1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
|
import pytest
import numpy as np
from scipy.sparse import csr_matrix
from numpy.testing import assert_array_equal
from sklearn._config import config_context, get_config
from sklearn.utils._set_output import _wrap_in_pandas_container
from sklearn.utils._set_output import _safe_set_output
from sklearn.utils._set_output import _SetOutputMixin
from sklearn.utils._set_output import _get_output_config
def test__wrap_in_pandas_container_dense():
"""Check _wrap_in_pandas_container for dense data."""
pd = pytest.importorskip("pandas")
X = np.asarray([[1, 0, 3], [0, 0, 1]])
columns = np.asarray(["f0", "f1", "f2"], dtype=object)
index = np.asarray([0, 1])
dense_named = _wrap_in_pandas_container(X, columns=lambda: columns, index=index)
assert isinstance(dense_named, pd.DataFrame)
assert_array_equal(dense_named.columns, columns)
assert_array_equal(dense_named.index, index)
def test__wrap_in_pandas_container_dense_update_columns_and_index():
"""Check that _wrap_in_pandas_container overrides columns and index."""
pd = pytest.importorskip("pandas")
X_df = pd.DataFrame([[1, 0, 3], [0, 0, 1]], columns=["a", "b", "c"])
new_columns = np.asarray(["f0", "f1", "f2"], dtype=object)
new_index = [10, 12]
new_df = _wrap_in_pandas_container(X_df, columns=new_columns, index=new_index)
assert_array_equal(new_df.columns, new_columns)
assert_array_equal(new_df.index, new_index)
def test__wrap_in_pandas_container_error_validation():
"""Check errors in _wrap_in_pandas_container."""
X = np.asarray([[1, 0, 3], [0, 0, 1]])
X_csr = csr_matrix(X)
match = "Pandas output does not support sparse data"
with pytest.raises(ValueError, match=match):
_wrap_in_pandas_container(X_csr, columns=["a", "b", "c"])
class EstimatorWithoutSetOutputAndWithoutTransform:
pass
class EstimatorNoSetOutputWithTransform:
def transform(self, X, y=None):
return X # pragma: no cover
class EstimatorWithSetOutput(_SetOutputMixin):
def fit(self, X, y=None):
self.n_features_in_ = X.shape[1]
return self
def transform(self, X, y=None):
return X
def get_feature_names_out(self, input_features=None):
return np.asarray([f"X{i}" for i in range(self.n_features_in_)], dtype=object)
def test__safe_set_output():
"""Check _safe_set_output works as expected."""
# Estimator without transform will not raise when setting set_output for transform.
est = EstimatorWithoutSetOutputAndWithoutTransform()
_safe_set_output(est, transform="pandas")
# Estimator with transform but without set_output will raise
est = EstimatorNoSetOutputWithTransform()
with pytest.raises(ValueError, match="Unable to configure output"):
_safe_set_output(est, transform="pandas")
est = EstimatorWithSetOutput().fit(np.asarray([[1, 2, 3]]))
_safe_set_output(est, transform="pandas")
config = _get_output_config("transform", est)
assert config["dense"] == "pandas"
_safe_set_output(est, transform="default")
config = _get_output_config("transform", est)
assert config["dense"] == "default"
# transform is None is a no-op, so the config remains "default"
_safe_set_output(est, transform=None)
config = _get_output_config("transform", est)
assert config["dense"] == "default"
class EstimatorNoSetOutputWithTransformNoFeatureNamesOut(_SetOutputMixin):
def transform(self, X, y=None):
return X # pragma: no cover
def test_set_output_mixin():
"""Estimator without get_feature_names_out does not define `set_output`."""
est = EstimatorNoSetOutputWithTransformNoFeatureNamesOut()
assert not hasattr(est, "set_output")
def test__safe_set_output_error():
"""Check transform with invalid config."""
X = np.asarray([[1, 0, 3], [0, 0, 1]])
est = EstimatorWithSetOutput()
_safe_set_output(est, transform="bad")
msg = "output config must be 'default'"
with pytest.raises(ValueError, match=msg):
est.transform(X)
def test_set_output_method():
"""Check that the output is pandas."""
pd = pytest.importorskip("pandas")
X = np.asarray([[1, 0, 3], [0, 0, 1]])
est = EstimatorWithSetOutput().fit(X)
# transform=None is a no-op
est2 = est.set_output(transform=None)
assert est2 is est
X_trans_np = est2.transform(X)
assert isinstance(X_trans_np, np.ndarray)
est.set_output(transform="pandas")
X_trans_pd = est.transform(X)
assert isinstance(X_trans_pd, pd.DataFrame)
def test_set_output_method_error():
"""Check transform fails with invalid transform."""
X = np.asarray([[1, 0, 3], [0, 0, 1]])
est = EstimatorWithSetOutput().fit(X)
est.set_output(transform="bad")
msg = "output config must be 'default'"
with pytest.raises(ValueError, match=msg):
est.transform(X)
def test__get_output_config():
"""Check _get_output_config works as expected."""
# Without a configuration set, the global config is used
global_config = get_config()["transform_output"]
config = _get_output_config("transform")
assert config["dense"] == global_config
with config_context(transform_output="pandas"):
# with estimator=None, the global config is used
config = _get_output_config("transform")
assert config["dense"] == "pandas"
est = EstimatorNoSetOutputWithTransform()
config = _get_output_config("transform", est)
assert config["dense"] == "pandas"
est = EstimatorWithSetOutput()
# If estimator has not config, use global config
config = _get_output_config("transform", est)
assert config["dense"] == "pandas"
# If estimator has a config, use local config
est.set_output(transform="default")
config = _get_output_config("transform", est)
assert config["dense"] == "default"
est.set_output(transform="pandas")
config = _get_output_config("transform", est)
assert config["dense"] == "pandas"
class EstimatorWithSetOutputNoAutoWrap(_SetOutputMixin, auto_wrap_output_keys=None):
def transform(self, X, y=None):
return X
def test_get_output_auto_wrap_false():
"""Check that auto_wrap_output_keys=None does not wrap."""
est = EstimatorWithSetOutputNoAutoWrap()
assert not hasattr(est, "set_output")
X = np.asarray([[1, 0, 3], [0, 0, 1]])
assert X is est.transform(X)
def test_auto_wrap_output_keys_errors_with_incorrect_input():
msg = "auto_wrap_output_keys must be None or a tuple of keys."
with pytest.raises(ValueError, match=msg):
class BadEstimator(_SetOutputMixin, auto_wrap_output_keys="bad_parameter"):
pass
class AnotherMixin:
def __init_subclass__(cls, custom_parameter, **kwargs):
super().__init_subclass__(**kwargs)
cls.custom_parameter = custom_parameter
def test_set_output_mixin_custom_mixin():
"""Check that multiple init_subclasses passes parameters up."""
class BothMixinEstimator(_SetOutputMixin, AnotherMixin, custom_parameter=123):
def transform(self, X, y=None):
return X
def get_feature_names_out(self, input_features=None):
return input_features
est = BothMixinEstimator()
assert est.custom_parameter == 123
assert hasattr(est, "set_output")
def test__wrap_in_pandas_container_column_errors():
"""If a callable `columns` errors, it has the same semantics as columns=None."""
pd = pytest.importorskip("pandas")
def get_columns():
raise ValueError("No feature names defined")
X_df = pd.DataFrame({"feat1": [1, 2, 3], "feat2": [3, 4, 5]})
X_wrapped = _wrap_in_pandas_container(X_df, columns=get_columns)
assert_array_equal(X_wrapped.columns, X_df.columns)
X_np = np.asarray([[1, 3], [2, 4], [3, 5]])
X_wrapped = _wrap_in_pandas_container(X_np, columns=get_columns)
assert_array_equal(X_wrapped.columns, range(X_np.shape[1]))
def test_set_output_mro():
"""Check that multi-inheritance resolves to the correct class method.
Non-regression test gh-25293.
"""
class Base(_SetOutputMixin):
def transform(self, X):
return "Base" # noqa
class A(Base):
pass
class B(Base):
def transform(self, X):
return "B"
class C(A, B):
pass
assert C().transform(None) == "B"
|