1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904
|
.. _api_ref:
=============
API Reference
=============
This is the class and function reference of scikit-learn. Please refer to
the :ref:`full user guide <user_guide>` for further details, as the class and
function raw specifications may not be enough to give full guidelines on their
uses.
For reference on concepts repeated across the API, see :ref:`glossary`.
:mod:`sklearn`: Settings and information tools
==============================================
.. automodule:: sklearn
:no-members:
:no-inherited-members:
.. currentmodule:: sklearn
.. autosummary::
:toctree: generated/
:template: function.rst
config_context
get_config
set_config
show_versions
:mod:`sklearn.base`: Base classes and utility functions
=======================================================
.. automodule:: sklearn.base
:no-members:
:no-inherited-members:
Base classes
------------
.. currentmodule:: sklearn
.. autosummary::
:nosignatures:
:toctree: generated/
:template: class.rst
base.BaseEstimator
base.BiclusterMixin
base.ClassifierMixin
base.ClusterMixin
base.DensityMixin
base.RegressorMixin
base.TransformerMixin
base.MetaEstimatorMixin
base.OneToOneFeatureMixin
base.OutlierMixin
base.ClassNamePrefixFeaturesOutMixin
feature_selection.SelectorMixin
Functions
---------
.. currentmodule:: sklearn
.. autosummary::
:toctree: generated/
:template: function.rst
base.clone
base.is_classifier
base.is_regressor
.. _calibration_ref:
:mod:`sklearn.calibration`: Probability Calibration
===================================================
.. automodule:: sklearn.calibration
:no-members:
:no-inherited-members:
**User guide:** See the :ref:`calibration` section for further details.
.. currentmodule:: sklearn
.. autosummary::
:toctree: generated/
:template: class.rst
calibration.CalibratedClassifierCV
.. autosummary::
:toctree: generated/
:template: function.rst
calibration.calibration_curve
.. _cluster_ref:
:mod:`sklearn.cluster`: Clustering
==================================
.. automodule:: sklearn.cluster
:no-members:
:no-inherited-members:
**User guide:** See the :ref:`clustering` and :ref:`biclustering` sections for
further details.
Classes
-------
.. currentmodule:: sklearn
.. autosummary::
:toctree: generated/
:template: class.rst
cluster.AffinityPropagation
cluster.AgglomerativeClustering
cluster.Birch
cluster.DBSCAN
cluster.HDBSCAN
cluster.FeatureAgglomeration
cluster.KMeans
cluster.BisectingKMeans
cluster.MiniBatchKMeans
cluster.MeanShift
cluster.OPTICS
cluster.SpectralClustering
cluster.SpectralBiclustering
cluster.SpectralCoclustering
Functions
---------
.. autosummary::
:toctree: generated/
:template: function.rst
cluster.affinity_propagation
cluster.cluster_optics_dbscan
cluster.cluster_optics_xi
cluster.compute_optics_graph
cluster.dbscan
cluster.estimate_bandwidth
cluster.k_means
cluster.kmeans_plusplus
cluster.mean_shift
cluster.spectral_clustering
cluster.ward_tree
.. _compose_ref:
:mod:`sklearn.compose`: Composite Estimators
============================================
.. automodule:: sklearn.compose
:no-members:
:no-inherited-members:
**User guide:** See the :ref:`combining_estimators` section for further
details.
.. currentmodule:: sklearn
.. autosummary::
:toctree: generated/
:template: class.rst
compose.ColumnTransformer
compose.TransformedTargetRegressor
.. autosummary::
:toctree: generated/
:template: function.rst
compose.make_column_transformer
compose.make_column_selector
.. _covariance_ref:
:mod:`sklearn.covariance`: Covariance Estimators
================================================
.. automodule:: sklearn.covariance
:no-members:
:no-inherited-members:
**User guide:** See the :ref:`covariance` section for further details.
.. currentmodule:: sklearn
.. autosummary::
:toctree: generated/
:template: class.rst
covariance.EmpiricalCovariance
covariance.EllipticEnvelope
covariance.GraphicalLasso
covariance.GraphicalLassoCV
covariance.LedoitWolf
covariance.MinCovDet
covariance.OAS
covariance.ShrunkCovariance
.. autosummary::
:toctree: generated/
:template: function.rst
covariance.empirical_covariance
covariance.graphical_lasso
covariance.ledoit_wolf
covariance.ledoit_wolf_shrinkage
covariance.oas
covariance.shrunk_covariance
.. _cross_decomposition_ref:
:mod:`sklearn.cross_decomposition`: Cross decomposition
=======================================================
.. automodule:: sklearn.cross_decomposition
:no-members:
:no-inherited-members:
**User guide:** See the :ref:`cross_decomposition` section for further details.
.. currentmodule:: sklearn
.. autosummary::
:toctree: generated/
:template: class.rst
cross_decomposition.CCA
cross_decomposition.PLSCanonical
cross_decomposition.PLSRegression
cross_decomposition.PLSSVD
.. _datasets_ref:
:mod:`sklearn.datasets`: Datasets
=================================
.. automodule:: sklearn.datasets
:no-members:
:no-inherited-members:
**User guide:** See the :ref:`datasets` section for further details.
Loaders
-------
.. currentmodule:: sklearn
.. autosummary::
:toctree: generated/
:template: function.rst
datasets.clear_data_home
datasets.dump_svmlight_file
datasets.fetch_20newsgroups
datasets.fetch_20newsgroups_vectorized
datasets.fetch_california_housing
datasets.fetch_covtype
datasets.fetch_kddcup99
datasets.fetch_lfw_pairs
datasets.fetch_lfw_people
datasets.fetch_olivetti_faces
datasets.fetch_openml
datasets.fetch_rcv1
datasets.fetch_species_distributions
datasets.get_data_home
datasets.load_breast_cancer
datasets.load_diabetes
datasets.load_digits
datasets.load_files
datasets.load_iris
datasets.load_linnerud
datasets.load_sample_image
datasets.load_sample_images
datasets.load_svmlight_file
datasets.load_svmlight_files
datasets.load_wine
Samples generator
-----------------
.. currentmodule:: sklearn
.. autosummary::
:toctree: generated/
:template: function.rst
datasets.make_biclusters
datasets.make_blobs
datasets.make_checkerboard
datasets.make_circles
datasets.make_classification
datasets.make_friedman1
datasets.make_friedman2
datasets.make_friedman3
datasets.make_gaussian_quantiles
datasets.make_hastie_10_2
datasets.make_low_rank_matrix
datasets.make_moons
datasets.make_multilabel_classification
datasets.make_regression
datasets.make_s_curve
datasets.make_sparse_coded_signal
datasets.make_sparse_spd_matrix
datasets.make_sparse_uncorrelated
datasets.make_spd_matrix
datasets.make_swiss_roll
.. _decomposition_ref:
:mod:`sklearn.decomposition`: Matrix Decomposition
==================================================
.. automodule:: sklearn.decomposition
:no-members:
:no-inherited-members:
**User guide:** See the :ref:`decompositions` section for further details.
.. currentmodule:: sklearn
.. autosummary::
:toctree: generated/
:template: class.rst
decomposition.DictionaryLearning
decomposition.FactorAnalysis
decomposition.FastICA
decomposition.IncrementalPCA
decomposition.KernelPCA
decomposition.LatentDirichletAllocation
decomposition.MiniBatchDictionaryLearning
decomposition.MiniBatchSparsePCA
decomposition.NMF
decomposition.MiniBatchNMF
decomposition.PCA
decomposition.SparsePCA
decomposition.SparseCoder
decomposition.TruncatedSVD
.. autosummary::
:toctree: generated/
:template: function.rst
decomposition.dict_learning
decomposition.dict_learning_online
decomposition.fastica
decomposition.non_negative_factorization
decomposition.sparse_encode
.. _lda_ref:
:mod:`sklearn.discriminant_analysis`: Discriminant Analysis
===========================================================
.. automodule:: sklearn.discriminant_analysis
:no-members:
:no-inherited-members:
**User guide:** See the :ref:`lda_qda` section for further details.
.. currentmodule:: sklearn
.. autosummary::
:toctree: generated/
:template: class.rst
discriminant_analysis.LinearDiscriminantAnalysis
discriminant_analysis.QuadraticDiscriminantAnalysis
.. _dummy_ref:
:mod:`sklearn.dummy`: Dummy estimators
======================================
.. automodule:: sklearn.dummy
:no-members:
:no-inherited-members:
**User guide:** See the :ref:`model_evaluation` section for further details.
.. currentmodule:: sklearn
.. autosummary::
:toctree: generated/
:template: class.rst
dummy.DummyClassifier
dummy.DummyRegressor
.. autosummary::
:toctree: generated/
:template: function.rst
.. _ensemble_ref:
:mod:`sklearn.ensemble`: Ensemble Methods
=========================================
.. automodule:: sklearn.ensemble
:no-members:
:no-inherited-members:
**User guide:** See the :ref:`ensemble` section for further details.
.. currentmodule:: sklearn
.. autosummary::
:toctree: generated/
:template: class.rst
ensemble.AdaBoostClassifier
ensemble.AdaBoostRegressor
ensemble.BaggingClassifier
ensemble.BaggingRegressor
ensemble.ExtraTreesClassifier
ensemble.ExtraTreesRegressor
ensemble.GradientBoostingClassifier
ensemble.GradientBoostingRegressor
ensemble.IsolationForest
ensemble.RandomForestClassifier
ensemble.RandomForestRegressor
ensemble.RandomTreesEmbedding
ensemble.StackingClassifier
ensemble.StackingRegressor
ensemble.VotingClassifier
ensemble.VotingRegressor
ensemble.HistGradientBoostingRegressor
ensemble.HistGradientBoostingClassifier
.. autosummary::
:toctree: generated/
:template: function.rst
.. _exceptions_ref:
:mod:`sklearn.exceptions`: Exceptions and warnings
==================================================
.. automodule:: sklearn.exceptions
:no-members:
:no-inherited-members:
.. currentmodule:: sklearn
.. autosummary::
:toctree: generated/
:template: class.rst
exceptions.ConvergenceWarning
exceptions.DataConversionWarning
exceptions.DataDimensionalityWarning
exceptions.EfficiencyWarning
exceptions.FitFailedWarning
exceptions.InconsistentVersionWarning
exceptions.NotFittedError
exceptions.UndefinedMetricWarning
:mod:`sklearn.experimental`: Experimental
=========================================
.. automodule:: sklearn.experimental
:no-members:
:no-inherited-members:
.. currentmodule:: sklearn
.. autosummary::
:toctree: generated/
experimental.enable_iterative_imputer
experimental.enable_halving_search_cv
.. _feature_extraction_ref:
:mod:`sklearn.feature_extraction`: Feature Extraction
=====================================================
.. automodule:: sklearn.feature_extraction
:no-members:
:no-inherited-members:
**User guide:** See the :ref:`feature_extraction` section for further details.
.. currentmodule:: sklearn
.. autosummary::
:toctree: generated/
:template: class.rst
feature_extraction.DictVectorizer
feature_extraction.FeatureHasher
From images
-----------
.. automodule:: sklearn.feature_extraction.image
:no-members:
:no-inherited-members:
.. currentmodule:: sklearn
.. autosummary::
:toctree: generated/
:template: function.rst
feature_extraction.image.extract_patches_2d
feature_extraction.image.grid_to_graph
feature_extraction.image.img_to_graph
feature_extraction.image.reconstruct_from_patches_2d
:template: class.rst
feature_extraction.image.PatchExtractor
.. _text_feature_extraction_ref:
From text
---------
.. automodule:: sklearn.feature_extraction.text
:no-members:
:no-inherited-members:
.. currentmodule:: sklearn
.. autosummary::
:toctree: generated/
:template: class.rst
feature_extraction.text.CountVectorizer
feature_extraction.text.HashingVectorizer
feature_extraction.text.TfidfTransformer
feature_extraction.text.TfidfVectorizer
.. _feature_selection_ref:
:mod:`sklearn.feature_selection`: Feature Selection
===================================================
.. automodule:: sklearn.feature_selection
:no-members:
:no-inherited-members:
**User guide:** See the :ref:`feature_selection` section for further details.
.. currentmodule:: sklearn
.. autosummary::
:toctree: generated/
:template: class.rst
feature_selection.GenericUnivariateSelect
feature_selection.SelectPercentile
feature_selection.SelectKBest
feature_selection.SelectFpr
feature_selection.SelectFdr
feature_selection.SelectFromModel
feature_selection.SelectFwe
feature_selection.SequentialFeatureSelector
feature_selection.RFE
feature_selection.RFECV
feature_selection.VarianceThreshold
.. autosummary::
:toctree: generated/
:template: function.rst
feature_selection.chi2
feature_selection.f_classif
feature_selection.f_regression
feature_selection.r_regression
feature_selection.mutual_info_classif
feature_selection.mutual_info_regression
.. _gaussian_process_ref:
:mod:`sklearn.gaussian_process`: Gaussian Processes
===================================================
.. automodule:: sklearn.gaussian_process
:no-members:
:no-inherited-members:
**User guide:** See the :ref:`gaussian_process` section for further details.
.. currentmodule:: sklearn
.. autosummary::
:toctree: generated/
:template: class.rst
gaussian_process.GaussianProcessClassifier
gaussian_process.GaussianProcessRegressor
Kernels
-------
.. automodule:: sklearn.gaussian_process.kernels
:no-members:
:no-inherited-members:
.. currentmodule:: sklearn
.. autosummary::
:toctree: generated/
:template: class_with_call.rst
gaussian_process.kernels.CompoundKernel
gaussian_process.kernels.ConstantKernel
gaussian_process.kernels.DotProduct
gaussian_process.kernels.ExpSineSquared
gaussian_process.kernels.Exponentiation
gaussian_process.kernels.Hyperparameter
gaussian_process.kernels.Kernel
gaussian_process.kernels.Matern
gaussian_process.kernels.PairwiseKernel
gaussian_process.kernels.Product
gaussian_process.kernels.RBF
gaussian_process.kernels.RationalQuadratic
gaussian_process.kernels.Sum
gaussian_process.kernels.WhiteKernel
.. _impute_ref:
:mod:`sklearn.impute`: Impute
=============================
.. automodule:: sklearn.impute
:no-members:
:no-inherited-members:
**User guide:** See the :ref:`Impute` section for further details.
.. currentmodule:: sklearn
.. autosummary::
:toctree: generated/
:template: class.rst
impute.SimpleImputer
impute.IterativeImputer
impute.MissingIndicator
impute.KNNImputer
.. _inspection_ref:
:mod:`sklearn.inspection`: Inspection
=====================================
.. automodule:: sklearn.inspection
:no-members:
:no-inherited-members:
.. currentmodule:: sklearn
.. autosummary::
:toctree: generated/
:template: function.rst
inspection.partial_dependence
inspection.permutation_importance
Plotting
--------
.. currentmodule:: sklearn
.. autosummary::
:toctree: generated/
:template: display_only_from_estimator.rst
inspection.DecisionBoundaryDisplay
inspection.PartialDependenceDisplay
.. _isotonic_ref:
:mod:`sklearn.isotonic`: Isotonic regression
============================================
.. automodule:: sklearn.isotonic
:no-members:
:no-inherited-members:
**User guide:** See the :ref:`isotonic` section for further details.
.. currentmodule:: sklearn
.. autosummary::
:toctree: generated/
:template: class.rst
isotonic.IsotonicRegression
.. autosummary::
:toctree: generated/
:template: function.rst
isotonic.check_increasing
isotonic.isotonic_regression
.. _kernel_approximation_ref:
:mod:`sklearn.kernel_approximation`: Kernel Approximation
=========================================================
.. automodule:: sklearn.kernel_approximation
:no-members:
:no-inherited-members:
**User guide:** See the :ref:`kernel_approximation` section for further details.
.. currentmodule:: sklearn
.. autosummary::
:toctree: generated/
:template: class.rst
kernel_approximation.AdditiveChi2Sampler
kernel_approximation.Nystroem
kernel_approximation.PolynomialCountSketch
kernel_approximation.RBFSampler
kernel_approximation.SkewedChi2Sampler
.. _kernel_ridge_ref:
:mod:`sklearn.kernel_ridge`: Kernel Ridge Regression
====================================================
.. automodule:: sklearn.kernel_ridge
:no-members:
:no-inherited-members:
**User guide:** See the :ref:`kernel_ridge` section for further details.
.. currentmodule:: sklearn
.. autosummary::
:toctree: generated/
:template: class.rst
kernel_ridge.KernelRidge
.. _linear_model_ref:
:mod:`sklearn.linear_model`: Linear Models
==========================================
.. automodule:: sklearn.linear_model
:no-members:
:no-inherited-members:
**User guide:** See the :ref:`linear_model` section for further details.
The following subsections are only rough guidelines: the same estimator can
fall into multiple categories, depending on its parameters.
.. currentmodule:: sklearn
Linear classifiers
------------------
.. autosummary::
:toctree: generated/
:template: class.rst
linear_model.LogisticRegression
linear_model.LogisticRegressionCV
linear_model.PassiveAggressiveClassifier
linear_model.Perceptron
linear_model.RidgeClassifier
linear_model.RidgeClassifierCV
linear_model.SGDClassifier
linear_model.SGDOneClassSVM
Classical linear regressors
---------------------------
.. autosummary::
:toctree: generated/
:template: class.rst
linear_model.LinearRegression
linear_model.Ridge
linear_model.RidgeCV
linear_model.SGDRegressor
Regressors with variable selection
----------------------------------
The following estimators have built-in variable selection fitting
procedures, but any estimator using a L1 or elastic-net penalty also
performs variable selection: typically :class:`~linear_model.SGDRegressor`
or :class:`~sklearn.linear_model.SGDClassifier` with an appropriate penalty.
.. autosummary::
:toctree: generated/
:template: class.rst
linear_model.ElasticNet
linear_model.ElasticNetCV
linear_model.Lars
linear_model.LarsCV
linear_model.Lasso
linear_model.LassoCV
linear_model.LassoLars
linear_model.LassoLarsCV
linear_model.LassoLarsIC
linear_model.OrthogonalMatchingPursuit
linear_model.OrthogonalMatchingPursuitCV
Bayesian regressors
-------------------
.. autosummary::
:toctree: generated/
:template: class.rst
linear_model.ARDRegression
linear_model.BayesianRidge
Multi-task linear regressors with variable selection
----------------------------------------------------
These estimators fit multiple regression problems (or tasks) jointly, while
inducing sparse coefficients. While the inferred coefficients may differ
between the tasks, they are constrained to agree on the features that are
selected (non-zero coefficients).
.. autosummary::
:toctree: generated/
:template: class.rst
linear_model.MultiTaskElasticNet
linear_model.MultiTaskElasticNetCV
linear_model.MultiTaskLasso
linear_model.MultiTaskLassoCV
Outlier-robust regressors
-------------------------
Any estimator using the Huber loss would also be robust to outliers, e.g.
:class:`~linear_model.SGDRegressor` with ``loss='huber'``.
.. autosummary::
:toctree: generated/
:template: class.rst
linear_model.HuberRegressor
linear_model.QuantileRegressor
linear_model.RANSACRegressor
linear_model.TheilSenRegressor
Generalized linear models (GLM) for regression
----------------------------------------------
These models allow for response variables to have error distributions other
than a normal distribution:
.. autosummary::
:toctree: generated/
:template: class.rst
linear_model.PoissonRegressor
linear_model.TweedieRegressor
linear_model.GammaRegressor
Miscellaneous
-------------
.. autosummary::
:toctree: generated/
:template: classes.rst
linear_model.PassiveAggressiveRegressor
.. autosummary::
:toctree: generated/
:template: function.rst
linear_model.enet_path
linear_model.lars_path
linear_model.lars_path_gram
linear_model.lasso_path
linear_model.orthogonal_mp
linear_model.orthogonal_mp_gram
linear_model.ridge_regression
.. _manifold_ref:
:mod:`sklearn.manifold`: Manifold Learning
==========================================
.. automodule:: sklearn.manifold
:no-members:
:no-inherited-members:
**User guide:** See the :ref:`manifold` section for further details.
.. currentmodule:: sklearn
.. autosummary::
:toctree: generated
:template: class.rst
manifold.Isomap
manifold.LocallyLinearEmbedding
manifold.MDS
manifold.SpectralEmbedding
manifold.TSNE
.. autosummary::
:toctree: generated
:template: function.rst
manifold.locally_linear_embedding
manifold.smacof
manifold.spectral_embedding
manifold.trustworthiness
.. _metrics_ref:
:mod:`sklearn.metrics`: Metrics
===============================
See the :ref:`model_evaluation` section and the :ref:`metrics` section of the
user guide for further details.
.. automodule:: sklearn.metrics
:no-members:
:no-inherited-members:
.. currentmodule:: sklearn
Model Selection Interface
-------------------------
See the :ref:`scoring_parameter` section of the user guide for further
details.
.. autosummary::
:toctree: generated/
:template: function.rst
metrics.check_scoring
metrics.get_scorer
metrics.get_scorer_names
metrics.make_scorer
Classification metrics
----------------------
See the :ref:`classification_metrics` section of the user guide for further
details.
.. autosummary::
:toctree: generated/
:template: function.rst
metrics.accuracy_score
metrics.auc
metrics.average_precision_score
metrics.balanced_accuracy_score
metrics.brier_score_loss
metrics.class_likelihood_ratios
metrics.classification_report
metrics.cohen_kappa_score
metrics.confusion_matrix
metrics.dcg_score
metrics.det_curve
metrics.f1_score
metrics.fbeta_score
metrics.hamming_loss
metrics.hinge_loss
metrics.jaccard_score
metrics.log_loss
metrics.matthews_corrcoef
metrics.multilabel_confusion_matrix
metrics.ndcg_score
metrics.precision_recall_curve
metrics.precision_recall_fscore_support
metrics.precision_score
metrics.recall_score
metrics.roc_auc_score
metrics.roc_curve
metrics.top_k_accuracy_score
metrics.zero_one_loss
Regression metrics
------------------
See the :ref:`regression_metrics` section of the user guide for further
details.
.. autosummary::
:toctree: generated/
:template: function.rst
metrics.explained_variance_score
metrics.max_error
metrics.mean_absolute_error
metrics.mean_squared_error
metrics.mean_squared_log_error
metrics.median_absolute_error
metrics.mean_absolute_percentage_error
metrics.r2_score
metrics.root_mean_squared_log_error
metrics.root_mean_squared_error
metrics.mean_poisson_deviance
metrics.mean_gamma_deviance
metrics.mean_tweedie_deviance
metrics.d2_tweedie_score
metrics.mean_pinball_loss
metrics.d2_pinball_score
metrics.d2_absolute_error_score
Multilabel ranking metrics
--------------------------
See the :ref:`multilabel_ranking_metrics` section of the user guide for further
details.
.. autosummary::
:toctree: generated/
:template: function.rst
metrics.coverage_error
metrics.label_ranking_average_precision_score
metrics.label_ranking_loss
Clustering metrics
------------------
See the :ref:`clustering_evaluation` section of the user guide for further
details.
.. automodule:: sklearn.metrics.cluster
:no-members:
:no-inherited-members:
.. currentmodule:: sklearn
.. autosummary::
:toctree: generated/
:template: function.rst
metrics.adjusted_mutual_info_score
metrics.adjusted_rand_score
metrics.calinski_harabasz_score
metrics.davies_bouldin_score
metrics.completeness_score
metrics.cluster.contingency_matrix
metrics.cluster.pair_confusion_matrix
metrics.fowlkes_mallows_score
metrics.homogeneity_completeness_v_measure
metrics.homogeneity_score
metrics.mutual_info_score
metrics.normalized_mutual_info_score
metrics.rand_score
metrics.silhouette_score
metrics.silhouette_samples
metrics.v_measure_score
Biclustering metrics
--------------------
See the :ref:`biclustering_evaluation` section of the user guide for
further details.
.. currentmodule:: sklearn
.. autosummary::
:toctree: generated/
:template: function.rst
metrics.consensus_score
Distance metrics
----------------
.. currentmodule:: sklearn
.. autosummary::
:toctree: generated/
:template: class.rst
metrics.DistanceMetric
Pairwise metrics
----------------
See the :ref:`metrics` section of the user guide for further details.
.. automodule:: sklearn.metrics.pairwise
:no-members:
:no-inherited-members:
.. currentmodule:: sklearn
.. autosummary::
:toctree: generated/
:template: function.rst
metrics.pairwise.additive_chi2_kernel
metrics.pairwise.chi2_kernel
metrics.pairwise.cosine_similarity
metrics.pairwise.cosine_distances
metrics.pairwise.distance_metrics
metrics.pairwise.euclidean_distances
metrics.pairwise.haversine_distances
metrics.pairwise.kernel_metrics
metrics.pairwise.laplacian_kernel
metrics.pairwise.linear_kernel
metrics.pairwise.manhattan_distances
metrics.pairwise.nan_euclidean_distances
metrics.pairwise.pairwise_kernels
metrics.pairwise.polynomial_kernel
metrics.pairwise.rbf_kernel
metrics.pairwise.sigmoid_kernel
metrics.pairwise.paired_euclidean_distances
metrics.pairwise.paired_manhattan_distances
metrics.pairwise.paired_cosine_distances
metrics.pairwise.paired_distances
metrics.pairwise_distances
metrics.pairwise_distances_argmin
metrics.pairwise_distances_argmin_min
metrics.pairwise_distances_chunked
Plotting
--------
See the :ref:`visualizations` section of the user guide for further details.
.. currentmodule:: sklearn
.. autosummary::
:toctree: generated/
:template: display_all_class_methods.rst
metrics.ConfusionMatrixDisplay
metrics.DetCurveDisplay
metrics.PrecisionRecallDisplay
metrics.PredictionErrorDisplay
metrics.RocCurveDisplay
calibration.CalibrationDisplay
.. _mixture_ref:
:mod:`sklearn.mixture`: Gaussian Mixture Models
===============================================
.. automodule:: sklearn.mixture
:no-members:
:no-inherited-members:
**User guide:** See the :ref:`mixture` section for further details.
.. currentmodule:: sklearn
.. autosummary::
:toctree: generated/
:template: class.rst
mixture.BayesianGaussianMixture
mixture.GaussianMixture
.. _modelselection_ref:
:mod:`sklearn.model_selection`: Model Selection
===============================================
.. automodule:: sklearn.model_selection
:no-members:
:no-inherited-members:
**User guide:** See the :ref:`cross_validation`, :ref:`grid_search` and
:ref:`learning_curve` sections for further details.
Splitter Classes
----------------
.. currentmodule:: sklearn
.. autosummary::
:toctree: generated/
:template: class.rst
model_selection.GroupKFold
model_selection.GroupShuffleSplit
model_selection.KFold
model_selection.LeaveOneGroupOut
model_selection.LeavePGroupsOut
model_selection.LeaveOneOut
model_selection.LeavePOut
model_selection.PredefinedSplit
model_selection.RepeatedKFold
model_selection.RepeatedStratifiedKFold
model_selection.ShuffleSplit
model_selection.StratifiedKFold
model_selection.StratifiedShuffleSplit
model_selection.StratifiedGroupKFold
model_selection.TimeSeriesSplit
Splitter Functions
------------------
.. currentmodule:: sklearn
.. autosummary::
:toctree: generated/
:template: function.rst
model_selection.check_cv
model_selection.train_test_split
.. _hyper_parameter_optimizers:
Hyper-parameter optimizers
--------------------------
.. currentmodule:: sklearn
.. autosummary::
:toctree: generated/
:template: class.rst
model_selection.GridSearchCV
model_selection.HalvingGridSearchCV
model_selection.ParameterGrid
model_selection.ParameterSampler
model_selection.RandomizedSearchCV
model_selection.HalvingRandomSearchCV
Model validation
----------------
.. currentmodule:: sklearn
.. autosummary::
:toctree: generated/
:template: function.rst
model_selection.cross_validate
model_selection.cross_val_predict
model_selection.cross_val_score
model_selection.learning_curve
model_selection.permutation_test_score
model_selection.validation_curve
Visualization
-------------
.. currentmodule:: sklearn
.. autosummary::
:toctree: generated/
:template: display_only_from_estimator.rst
model_selection.LearningCurveDisplay
model_selection.ValidationCurveDisplay
.. _multiclass_ref:
:mod:`sklearn.multiclass`: Multiclass classification
====================================================
.. automodule:: sklearn.multiclass
:no-members:
:no-inherited-members:
**User guide:** See the :ref:`multiclass_classification` section for further details.
.. currentmodule:: sklearn
.. autosummary::
:toctree: generated/
:template: class.rst
multiclass.OneVsRestClassifier
multiclass.OneVsOneClassifier
multiclass.OutputCodeClassifier
.. _multioutput_ref:
:mod:`sklearn.multioutput`: Multioutput regression and classification
=====================================================================
.. automodule:: sklearn.multioutput
:no-members:
:no-inherited-members:
**User guide:** See the :ref:`multilabel_classification`,
:ref:`multiclass_multioutput_classification`, and
:ref:`multioutput_regression` sections for further details.
.. currentmodule:: sklearn
.. autosummary::
:toctree: generated
:template: class.rst
multioutput.ClassifierChain
multioutput.MultiOutputRegressor
multioutput.MultiOutputClassifier
multioutput.RegressorChain
.. _naive_bayes_ref:
:mod:`sklearn.naive_bayes`: Naive Bayes
=======================================
.. automodule:: sklearn.naive_bayes
:no-members:
:no-inherited-members:
**User guide:** See the :ref:`naive_bayes` section for further details.
.. currentmodule:: sklearn
.. autosummary::
:toctree: generated/
:template: class.rst
naive_bayes.BernoulliNB
naive_bayes.CategoricalNB
naive_bayes.ComplementNB
naive_bayes.GaussianNB
naive_bayes.MultinomialNB
.. _neighbors_ref:
:mod:`sklearn.neighbors`: Nearest Neighbors
===========================================
.. automodule:: sklearn.neighbors
:no-members:
:no-inherited-members:
**User guide:** See the :ref:`neighbors` section for further details.
.. currentmodule:: sklearn
.. autosummary::
:toctree: generated/
:template: class.rst
neighbors.BallTree
neighbors.KDTree
neighbors.KernelDensity
neighbors.KNeighborsClassifier
neighbors.KNeighborsRegressor
neighbors.KNeighborsTransformer
neighbors.LocalOutlierFactor
neighbors.RadiusNeighborsClassifier
neighbors.RadiusNeighborsRegressor
neighbors.RadiusNeighborsTransformer
neighbors.NearestCentroid
neighbors.NearestNeighbors
neighbors.NeighborhoodComponentsAnalysis
.. autosummary::
:toctree: generated/
:template: function.rst
neighbors.kneighbors_graph
neighbors.radius_neighbors_graph
neighbors.sort_graph_by_row_values
.. _neural_network_ref:
:mod:`sklearn.neural_network`: Neural network models
====================================================
.. automodule:: sklearn.neural_network
:no-members:
:no-inherited-members:
**User guide:** See the :ref:`neural_networks_supervised` and :ref:`neural_networks_unsupervised` sections for further details.
.. currentmodule:: sklearn
.. autosummary::
:toctree: generated/
:template: class.rst
neural_network.BernoulliRBM
neural_network.MLPClassifier
neural_network.MLPRegressor
.. _pipeline_ref:
:mod:`sklearn.pipeline`: Pipeline
=================================
.. automodule:: sklearn.pipeline
:no-members:
:no-inherited-members:
**User guide:** See the :ref:`combining_estimators` section for further
details.
.. currentmodule:: sklearn
.. autosummary::
:toctree: generated/
:template: class.rst
pipeline.FeatureUnion
pipeline.Pipeline
.. autosummary::
:toctree: generated/
:template: function.rst
pipeline.make_pipeline
pipeline.make_union
.. _preprocessing_ref:
:mod:`sklearn.preprocessing`: Preprocessing and Normalization
=============================================================
.. automodule:: sklearn.preprocessing
:no-members:
:no-inherited-members:
**User guide:** See the :ref:`preprocessing` section for further details.
.. currentmodule:: sklearn
.. autosummary::
:toctree: generated/
:template: class.rst
preprocessing.Binarizer
preprocessing.FunctionTransformer
preprocessing.KBinsDiscretizer
preprocessing.KernelCenterer
preprocessing.LabelBinarizer
preprocessing.LabelEncoder
preprocessing.MultiLabelBinarizer
preprocessing.MaxAbsScaler
preprocessing.MinMaxScaler
preprocessing.Normalizer
preprocessing.OneHotEncoder
preprocessing.OrdinalEncoder
preprocessing.PolynomialFeatures
preprocessing.PowerTransformer
preprocessing.QuantileTransformer
preprocessing.RobustScaler
preprocessing.SplineTransformer
preprocessing.StandardScaler
preprocessing.TargetEncoder
.. autosummary::
:toctree: generated/
:template: function.rst
preprocessing.add_dummy_feature
preprocessing.binarize
preprocessing.label_binarize
preprocessing.maxabs_scale
preprocessing.minmax_scale
preprocessing.normalize
preprocessing.quantile_transform
preprocessing.robust_scale
preprocessing.scale
preprocessing.power_transform
.. _random_projection_ref:
:mod:`sklearn.random_projection`: Random projection
===================================================
.. automodule:: sklearn.random_projection
:no-members:
:no-inherited-members:
**User guide:** See the :ref:`random_projection` section for further details.
.. currentmodule:: sklearn
.. autosummary::
:toctree: generated/
:template: class.rst
random_projection.GaussianRandomProjection
random_projection.SparseRandomProjection
.. autosummary::
:toctree: generated/
:template: function.rst
random_projection.johnson_lindenstrauss_min_dim
.. _semi_supervised_ref:
:mod:`sklearn.semi_supervised`: Semi-Supervised Learning
========================================================
.. automodule:: sklearn.semi_supervised
:no-members:
:no-inherited-members:
**User guide:** See the :ref:`semi_supervised` section for further details.
.. currentmodule:: sklearn
.. autosummary::
:toctree: generated/
:template: class.rst
semi_supervised.LabelPropagation
semi_supervised.LabelSpreading
semi_supervised.SelfTrainingClassifier
.. _svm_ref:
:mod:`sklearn.svm`: Support Vector Machines
===========================================
.. automodule:: sklearn.svm
:no-members:
:no-inherited-members:
**User guide:** See the :ref:`svm` section for further details.
Estimators
----------
.. currentmodule:: sklearn
.. autosummary::
:toctree: generated/
:template: class.rst
svm.LinearSVC
svm.LinearSVR
svm.NuSVC
svm.NuSVR
svm.OneClassSVM
svm.SVC
svm.SVR
.. autosummary::
:toctree: generated/
:template: function.rst
svm.l1_min_c
.. _tree_ref:
:mod:`sklearn.tree`: Decision Trees
===================================
.. automodule:: sklearn.tree
:no-members:
:no-inherited-members:
**User guide:** See the :ref:`tree` section for further details.
.. currentmodule:: sklearn
.. autosummary::
:toctree: generated/
:template: class.rst
tree.DecisionTreeClassifier
tree.DecisionTreeRegressor
tree.ExtraTreeClassifier
tree.ExtraTreeRegressor
.. autosummary::
:toctree: generated/
:template: function.rst
tree.export_graphviz
tree.export_text
Plotting
--------
.. currentmodule:: sklearn
.. autosummary::
:toctree: generated/
:template: function.rst
tree.plot_tree
.. _utils_ref:
:mod:`sklearn.utils`: Utilities
===============================
.. automodule:: sklearn.utils
:no-members:
:no-inherited-members:
**Developer guide:** See the :ref:`developers-utils` page for further details.
.. currentmodule:: sklearn
.. autosummary::
:toctree: generated/
:template: class.rst
utils.Bunch
.. autosummary::
:toctree: generated/
:template: function.rst
utils.as_float_array
utils.assert_all_finite
utils.deprecated
utils.estimator_html_repr
utils.gen_batches
utils.gen_even_slices
utils.indexable
utils.murmurhash3_32
utils.resample
utils._safe_indexing
utils.safe_mask
utils.safe_sqr
utils.shuffle
Input and parameter validation
------------------------------
.. automodule:: sklearn.utils.validation
:no-members:
:no-inherited-members:
.. currentmodule:: sklearn
.. autosummary::
:toctree: generated/
:template: function.rst
utils.check_X_y
utils.check_array
utils.check_scalar
utils.check_consistent_length
utils.check_random_state
utils.validation.check_is_fitted
utils.validation.check_memory
utils.validation.check_symmetric
utils.validation.column_or_1d
utils.validation.has_fit_parameter
Utilities used in meta-estimators
---------------------------------
.. automodule:: sklearn.utils.metaestimators
:no-members:
:no-inherited-members:
.. currentmodule:: sklearn
.. autosummary::
:toctree: generated/
:template: function.rst
utils.metaestimators.available_if
Utilities to handle weights based on class labels
-------------------------------------------------
.. automodule:: sklearn.utils.class_weight
:no-members:
:no-inherited-members:
.. currentmodule:: sklearn
.. autosummary::
:toctree: generated/
:template: function.rst
utils.class_weight.compute_class_weight
utils.class_weight.compute_sample_weight
Utilities to deal with multiclass target in classifiers
-------------------------------------------------------
.. automodule:: sklearn.utils.multiclass
:no-members:
:no-inherited-members:
.. currentmodule:: sklearn
.. autosummary::
:toctree: generated/
:template: function.rst
utils.multiclass.type_of_target
utils.multiclass.is_multilabel
utils.multiclass.unique_labels
Utilities for optimal mathematical operations
---------------------------------------------
.. automodule:: sklearn.utils.extmath
:no-members:
:no-inherited-members:
.. currentmodule:: sklearn
.. autosummary::
:toctree: generated/
:template: function.rst
utils.extmath.safe_sparse_dot
utils.extmath.randomized_range_finder
utils.extmath.randomized_svd
utils.extmath.fast_logdet
utils.extmath.density
utils.extmath.weighted_mode
Utilities to work with sparse matrices and arrays
-------------------------------------------------
.. automodule:: sklearn.utils.sparsefuncs
:no-members:
:no-inherited-members:
.. currentmodule:: sklearn
.. autosummary::
:toctree: generated/
:template: function.rst
utils.sparsefuncs.incr_mean_variance_axis
utils.sparsefuncs.inplace_column_scale
utils.sparsefuncs.inplace_row_scale
utils.sparsefuncs.inplace_swap_row
utils.sparsefuncs.inplace_swap_column
utils.sparsefuncs.mean_variance_axis
utils.sparsefuncs.inplace_csr_column_scale
.. automodule:: sklearn.utils.sparsefuncs_fast
:no-members:
:no-inherited-members:
.. currentmodule:: sklearn
.. autosummary::
:toctree: generated/
:template: function.rst
utils.sparsefuncs_fast.inplace_csr_row_normalize_l1
utils.sparsefuncs_fast.inplace_csr_row_normalize_l2
Utilities to work with graphs
-----------------------------
.. automodule:: sklearn.utils.graph
:no-members:
:no-inherited-members:
.. currentmodule:: sklearn
.. autosummary::
:toctree: generated/
:template: function.rst
utils.graph.single_source_shortest_path_length
Utilities for random sampling
-----------------------------
.. automodule:: sklearn.utils.random
:no-members:
:no-inherited-members:
.. currentmodule:: sklearn
.. autosummary::
:toctree: generated/
:template: function.rst
utils.random.sample_without_replacement
Utilities to operate on arrays
------------------------------
.. automodule:: sklearn.utils.arrayfuncs
:no-members:
:no-inherited-members:
.. currentmodule:: sklearn
.. autosummary::
:toctree: generated/
:template: function.rst
utils.arrayfuncs.min_pos
Metadata routing
----------------
.. automodule:: sklearn.utils.metadata_routing
:no-members:
:no-inherited-members:
.. currentmodule:: sklearn
.. autosummary::
:toctree: generated/
:template: function.rst
utils.metadata_routing.get_routing_for_object
utils.metadata_routing.process_routing
.. autosummary::
:toctree: generated/
:template: class.rst
utils.metadata_routing.MetadataRouter
utils.metadata_routing.MetadataRequest
utils.metadata_routing.MethodMapping
Scikit-learn object discovery
-----------------------------
.. automodule:: sklearn.utils.discovery
:no-members:
:no-inherited-members:
.. currentmodule:: sklearn
.. autosummary::
:toctree: generated/
:template: function.rst
utils.discovery.all_estimators
utils.discovery.all_displays
utils.discovery.all_functions
Scikit-learn compatibility checker
----------------------------------
.. automodule:: sklearn.utils.estimator_checks
:no-members:
:no-inherited-members:
.. currentmodule:: sklearn
.. autosummary::
:toctree: generated/
:template: function.rst
utils.estimator_checks.check_estimator
utils.estimator_checks.parametrize_with_checks
Utilities for parallel computing
--------------------------------
.. automodule:: sklearn.utils.parallel
:no-members:
:no-inherited-members:
.. currentmodule:: sklearn
.. autosummary::
:toctree: generated/
:template: function.rst
utils.parallel.delayed
utils.parallel_backend
utils.register_parallel_backend
.. autosummary::
:toctree: generated/
:template: class.rst
utils.parallel.Parallel
Recently deprecated
===================
|