32.indices, y32, sample_weight32, seed=42
        ),

    with pytest.raises(ValueError, match="Buffer dtype mismatch"):
        CSRDataset32(
            X_csr64.data, X_csr64.indptr, X_csr64.indices, y64, sample_weight64, seed=42
        ),