File: test_utils.py

package info (click to toggle)
scikit-learn 1.2.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 23,280 kB
  • sloc: python: 184,491; cpp: 5,783; ansic: 854; makefile: 307; sh: 45; javascript: 1
file content (779 lines) | stat: -rw-r--r-- 26,895 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
from copy import copy
from itertools import chain
import warnings
import string
import timeit

import pytest
import numpy as np
import scipy.sparse as sp

from sklearn.utils._testing import (
    assert_array_equal,
    assert_allclose_dense_sparse,
    assert_no_warnings,
    _convert_container,
)
from sklearn.utils import check_random_state
from sklearn.utils import _determine_key_type
from sklearn.utils import deprecated
from sklearn.utils import gen_batches
from sklearn.utils import _get_column_indices
from sklearn.utils import resample
from sklearn.utils import safe_mask
from sklearn.utils import column_or_1d
from sklearn.utils import _safe_indexing
from sklearn.utils import _safe_assign
from sklearn.utils import shuffle
from sklearn.utils import gen_even_slices
from sklearn.utils import _message_with_time, _print_elapsed_time
from sklearn.utils import get_chunk_n_rows
from sklearn.utils import is_scalar_nan
from sklearn.utils import _to_object_array
from sklearn.utils import _approximate_mode
from sklearn.utils._mocking import MockDataFrame
from sklearn import config_context

# toy array
X_toy = np.arange(9).reshape((3, 3))


def test_make_rng():
    # Check the check_random_state utility function behavior
    assert check_random_state(None) is np.random.mtrand._rand
    assert check_random_state(np.random) is np.random.mtrand._rand

    rng_42 = np.random.RandomState(42)
    assert check_random_state(42).randint(100) == rng_42.randint(100)

    rng_42 = np.random.RandomState(42)
    assert check_random_state(rng_42) is rng_42

    rng_42 = np.random.RandomState(42)
    assert check_random_state(43).randint(100) != rng_42.randint(100)

    with pytest.raises(ValueError):
        check_random_state("some invalid seed")


def test_gen_batches():
    # Make sure gen_batches errors on invalid batch_size

    assert_array_equal(list(gen_batches(4, 2)), [slice(0, 2, None), slice(2, 4, None)])
    msg_zero = "gen_batches got batch_size=0, must be positive"
    with pytest.raises(ValueError, match=msg_zero):
        next(gen_batches(4, 0))

    msg_float = "gen_batches got batch_size=0.5, must be an integer"
    with pytest.raises(TypeError, match=msg_float):
        next(gen_batches(4, 0.5))


def test_deprecated():
    # Test whether the deprecated decorator issues appropriate warnings
    # Copied almost verbatim from https://docs.python.org/library/warnings.html

    # First a function...
    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter("always")

        @deprecated()
        def ham():
            return "spam"

        spam = ham()

        assert spam == "spam"  # function must remain usable

        assert len(w) == 1
        assert issubclass(w[0].category, FutureWarning)
        assert "deprecated" in str(w[0].message).lower()

    # ... then a class.
    with warnings.catch_warnings(record=True) as w:
        warnings.simplefilter("always")

        @deprecated("don't use this")
        class Ham:
            SPAM = 1

        ham = Ham()

        assert hasattr(ham, "SPAM")

        assert len(w) == 1
        assert issubclass(w[0].category, FutureWarning)
        assert "deprecated" in str(w[0].message).lower()


def test_resample():
    # Border case not worth mentioning in doctests
    assert resample() is None

    # Check that invalid arguments yield ValueError
    with pytest.raises(ValueError):
        resample([0], [0, 1])
    with pytest.raises(ValueError):
        resample([0, 1], [0, 1], replace=False, n_samples=3)

    # Issue:6581, n_samples can be more when replace is True (default).
    assert len(resample([1, 2], n_samples=5)) == 5


def test_resample_stratified():
    # Make sure resample can stratify
    rng = np.random.RandomState(0)
    n_samples = 100
    p = 0.9
    X = rng.normal(size=(n_samples, 1))
    y = rng.binomial(1, p, size=n_samples)

    _, y_not_stratified = resample(X, y, n_samples=10, random_state=0, stratify=None)
    assert np.all(y_not_stratified == 1)

    _, y_stratified = resample(X, y, n_samples=10, random_state=0, stratify=y)
    assert not np.all(y_stratified == 1)
    assert np.sum(y_stratified) == 9  # all 1s, one 0


def test_resample_stratified_replace():
    # Make sure stratified resampling supports the replace parameter
    rng = np.random.RandomState(0)
    n_samples = 100
    X = rng.normal(size=(n_samples, 1))
    y = rng.randint(0, 2, size=n_samples)

    X_replace, _ = resample(
        X, y, replace=True, n_samples=50, random_state=rng, stratify=y
    )
    X_no_replace, _ = resample(
        X, y, replace=False, n_samples=50, random_state=rng, stratify=y
    )
    assert np.unique(X_replace).shape[0] < 50
    assert np.unique(X_no_replace).shape[0] == 50

    # make sure n_samples can be greater than X.shape[0] if we sample with
    # replacement
    X_replace, _ = resample(
        X, y, replace=True, n_samples=1000, random_state=rng, stratify=y
    )
    assert X_replace.shape[0] == 1000
    assert np.unique(X_replace).shape[0] == 100


def test_resample_stratify_2dy():
    # Make sure y can be 2d when stratifying
    rng = np.random.RandomState(0)
    n_samples = 100
    X = rng.normal(size=(n_samples, 1))
    y = rng.randint(0, 2, size=(n_samples, 2))
    X, y = resample(X, y, n_samples=50, random_state=rng, stratify=y)
    assert y.ndim == 2


def test_resample_stratify_sparse_error():
    # resample must be ndarray
    rng = np.random.RandomState(0)
    n_samples = 100
    X = rng.normal(size=(n_samples, 2))
    y = rng.randint(0, 2, size=n_samples)
    stratify = sp.csr_matrix(y)
    with pytest.raises(TypeError, match="A sparse matrix was passed"):
        X, y = resample(X, y, n_samples=50, random_state=rng, stratify=stratify)


def test_safe_mask():
    random_state = check_random_state(0)
    X = random_state.rand(5, 4)
    X_csr = sp.csr_matrix(X)
    mask = [False, False, True, True, True]

    mask = safe_mask(X, mask)
    assert X[mask].shape[0] == 3

    mask = safe_mask(X_csr, mask)
    assert X_csr[mask].shape[0] == 3


def test_column_or_1d():
    EXAMPLES = [
        ("binary", ["spam", "egg", "spam"]),
        ("binary", [0, 1, 0, 1]),
        ("continuous", np.arange(10) / 20.0),
        ("multiclass", [1, 2, 3]),
        ("multiclass", [0, 1, 2, 2, 0]),
        ("multiclass", [[1], [2], [3]]),
        ("multilabel-indicator", [[0, 1, 0], [0, 0, 1]]),
        ("multiclass-multioutput", [[1, 2, 3]]),
        ("multiclass-multioutput", [[1, 1], [2, 2], [3, 1]]),
        ("multiclass-multioutput", [[5, 1], [4, 2], [3, 1]]),
        ("multiclass-multioutput", [[1, 2, 3]]),
        ("continuous-multioutput", np.arange(30).reshape((-1, 3))),
    ]

    for y_type, y in EXAMPLES:
        if y_type in ["binary", "multiclass", "continuous"]:
            assert_array_equal(column_or_1d(y), np.ravel(y))
        else:
            with pytest.raises(ValueError):
                column_or_1d(y)


@pytest.mark.parametrize(
    "key, dtype",
    [
        (0, "int"),
        ("0", "str"),
        (True, "bool"),
        (np.bool_(True), "bool"),
        ([0, 1, 2], "int"),
        (["0", "1", "2"], "str"),
        ((0, 1, 2), "int"),
        (("0", "1", "2"), "str"),
        (slice(None, None), None),
        (slice(0, 2), "int"),
        (np.array([0, 1, 2], dtype=np.int32), "int"),
        (np.array([0, 1, 2], dtype=np.int64), "int"),
        (np.array([0, 1, 2], dtype=np.uint8), "int"),
        ([True, False], "bool"),
        ((True, False), "bool"),
        (np.array([True, False]), "bool"),
        ("col_0", "str"),
        (["col_0", "col_1", "col_2"], "str"),
        (("col_0", "col_1", "col_2"), "str"),
        (slice("begin", "end"), "str"),
        (np.array(["col_0", "col_1", "col_2"]), "str"),
        (np.array(["col_0", "col_1", "col_2"], dtype=object), "str"),
    ],
)
def test_determine_key_type(key, dtype):
    assert _determine_key_type(key) == dtype


def test_determine_key_type_error():
    with pytest.raises(ValueError, match="No valid specification of the"):
        _determine_key_type(1.0)


def test_determine_key_type_slice_error():
    with pytest.raises(TypeError, match="Only array-like or scalar are"):
        _determine_key_type(slice(0, 2, 1), accept_slice=False)


@pytest.mark.parametrize("array_type", ["list", "array", "sparse", "dataframe"])
@pytest.mark.parametrize("indices_type", ["list", "tuple", "array", "series", "slice"])
def test_safe_indexing_2d_container_axis_0(array_type, indices_type):
    indices = [1, 2]
    if indices_type == "slice" and isinstance(indices[1], int):
        indices[1] += 1
    array = _convert_container([[1, 2, 3], [4, 5, 6], [7, 8, 9]], array_type)
    indices = _convert_container(indices, indices_type)
    subset = _safe_indexing(array, indices, axis=0)
    assert_allclose_dense_sparse(
        subset, _convert_container([[4, 5, 6], [7, 8, 9]], array_type)
    )


@pytest.mark.parametrize("array_type", ["list", "array", "series"])
@pytest.mark.parametrize("indices_type", ["list", "tuple", "array", "series", "slice"])
def test_safe_indexing_1d_container(array_type, indices_type):
    indices = [1, 2]
    if indices_type == "slice" and isinstance(indices[1], int):
        indices[1] += 1
    array = _convert_container([1, 2, 3, 4, 5, 6, 7, 8, 9], array_type)
    indices = _convert_container(indices, indices_type)
    subset = _safe_indexing(array, indices, axis=0)
    assert_allclose_dense_sparse(subset, _convert_container([2, 3], array_type))


@pytest.mark.parametrize("array_type", ["array", "sparse", "dataframe"])
@pytest.mark.parametrize("indices_type", ["list", "tuple", "array", "series", "slice"])
@pytest.mark.parametrize("indices", [[1, 2], ["col_1", "col_2"]])
def test_safe_indexing_2d_container_axis_1(array_type, indices_type, indices):
    # validation of the indices
    # we make a copy because indices is mutable and shared between tests
    indices_converted = copy(indices)
    if indices_type == "slice" and isinstance(indices[1], int):
        indices_converted[1] += 1

    columns_name = ["col_0", "col_1", "col_2"]
    array = _convert_container(
        [[1, 2, 3], [4, 5, 6], [7, 8, 9]], array_type, columns_name
    )
    indices_converted = _convert_container(indices_converted, indices_type)

    if isinstance(indices[0], str) and array_type != "dataframe":
        err_msg = (
            "Specifying the columns using strings is only supported "
            "for pandas DataFrames"
        )
        with pytest.raises(ValueError, match=err_msg):
            _safe_indexing(array, indices_converted, axis=1)
    else:
        subset = _safe_indexing(array, indices_converted, axis=1)
        assert_allclose_dense_sparse(
            subset, _convert_container([[2, 3], [5, 6], [8, 9]], array_type)
        )


@pytest.mark.parametrize("array_read_only", [True, False])
@pytest.mark.parametrize("indices_read_only", [True, False])
@pytest.mark.parametrize("array_type", ["array", "sparse", "dataframe"])
@pytest.mark.parametrize("indices_type", ["array", "series"])
@pytest.mark.parametrize(
    "axis, expected_array", [(0, [[4, 5, 6], [7, 8, 9]]), (1, [[2, 3], [5, 6], [8, 9]])]
)
def test_safe_indexing_2d_read_only_axis_1(
    array_read_only, indices_read_only, array_type, indices_type, axis, expected_array
):
    array = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
    if array_read_only:
        array.setflags(write=False)
    array = _convert_container(array, array_type)
    indices = np.array([1, 2])
    if indices_read_only:
        indices.setflags(write=False)
    indices = _convert_container(indices, indices_type)
    subset = _safe_indexing(array, indices, axis=axis)
    assert_allclose_dense_sparse(subset, _convert_container(expected_array, array_type))


@pytest.mark.parametrize("array_type", ["list", "array", "series"])
@pytest.mark.parametrize("indices_type", ["list", "tuple", "array", "series"])
def test_safe_indexing_1d_container_mask(array_type, indices_type):
    indices = [False] + [True] * 2 + [False] * 6
    array = _convert_container([1, 2, 3, 4, 5, 6, 7, 8, 9], array_type)
    indices = _convert_container(indices, indices_type)
    subset = _safe_indexing(array, indices, axis=0)
    assert_allclose_dense_sparse(subset, _convert_container([2, 3], array_type))


@pytest.mark.parametrize("array_type", ["array", "sparse", "dataframe"])
@pytest.mark.parametrize("indices_type", ["list", "tuple", "array", "series"])
@pytest.mark.parametrize(
    "axis, expected_subset",
    [(0, [[4, 5, 6], [7, 8, 9]]), (1, [[2, 3], [5, 6], [8, 9]])],
)
def test_safe_indexing_2d_mask(array_type, indices_type, axis, expected_subset):
    columns_name = ["col_0", "col_1", "col_2"]
    array = _convert_container(
        [[1, 2, 3], [4, 5, 6], [7, 8, 9]], array_type, columns_name
    )
    indices = [False, True, True]
    indices = _convert_container(indices, indices_type)

    subset = _safe_indexing(array, indices, axis=axis)
    assert_allclose_dense_sparse(
        subset, _convert_container(expected_subset, array_type)
    )


@pytest.mark.parametrize(
    "array_type, expected_output_type",
    [
        ("list", "list"),
        ("array", "array"),
        ("sparse", "sparse"),
        ("dataframe", "series"),
    ],
)
def test_safe_indexing_2d_scalar_axis_0(array_type, expected_output_type):
    array = _convert_container([[1, 2, 3], [4, 5, 6], [7, 8, 9]], array_type)
    indices = 2
    subset = _safe_indexing(array, indices, axis=0)
    expected_array = _convert_container([7, 8, 9], expected_output_type)
    assert_allclose_dense_sparse(subset, expected_array)


@pytest.mark.parametrize("array_type", ["list", "array", "series"])
def test_safe_indexing_1d_scalar(array_type):
    array = _convert_container([1, 2, 3, 4, 5, 6, 7, 8, 9], array_type)
    indices = 2
    subset = _safe_indexing(array, indices, axis=0)
    assert subset == 3


@pytest.mark.parametrize(
    "array_type, expected_output_type",
    [("array", "array"), ("sparse", "sparse"), ("dataframe", "series")],
)
@pytest.mark.parametrize("indices", [2, "col_2"])
def test_safe_indexing_2d_scalar_axis_1(array_type, expected_output_type, indices):
    columns_name = ["col_0", "col_1", "col_2"]
    array = _convert_container(
        [[1, 2, 3], [4, 5, 6], [7, 8, 9]], array_type, columns_name
    )

    if isinstance(indices, str) and array_type != "dataframe":
        err_msg = (
            "Specifying the columns using strings is only supported "
            "for pandas DataFrames"
        )
        with pytest.raises(ValueError, match=err_msg):
            _safe_indexing(array, indices, axis=1)
    else:
        subset = _safe_indexing(array, indices, axis=1)
        expected_output = [3, 6, 9]
        if expected_output_type == "sparse":
            # sparse matrix are keeping the 2D shape
            expected_output = [[3], [6], [9]]
        expected_array = _convert_container(expected_output, expected_output_type)
        assert_allclose_dense_sparse(subset, expected_array)


@pytest.mark.parametrize("array_type", ["list", "array", "sparse"])
def test_safe_indexing_None_axis_0(array_type):
    X = _convert_container([[1, 2, 3], [4, 5, 6], [7, 8, 9]], array_type)
    X_subset = _safe_indexing(X, None, axis=0)
    assert_allclose_dense_sparse(X_subset, X)


def test_safe_indexing_pandas_no_matching_cols_error():
    pd = pytest.importorskip("pandas")
    err_msg = "No valid specification of the columns."
    X = pd.DataFrame(X_toy)
    with pytest.raises(ValueError, match=err_msg):
        _safe_indexing(X, [1.0], axis=1)


@pytest.mark.parametrize("axis", [None, 3])
def test_safe_indexing_error_axis(axis):
    with pytest.raises(ValueError, match="'axis' should be either 0"):
        _safe_indexing(X_toy, [0, 1], axis=axis)


@pytest.mark.parametrize("X_constructor", ["array", "series"])
def test_safe_indexing_1d_array_error(X_constructor):
    # check that we are raising an error if the array-like passed is 1D and
    # we try to index on the 2nd dimension
    X = list(range(5))
    if X_constructor == "array":
        X_constructor = np.asarray(X)
    elif X_constructor == "series":
        pd = pytest.importorskip("pandas")
        X_constructor = pd.Series(X)

    err_msg = "'X' should be a 2D NumPy array, 2D sparse matrix or pandas"
    with pytest.raises(ValueError, match=err_msg):
        _safe_indexing(X_constructor, [0, 1], axis=1)


def test_safe_indexing_container_axis_0_unsupported_type():
    indices = ["col_1", "col_2"]
    array = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
    err_msg = "String indexing is not supported with 'axis=0'"
    with pytest.raises(ValueError, match=err_msg):
        _safe_indexing(array, indices, axis=0)


def test_safe_indexing_pandas_no_settingwithcopy_warning():
    # Using safe_indexing with an array-like indexer gives a copy of the
    # DataFrame -> ensure it doesn't raise a warning if modified
    pd = pytest.importorskip("pandas")

    X = pd.DataFrame({"a": [1, 2, 3], "b": [3, 4, 5]})
    subset = _safe_indexing(X, [0, 1], axis=0)
    if hasattr(pd.errors, "SettingWithCopyWarning"):
        SettingWithCopyWarning = pd.errors.SettingWithCopyWarning
    else:
        # backward compatibility for pandas < 1.5
        SettingWithCopyWarning = pd.core.common.SettingWithCopyWarning
    with warnings.catch_warnings():
        warnings.simplefilter("error", SettingWithCopyWarning)
        subset.iloc[0, 0] = 10
    # The original dataframe is unaffected by the assignment on the subset:
    assert X.iloc[0, 0] == 1


@pytest.mark.parametrize(
    "key, err_msg",
    [
        (10, r"all features must be in \[0, 2\]"),
        ("whatever", "A given column is not a column of the dataframe"),
    ],
)
def test_get_column_indices_error(key, err_msg):
    pd = pytest.importorskip("pandas")
    X_df = pd.DataFrame(X_toy, columns=["col_0", "col_1", "col_2"])

    with pytest.raises(ValueError, match=err_msg):
        _get_column_indices(X_df, key)


@pytest.mark.parametrize(
    "key", [["col1"], ["col2"], ["col1", "col2"], ["col1", "col3"], ["col2", "col3"]]
)
def test_get_column_indices_pandas_nonunique_columns_error(key):
    pd = pytest.importorskip("pandas")
    toy = np.zeros((1, 5), dtype=int)
    columns = ["col1", "col1", "col2", "col3", "col2"]
    X = pd.DataFrame(toy, columns=columns)

    err_msg = "Selected columns, {}, are not unique in dataframe".format(key)
    with pytest.raises(ValueError) as exc_info:
        _get_column_indices(X, key)
    assert str(exc_info.value) == err_msg


def test_shuffle_on_ndim_equals_three():
    def to_tuple(A):  # to make the inner arrays hashable
        return tuple(tuple(tuple(C) for C in B) for B in A)

    A = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]])  # A.shape = (2,2,2)
    S = set(to_tuple(A))
    shuffle(A)  # shouldn't raise a ValueError for dim = 3
    assert set(to_tuple(A)) == S


def test_shuffle_dont_convert_to_array():
    # Check that shuffle does not try to convert to numpy arrays with float
    # dtypes can let any indexable datastructure pass-through.
    a = ["a", "b", "c"]
    b = np.array(["a", "b", "c"], dtype=object)
    c = [1, 2, 3]
    d = MockDataFrame(np.array([["a", 0], ["b", 1], ["c", 2]], dtype=object))
    e = sp.csc_matrix(np.arange(6).reshape(3, 2))
    a_s, b_s, c_s, d_s, e_s = shuffle(a, b, c, d, e, random_state=0)

    assert a_s == ["c", "b", "a"]
    assert type(a_s) == list

    assert_array_equal(b_s, ["c", "b", "a"])
    assert b_s.dtype == object

    assert c_s == [3, 2, 1]
    assert type(c_s) == list

    assert_array_equal(d_s, np.array([["c", 2], ["b", 1], ["a", 0]], dtype=object))
    assert type(d_s) == MockDataFrame

    assert_array_equal(e_s.toarray(), np.array([[4, 5], [2, 3], [0, 1]]))


def test_gen_even_slices():
    # check that gen_even_slices contains all samples
    some_range = range(10)
    joined_range = list(chain(*[some_range[slice] for slice in gen_even_slices(10, 3)]))
    assert_array_equal(some_range, joined_range)

    # check that passing negative n_chunks raises an error
    slices = gen_even_slices(10, -1)
    with pytest.raises(ValueError, match="gen_even_slices got n_packs=-1, must be >=1"):
        next(slices)


@pytest.mark.parametrize(
    ("row_bytes", "max_n_rows", "working_memory", "expected"),
    [
        (1024, None, 1, 1024),
        (1024, None, 0.99999999, 1023),
        (1023, None, 1, 1025),
        (1025, None, 1, 1023),
        (1024, None, 2, 2048),
        (1024, 7, 1, 7),
        (1024 * 1024, None, 1, 1),
    ],
)
def test_get_chunk_n_rows(row_bytes, max_n_rows, working_memory, expected):
    with warnings.catch_warnings():
        warnings.simplefilter("error", UserWarning)
        actual = get_chunk_n_rows(
            row_bytes=row_bytes,
            max_n_rows=max_n_rows,
            working_memory=working_memory,
        )

    assert actual == expected
    assert type(actual) is type(expected)
    with config_context(working_memory=working_memory):
        with warnings.catch_warnings():
            warnings.simplefilter("error", UserWarning)
            actual = get_chunk_n_rows(row_bytes=row_bytes, max_n_rows=max_n_rows)
        assert actual == expected
        assert type(actual) is type(expected)


def test_get_chunk_n_rows_warns():
    """Check that warning is raised when working_memory is too low."""
    row_bytes = 1024 * 1024 + 1
    max_n_rows = None
    working_memory = 1
    expected = 1

    warn_msg = (
        "Could not adhere to working_memory config. Currently 1MiB, 2MiB required."
    )
    with pytest.warns(UserWarning, match=warn_msg):
        actual = get_chunk_n_rows(
            row_bytes=row_bytes,
            max_n_rows=max_n_rows,
            working_memory=working_memory,
        )

    assert actual == expected
    assert type(actual) is type(expected)

    with config_context(working_memory=working_memory):
        with pytest.warns(UserWarning, match=warn_msg):
            actual = get_chunk_n_rows(row_bytes=row_bytes, max_n_rows=max_n_rows)
        assert actual == expected
        assert type(actual) is type(expected)


@pytest.mark.parametrize(
    ["source", "message", "is_long"],
    [
        ("ABC", string.ascii_lowercase, False),
        ("ABCDEF", string.ascii_lowercase, False),
        ("ABC", string.ascii_lowercase * 3, True),
        ("ABC" * 10, string.ascii_lowercase, True),
        ("ABC", string.ascii_lowercase + "\u1048", False),
    ],
)
@pytest.mark.parametrize(
    ["time", "time_str"],
    [
        (0.2, "   0.2s"),
        (20, "  20.0s"),
        (2000, "33.3min"),
        (20000, "333.3min"),
    ],
)
def test_message_with_time(source, message, is_long, time, time_str):
    out = _message_with_time(source, message, time)
    if is_long:
        assert len(out) > 70
    else:
        assert len(out) == 70

    assert out.startswith("[" + source + "] ")
    out = out[len(source) + 3 :]

    assert out.endswith(time_str)
    out = out[: -len(time_str)]
    assert out.endswith(", total=")
    out = out[: -len(", total=")]
    assert out.endswith(message)
    out = out[: -len(message)]
    assert out.endswith(" ")
    out = out[:-1]

    if is_long:
        assert not out
    else:
        assert list(set(out)) == ["."]


@pytest.mark.parametrize(
    ["message", "expected"],
    [
        ("hello", _message_with_time("ABC", "hello", 0.1) + "\n"),
        ("", _message_with_time("ABC", "", 0.1) + "\n"),
        (None, ""),
    ],
)
def test_print_elapsed_time(message, expected, capsys, monkeypatch):
    monkeypatch.setattr(timeit, "default_timer", lambda: 0)
    with _print_elapsed_time("ABC", message):
        monkeypatch.setattr(timeit, "default_timer", lambda: 0.1)
    assert capsys.readouterr().out == expected


@pytest.mark.parametrize(
    "value, result",
    [
        (float("nan"), True),
        (np.nan, True),
        (float(np.nan), True),
        (np.float32(np.nan), True),
        (np.float64(np.nan), True),
        (0, False),
        (0.0, False),
        (None, False),
        ("", False),
        ("nan", False),
        ([np.nan], False),
        (9867966753463435747313673, False),  # Python int that overflows with C type
    ],
)
def test_is_scalar_nan(value, result):
    assert is_scalar_nan(value) is result
    # make sure that we are returning a Python bool
    assert isinstance(is_scalar_nan(value), bool)


def test_approximate_mode():
    """Make sure sklearn.utils._approximate_mode returns valid
    results for cases where "class_counts * n_draws" is enough
    to overflow 32-bit signed integer.

    Non-regression test for:
    https://github.com/scikit-learn/scikit-learn/issues/20774
    """
    X = np.array([99000, 1000], dtype=np.int32)
    ret = _approximate_mode(class_counts=X, n_draws=25000, rng=0)

    # Draws 25% of the total population, so in this case a fair draw means:
    # 25% * 99.000 = 24.750
    # 25% *  1.000 =    250
    assert_array_equal(ret, [24750, 250])


def dummy_func():
    pass


def test_deprecation_joblib_api(tmpdir):

    # Only parallel_backend and register_parallel_backend are not deprecated in
    # sklearn.utils
    from sklearn.utils import parallel_backend, register_parallel_backend

    assert_no_warnings(parallel_backend, "loky", None)
    assert_no_warnings(register_parallel_backend, "failing", None)

    from sklearn.utils._joblib import joblib

    del joblib.parallel.BACKENDS["failing"]


@pytest.mark.parametrize("sequence", [[np.array(1), np.array(2)], [[1, 2], [3, 4]]])
def test_to_object_array(sequence):
    out = _to_object_array(sequence)
    assert isinstance(out, np.ndarray)
    assert out.dtype.kind == "O"
    assert out.ndim == 1


@pytest.mark.parametrize("array_type", ["array", "sparse", "dataframe"])
def test_safe_assign(array_type):
    """Check that `_safe_assign` works as expected."""
    rng = np.random.RandomState(0)
    X_array = rng.randn(10, 5)

    row_indexer = [1, 2]
    values = rng.randn(len(row_indexer), X_array.shape[1])
    X = _convert_container(X_array, array_type)
    _safe_assign(X, values, row_indexer=row_indexer)

    assigned_portion = _safe_indexing(X, row_indexer, axis=0)
    assert_allclose_dense_sparse(
        assigned_portion, _convert_container(values, array_type)
    )

    column_indexer = [1, 2]
    values = rng.randn(X_array.shape[0], len(column_indexer))
    X = _convert_container(X_array, array_type)
    _safe_assign(X, values, column_indexer=column_indexer)

    assigned_portion = _safe_indexing(X, column_indexer, axis=1)
    assert_allclose_dense_sparse(
        assigned_portion, _convert_container(values, array_type)
    )

    row_indexer, column_indexer = None, None
    values = rng.randn(*X.shape)
    X = _convert_container(X_array, array_type)
    _safe_assign(X, values, column_indexer=column_indexer)

    assert_allclose_dense_sparse(X, _convert_container(values, array_type))