File: ensemble.rst

package info (click to toggle)
scikit-learn 1.4.2%2Bdfsg-8
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 25,036 kB
  • sloc: python: 201,105; cpp: 5,790; ansic: 854; makefile: 304; sh: 56; javascript: 20
file content (1648 lines) | stat: -rw-r--r-- 70,083 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
.. _ensemble:

===========================================================================
Ensembles: Gradient boosting, random forests, bagging, voting, stacking
===========================================================================

.. currentmodule:: sklearn.ensemble

**Ensemble methods** combine the predictions of several
base estimators built with a given learning algorithm in order to improve
generalizability / robustness over a single estimator.

Two very famous examples of ensemble methods are :ref:`gradient-boosted trees
<gradient_boosting>` and :ref:`random forests <forest>`.

More generally, ensemble models can be applied to any base learner beyond
trees, in averaging methods such as :ref:`Bagging methods <bagging>`,
:ref:`model stacking <stacking>`, or :ref:`Voting <voting_classifier>`, or in
boosting, as :ref:`AdaBoost <adaboost>`.

.. contents::
    :local:
    :depth: 1

.. _gradient_boosting:

Gradient-boosted trees
======================

`Gradient Tree Boosting <https://en.wikipedia.org/wiki/Gradient_boosting>`_
or Gradient Boosted Decision Trees (GBDT) is a generalization
of boosting to arbitrary differentiable loss functions, see the seminal work of
[Friedman2001]_. GBDT is an excellent model for both regression and
classification, in particular for tabular data.

.. topic:: :class:`GradientBoostingClassifier` vs :class:`HistGradientBoostingClassifier`

  Scikit-learn provides two implementations of gradient-boosted trees:
  :class:`HistGradientBoostingClassifier` vs
  :class:`GradientBoostingClassifier` for classification, and the
  corresponding classes for regression. The former can be **orders of
  magnitude faster** than the latter when the number of samples is
  larger than tens of thousands of samples.

  Missing values and categorical data are natively supported by the
  Hist... version, removing the need for additional preprocessing such as
  imputation.

  :class:`GradientBoostingClassifier` and
  :class:`GradientBoostingRegressor`, might be preferred for small sample
  sizes since binning may lead to split points that are too approximate
  in this setting.

.. _histogram_based_gradient_boosting:

Histogram-Based Gradient Boosting
----------------------------------

Scikit-learn 0.21 introduced two new implementations of
gradient boosted trees, namely :class:`HistGradientBoostingClassifier`
and :class:`HistGradientBoostingRegressor`, inspired by
`LightGBM <https://github.com/Microsoft/LightGBM>`__ (See [LightGBM]_).

These histogram-based estimators can be **orders of magnitude faster**
than :class:`GradientBoostingClassifier` and
:class:`GradientBoostingRegressor` when the number of samples is larger
than tens of thousands of samples.

They also have built-in support for missing values, which avoids the need
for an imputer.

These fast estimators first bin the input samples ``X`` into
integer-valued bins (typically 256 bins) which tremendously reduces the
number of splitting points to consider, and allows the algorithm to
leverage integer-based data structures (histograms) instead of relying on
sorted continuous values when building the trees. The API of these
estimators is slightly different, and some of the features from
:class:`GradientBoostingClassifier` and :class:`GradientBoostingRegressor`
are not yet supported, for instance some loss functions.

.. topic:: Examples:

 * :ref:`sphx_glr_auto_examples_inspection_plot_partial_dependence.py`

Usage
^^^^^

Most of the parameters are unchanged from
:class:`GradientBoostingClassifier` and :class:`GradientBoostingRegressor`.
One exception is the ``max_iter`` parameter that replaces ``n_estimators``, and
controls the number of iterations of the boosting process::

  >>> from sklearn.ensemble import HistGradientBoostingClassifier
  >>> from sklearn.datasets import make_hastie_10_2

  >>> X, y = make_hastie_10_2(random_state=0)
  >>> X_train, X_test = X[:2000], X[2000:]
  >>> y_train, y_test = y[:2000], y[2000:]

  >>> clf = HistGradientBoostingClassifier(max_iter=100).fit(X_train, y_train)
  >>> clf.score(X_test, y_test)
  0.8965

Available losses for regression are 'squared_error',
'absolute_error', which is less sensitive to outliers, and
'poisson', which is well suited to model counts and frequencies. For
classification, 'log_loss' is the only option. For binary classification it uses the
binary log loss, also known as binomial deviance or binary cross-entropy. For
`n_classes >= 3`, it uses the multi-class log loss function, with multinomial deviance
and categorical cross-entropy as alternative names. The appropriate loss version is
selected based on :term:`y` passed to :term:`fit`.

The size of the trees can be controlled through the ``max_leaf_nodes``,
``max_depth``, and ``min_samples_leaf`` parameters.

The number of bins used to bin the data is controlled with the ``max_bins``
parameter. Using less bins acts as a form of regularization. It is
generally recommended to use as many bins as possible (256), which is the default.

The ``l2_regularization`` parameter is a regularizer on the loss function and
corresponds to :math:`\lambda` in equation (2) of [XGBoost]_.

Note that **early-stopping is enabled by default if the number of samples is
larger than 10,000**. The early-stopping behaviour is controlled via the
``early_stopping``, ``scoring``, ``validation_fraction``,
``n_iter_no_change``, and ``tol`` parameters. It is possible to early-stop
using an arbitrary :term:`scorer`, or just the training or validation loss.
Note that for technical reasons, using a callable as a scorer is significantly slower
than using the loss. By default, early-stopping is performed if there are at least
10,000 samples in the training set, using the validation loss.

Missing values support
^^^^^^^^^^^^^^^^^^^^^^

:class:`HistGradientBoostingClassifier` and
:class:`HistGradientBoostingRegressor` have built-in support for missing
values (NaNs).

During training, the tree grower learns at each split point whether samples
with missing values should go to the left or right child, based on the
potential gain. When predicting, samples with missing values are assigned to
the left or right child consequently::

  >>> from sklearn.ensemble import HistGradientBoostingClassifier
  >>> import numpy as np

  >>> X = np.array([0, 1, 2, np.nan]).reshape(-1, 1)
  >>> y = [0, 0, 1, 1]

  >>> gbdt = HistGradientBoostingClassifier(min_samples_leaf=1).fit(X, y)
  >>> gbdt.predict(X)
  array([0, 0, 1, 1])

When the missingness pattern is predictive, the splits can be performed on
whether the feature value is missing or not::

  >>> X = np.array([0, np.nan, 1, 2, np.nan]).reshape(-1, 1)
  >>> y = [0, 1, 0, 0, 1]
  >>> gbdt = HistGradientBoostingClassifier(min_samples_leaf=1,
  ...                                       max_depth=2,
  ...                                       learning_rate=1,
  ...                                       max_iter=1).fit(X, y)
  >>> gbdt.predict(X)
  array([0, 1, 0, 0, 1])

If no missing values were encountered for a given feature during training,
then samples with missing values are mapped to whichever child has the most
samples.

.. _sw_hgbdt:

Sample weight support
^^^^^^^^^^^^^^^^^^^^^

:class:`HistGradientBoostingClassifier` and
:class:`HistGradientBoostingRegressor` support sample weights during
:term:`fit`.

The following toy example demonstrates that samples with a sample weight of zero are ignored:

    >>> X = [[1, 0],
    ...      [1, 0],
    ...      [1, 0],
    ...      [0, 1]]
    >>> y = [0, 0, 1, 0]
    >>> # ignore the first 2 training samples by setting their weight to 0
    >>> sample_weight = [0, 0, 1, 1]
    >>> gb = HistGradientBoostingClassifier(min_samples_leaf=1)
    >>> gb.fit(X, y, sample_weight=sample_weight)
    HistGradientBoostingClassifier(...)
    >>> gb.predict([[1, 0]])
    array([1])
    >>> gb.predict_proba([[1, 0]])[0, 1]
    0.99...

As you can see, the `[1, 0]` is comfortably classified as `1` since the first
two samples are ignored due to their sample weights.

Implementation detail: taking sample weights into account amounts to
multiplying the gradients (and the hessians) by the sample weights. Note that
the binning stage (specifically the quantiles computation) does not take the
weights into account.

.. _categorical_support_gbdt:

Categorical Features Support
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

:class:`HistGradientBoostingClassifier` and
:class:`HistGradientBoostingRegressor` have native support for categorical
features: they can consider splits on non-ordered, categorical data.

For datasets with categorical features, using the native categorical support
is often better than relying on one-hot encoding
(:class:`~sklearn.preprocessing.OneHotEncoder`), because one-hot encoding
requires more tree depth to achieve equivalent splits. It is also usually
better to rely on the native categorical support rather than to treat
categorical features as continuous (ordinal), which happens for ordinal-encoded
categorical data, since categories are nominal quantities where order does not
matter.

To enable categorical support, a boolean mask can be passed to the
`categorical_features` parameter, indicating which feature is categorical. In
the following, the first feature will be treated as categorical and the
second feature as numerical::

  >>> gbdt = HistGradientBoostingClassifier(categorical_features=[True, False])

Equivalently, one can pass a list of integers indicating the indices of the
categorical features::

  >>> gbdt = HistGradientBoostingClassifier(categorical_features=[0])

When the input is a DataFrame, it is also possible to pass a list of column
names::

  >>> gbdt = HistGradientBoostingClassifier(categorical_features=["site", "manufacturer"])

Finally, when the input is a DataFrame we can use
`categorical_features="from_dtype"` in which case all columns with a categorical
`dtype` will be treated as categorical features.

The cardinality of each categorical feature must be less than the `max_bins`
parameter. For an example using histogram-based gradient boosting on categorical
features, see
:ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_categorical.py`.

If there are missing values during training, the missing values will be
treated as a proper category. If there are no missing values during training,
then at prediction time, missing values are mapped to the child node that has
the most samples (just like for continuous features). When predicting,
categories that were not seen during fit time will be treated as missing
values.

**Split finding with categorical features**: The canonical way of considering
categorical splits in a tree is to consider
all of the :math:`2^{K - 1} - 1` partitions, where :math:`K` is the number of
categories. This can quickly become prohibitive when :math:`K` is large.
Fortunately, since gradient boosting trees are always regression trees (even
for classification problems), there exist a faster strategy that can yield
equivalent splits. First, the categories of a feature are sorted according to
the variance of the target, for each category `k`. Once the categories are
sorted, one can consider *continuous partitions*, i.e. treat the categories
as if they were ordered continuous values (see Fisher [Fisher1958]_ for a
formal proof). As a result, only :math:`K - 1` splits need to be considered
instead of :math:`2^{K - 1} - 1`. The initial sorting is a
:math:`\mathcal{O}(K \log(K))` operation, leading to a total complexity of
:math:`\mathcal{O}(K \log(K) + K)`, instead of :math:`\mathcal{O}(2^K)`.

.. topic:: Examples:

  * :ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_categorical.py`

.. _monotonic_cst_gbdt:

Monotonic Constraints
^^^^^^^^^^^^^^^^^^^^^

Depending on the problem at hand, you may have prior knowledge indicating
that a given feature should in general have a positive (or negative) effect
on the target value. For example, all else being equal, a higher credit
score should increase the probability of getting approved for a loan.
Monotonic constraints allow you to incorporate such prior knowledge into the
model.

For a predictor :math:`F` with two features:

- a **monotonic increase constraint** is a constraint of the form:

  .. math::
      x_1 \leq x_1' \implies F(x_1, x_2) \leq F(x_1', x_2)

- a **monotonic decrease constraint** is a constraint of the form:

  .. math::
      x_1 \leq x_1' \implies F(x_1, x_2) \geq F(x_1', x_2)

You can specify a monotonic constraint on each feature using the
`monotonic_cst` parameter. For each feature, a value of 0 indicates no
constraint, while 1 and -1 indicate a monotonic increase and
monotonic decrease constraint, respectively::

  >>> from sklearn.ensemble import HistGradientBoostingRegressor

  ... # monotonic increase, monotonic decrease, and no constraint on the 3 features
  >>> gbdt = HistGradientBoostingRegressor(monotonic_cst=[1, -1, 0])

In a binary classification context, imposing a monotonic increase (decrease) constraint means that higher values of the feature are supposed
to have a positive (negative) effect on the probability of samples
to belong to the positive class.

Nevertheless, monotonic constraints only marginally constrain feature effects on the output.
For instance, monotonic increase and decrease constraints cannot be used to enforce the
following modelling constraint:

.. math::
    x_1 \leq x_1' \implies F(x_1, x_2) \leq F(x_1', x_2')

Also, monotonic constraints are not supported for multiclass classification.

.. note::
    Since categories are unordered quantities, it is not possible to enforce
    monotonic constraints on categorical features.

.. topic:: Examples:

  * :ref:`sphx_glr_auto_examples_ensemble_plot_monotonic_constraints.py`

.. _interaction_cst_hgbt:

Interaction constraints
^^^^^^^^^^^^^^^^^^^^^^^

A priori, the histogram gradient boosted trees are allowed to use any feature
to split a node into child nodes. This creates so called interactions between
features, i.e. usage of different features as split along a branch. Sometimes,
one wants to restrict the possible interactions, see [Mayer2022]_. This can be
done by the parameter ``interaction_cst``, where one can specify the indices
of features that are allowed to interact.
For instance, with 3 features in total, ``interaction_cst=[{0}, {1}, {2}]``
forbids all interactions.
The constraints ``[{0, 1}, {1, 2}]`` specifies two groups of possibly
interacting features. Features 0 and 1 may interact with each other, as well
as features 1 and 2. But note that features 0 and 2 are forbidden to interact.
The following depicts a tree and the possible splits of the tree:

.. code-block:: none

      1      <- Both constraint groups could be applied from now on
     / \
    1   2    <- Left split still fulfills both constraint groups.
   / \ / \      Right split at feature 2 has only group {1, 2} from now on.

LightGBM uses the same logic for overlapping groups.

Note that features not listed in ``interaction_cst`` are automatically
assigned an interaction group for themselves. With again 3 features, this
means that ``[{0}]`` is equivalent to ``[{0}, {1, 2}]``.

.. topic:: Examples:

 * :ref:`sphx_glr_auto_examples_inspection_plot_partial_dependence.py`

.. topic:: References

  .. [Mayer2022] M. Mayer, S.C. Bourassa, M. Hoesli, and D.F. Scognamiglio.
     2022. :doi:`Machine Learning Applications to Land and Structure Valuation
     <10.3390/jrfm15050193>`.
     Journal of Risk and Financial Management 15, no. 5: 193

Low-level parallelism
^^^^^^^^^^^^^^^^^^^^^


:class:`HistGradientBoostingClassifier` and
:class:`HistGradientBoostingRegressor` use OpenMP
for parallelization through Cython. For more details on how to control the
number of threads, please refer to our :ref:`parallelism` notes.

The following parts are parallelized:

- mapping samples from real values to integer-valued bins (finding the bin
  thresholds is however sequential)
- building histograms is parallelized over features
- finding the best split point at a node is parallelized over features
- during fit, mapping samples into the left and right children is
  parallelized over samples
- gradient and hessians computations are parallelized over samples
- predicting is parallelized over samples

.. _Why_it's_faster:

Why it's faster
^^^^^^^^^^^^^^^

The bottleneck of a gradient boosting procedure is building the decision
trees. Building a traditional decision tree (as in the other GBDTs
:class:`GradientBoostingClassifier` and :class:`GradientBoostingRegressor`)
requires sorting the samples at each node (for
each feature). Sorting is needed so that the potential gain of a split point
can be computed efficiently. Splitting a single node has thus a complexity
of :math:`\mathcal{O}(n_\text{features} \times n \log(n))` where :math:`n`
is the number of samples at the node.

:class:`HistGradientBoostingClassifier` and
:class:`HistGradientBoostingRegressor`, in contrast, do not require sorting the
feature values and instead use a data-structure called a histogram, where the
samples are implicitly ordered. Building a histogram has a
:math:`\mathcal{O}(n)` complexity, so the node splitting procedure has a
:math:`\mathcal{O}(n_\text{features} \times n)` complexity, much smaller
than the previous one. In addition, instead of considering :math:`n` split
points, we consider only ``max_bins`` split points, which might be much
smaller.

In order to build histograms, the input data `X` needs to be binned into
integer-valued bins. This binning procedure does require sorting the feature
values, but it only happens once at the very beginning of the boosting process
(not at each node, like in :class:`GradientBoostingClassifier` and
:class:`GradientBoostingRegressor`).

Finally, many parts of the implementation of
:class:`HistGradientBoostingClassifier` and
:class:`HistGradientBoostingRegressor` are parallelized.

.. topic:: References

  .. [XGBoost] Tianqi Chen, Carlos Guestrin, :arxiv:`"XGBoost: A Scalable Tree
     Boosting System" <1603.02754>`

  .. [LightGBM] Ke et. al. `"LightGBM: A Highly Efficient Gradient
     BoostingDecision Tree" <https://papers.nips.cc/paper/
     6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree>`_

  .. [Fisher1958] Fisher, W.D. (1958). `"On Grouping for Maximum Homogeneity"
     <http://csiss.ncgia.ucsb.edu/SPACE/workshops/2004/SAC/files/fisher.pdf>`_
     Journal of the American Statistical Association, 53, 789-798.



:class:`GradientBoostingClassifier` and :class:`GradientBoostingRegressor`
----------------------------------------------------------------------------

The usage and the parameters of :class:`GradientBoostingClassifier` and
:class:`GradientBoostingRegressor` are described below. The 2 most important
parameters of these estimators are `n_estimators` and `learning_rate`.

Classification
^^^^^^^^^^^^^^^

:class:`GradientBoostingClassifier` supports both binary and multi-class
classification.
The following example shows how to fit a gradient boosting classifier
with 100 decision stumps as weak learners::

    >>> from sklearn.datasets import make_hastie_10_2
    >>> from sklearn.ensemble import GradientBoostingClassifier

    >>> X, y = make_hastie_10_2(random_state=0)
    >>> X_train, X_test = X[:2000], X[2000:]
    >>> y_train, y_test = y[:2000], y[2000:]

    >>> clf = GradientBoostingClassifier(n_estimators=100, learning_rate=1.0,
    ...     max_depth=1, random_state=0).fit(X_train, y_train)
    >>> clf.score(X_test, y_test)
    0.913...

The number of weak learners (i.e. regression trees) is controlled by the
parameter ``n_estimators``; :ref:`The size of each tree
<gradient_boosting_tree_size>` can be controlled either by setting the tree
depth via ``max_depth`` or by setting the number of leaf nodes via
``max_leaf_nodes``. The ``learning_rate`` is a hyper-parameter in the range
(0.0, 1.0] that controls overfitting via :ref:`shrinkage
<gradient_boosting_shrinkage>` .

.. note::

   Classification with more than 2 classes requires the induction
   of ``n_classes`` regression trees at each iteration,
   thus, the total number of induced trees equals
   ``n_classes * n_estimators``. For datasets with a large number
   of classes we strongly recommend to use
   :class:`HistGradientBoostingClassifier` as an alternative to
   :class:`GradientBoostingClassifier` .

Regression
^^^^^^^^^^^

:class:`GradientBoostingRegressor` supports a number of
:ref:`different loss functions <gradient_boosting_loss>`
for regression which can be specified via the argument
``loss``; the default loss function for regression is squared error
(``'squared_error'``).

::

    >>> import numpy as np
    >>> from sklearn.metrics import mean_squared_error
    >>> from sklearn.datasets import make_friedman1
    >>> from sklearn.ensemble import GradientBoostingRegressor

    >>> X, y = make_friedman1(n_samples=1200, random_state=0, noise=1.0)
    >>> X_train, X_test = X[:200], X[200:]
    >>> y_train, y_test = y[:200], y[200:]
    >>> est = GradientBoostingRegressor(
    ...     n_estimators=100, learning_rate=0.1, max_depth=1, random_state=0,
    ...     loss='squared_error'
    ... ).fit(X_train, y_train)
    >>> mean_squared_error(y_test, est.predict(X_test))
    5.00...

The figure below shows the results of applying :class:`GradientBoostingRegressor`
with least squares loss and 500 base learners to the diabetes dataset
(:func:`sklearn.datasets.load_diabetes`).
The plot shows the train and test error at each iteration.
The train error at each iteration is stored in the
`train_score_` attribute of the gradient boosting model.
The test error at each iterations can be obtained
via the :meth:`~GradientBoostingRegressor.staged_predict` method which returns a
generator that yields the predictions at each stage. Plots like these can be used
to determine the optimal number of trees (i.e. ``n_estimators``) by early stopping.

.. figure:: ../auto_examples/ensemble/images/sphx_glr_plot_gradient_boosting_regression_001.png
   :target: ../auto_examples/ensemble/plot_gradient_boosting_regression.html
   :align: center
   :scale: 75

.. topic:: Examples:

 * :ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_regression.py`
 * :ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_oob.py`

.. _gradient_boosting_warm_start:

Fitting additional weak-learners
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Both :class:`GradientBoostingRegressor` and :class:`GradientBoostingClassifier`
support ``warm_start=True`` which allows you to add more estimators to an already
fitted model.

::

  >>> _ = est.set_params(n_estimators=200, warm_start=True)  # set warm_start and new nr of trees
  >>> _ = est.fit(X_train, y_train) # fit additional 100 trees to est
  >>> mean_squared_error(y_test, est.predict(X_test))
  3.84...

.. _gradient_boosting_tree_size:

Controlling the tree size
^^^^^^^^^^^^^^^^^^^^^^^^^^

The size of the regression tree base learners defines the level of variable
interactions that can be captured by the gradient boosting model. In general,
a tree of depth ``h`` can capture interactions of order ``h`` .
There are two ways in which the size of the individual regression trees can
be controlled.

If you specify ``max_depth=h`` then complete binary trees
of depth ``h`` will be grown. Such trees will have (at most) ``2**h`` leaf nodes
and ``2**h - 1`` split nodes.

Alternatively, you can control the tree size by specifying the number of
leaf nodes via the parameter ``max_leaf_nodes``. In this case,
trees will be grown using best-first search where nodes with the highest improvement
in impurity will be expanded first.
A tree with ``max_leaf_nodes=k`` has ``k - 1`` split nodes and thus can
model interactions of up to order ``max_leaf_nodes - 1`` .

We found that ``max_leaf_nodes=k`` gives comparable results to ``max_depth=k-1``
but is significantly faster to train at the expense of a slightly higher
training error.
The parameter ``max_leaf_nodes`` corresponds to the variable ``J`` in the
chapter on gradient boosting in [Friedman2001]_ and is related to the parameter
``interaction.depth`` in R's gbm package where ``max_leaf_nodes == interaction.depth + 1`` .

Mathematical formulation
^^^^^^^^^^^^^^^^^^^^^^^^

We first present GBRT for regression, and then detail the classification
case.

Regression
...........

GBRT regressors are additive models whose prediction :math:`\hat{y}_i` for a
given input :math:`x_i` is of the following form:

.. math::

  \hat{y}_i = F_M(x_i) = \sum_{m=1}^{M} h_m(x_i)

where the :math:`h_m` are estimators called *weak learners* in the context
of boosting. Gradient Tree Boosting uses :ref:`decision tree regressors
<tree>` of fixed size as weak learners. The constant M corresponds to the
`n_estimators` parameter.

Similar to other boosting algorithms, a GBRT is built in a greedy fashion:

.. math::

  F_m(x) = F_{m-1}(x) + h_m(x),

where the newly added tree :math:`h_m` is fitted in order to minimize a sum
of losses :math:`L_m`, given the previous ensemble :math:`F_{m-1}`:

.. math::

  h_m =  \arg\min_{h} L_m = \arg\min_{h} \sum_{i=1}^{n}
  l(y_i, F_{m-1}(x_i) + h(x_i)),

where :math:`l(y_i, F(x_i))` is defined by the `loss` parameter, detailed
in the next section.

By default, the initial model :math:`F_{0}` is chosen as the constant that
minimizes the loss: for a least-squares loss, this is the empirical mean of
the target values. The initial model can also be specified via the ``init``
argument.

Using a first-order Taylor approximation, the value of :math:`l` can be
approximated as follows:

.. math::

  l(y_i, F_{m-1}(x_i) + h_m(x_i)) \approx
  l(y_i, F_{m-1}(x_i))
  + h_m(x_i)
  \left[ \frac{\partial l(y_i, F(x_i))}{\partial F(x_i)} \right]_{F=F_{m - 1}}.

.. note::

  Briefly, a first-order Taylor approximation says that
  :math:`l(z) \approx l(a) + (z - a) \frac{\partial l}{\partial z}(a)`.
  Here, :math:`z` corresponds to :math:`F_{m - 1}(x_i) + h_m(x_i)`, and
  :math:`a` corresponds to :math:`F_{m-1}(x_i)`

The quantity :math:`\left[ \frac{\partial l(y_i, F(x_i))}{\partial F(x_i)}
\right]_{F=F_{m - 1}}` is the derivative of the loss with respect to its
second parameter, evaluated at :math:`F_{m-1}(x)`. It is easy to compute for
any given :math:`F_{m - 1}(x_i)` in a closed form since the loss is
differentiable. We will denote it by :math:`g_i`.

Removing the constant terms, we have:

.. math::

  h_m \approx \arg\min_{h} \sum_{i=1}^{n} h(x_i) g_i

This is minimized if :math:`h(x_i)` is fitted to predict a value that is
proportional to the negative gradient :math:`-g_i`. Therefore, at each
iteration, **the estimator** :math:`h_m` **is fitted to predict the negative
gradients of the samples**. The gradients are updated at each iteration.
This can be considered as some kind of gradient descent in a functional
space.

.. note::

  For some losses, e.g. ``'absolute_error'`` where the gradients
  are :math:`\pm 1`, the values predicted by a fitted :math:`h_m` are not
  accurate enough: the tree can only output integer values. As a result, the
  leaves values of the tree :math:`h_m` are modified once the tree is
  fitted, such that the leaves values minimize the loss :math:`L_m`. The
  update is loss-dependent: for the absolute error loss, the value of
  a leaf is updated to the median of the samples in that leaf.

Classification
..............

Gradient boosting for classification is very similar to the regression case.
However, the sum of the trees :math:`F_M(x_i) = \sum_m h_m(x_i)` is not
homogeneous to a prediction: it cannot be a class, since the trees predict
continuous values.

The mapping from the value :math:`F_M(x_i)` to a class or a probability is
loss-dependent. For the log-loss, the probability that
:math:`x_i` belongs to the positive class is modeled as :math:`p(y_i = 1 |
x_i) = \sigma(F_M(x_i))` where :math:`\sigma` is the sigmoid or expit function.

For multiclass classification, K trees (for K classes) are built at each of
the :math:`M` iterations. The probability that :math:`x_i` belongs to class
k is modeled as a softmax of the :math:`F_{M,k}(x_i)` values.

Note that even for a classification task, the :math:`h_m` sub-estimator is
still a regressor, not a classifier. This is because the sub-estimators are
trained to predict (negative) *gradients*, which are always continuous
quantities.

.. _gradient_boosting_loss:

Loss Functions
^^^^^^^^^^^^^^

The following loss functions are supported and can be specified using
the parameter ``loss``:

* Regression

  * Squared error (``'squared_error'``): The natural choice for regression
    due to its superior computational properties. The initial model is
    given by the mean of the target values.
  * Absolute error (``'absolute_error'``): A robust loss function for
    regression. The initial model is given by the median of the
    target values.
  * Huber (``'huber'``): Another robust loss function that combines
    least squares and least absolute deviation; use ``alpha`` to
    control the sensitivity with regards to outliers (see [Friedman2001]_ for
    more details).
  * Quantile (``'quantile'``): A loss function for quantile regression.
    Use ``0 < alpha < 1`` to specify the quantile. This loss function
    can be used to create prediction intervals
    (see :ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_quantile.py`).

* Classification

  * Binary log-loss (``'log-loss'``): The binomial
    negative log-likelihood loss function for binary classification. It provides
    probability estimates.  The initial model is given by the
    log odds-ratio.
  * Multi-class log-loss (``'log-loss'``): The multinomial
    negative log-likelihood loss function for multi-class classification with
    ``n_classes`` mutually exclusive classes. It provides
    probability estimates.  The initial model is given by the
    prior probability of each class. At each iteration ``n_classes``
    regression trees have to be constructed which makes GBRT rather
    inefficient for data sets with a large number of classes.
  * Exponential loss (``'exponential'``): The same loss function
    as :class:`AdaBoostClassifier`. Less robust to mislabeled
    examples than ``'log-loss'``; can only be used for binary
    classification.

.. _gradient_boosting_shrinkage:

Shrinkage via learning rate
^^^^^^^^^^^^^^^^^^^^^^^^^^^

[Friedman2001]_ proposed a simple regularization strategy that scales
the contribution of each weak learner by a constant factor :math:`\nu`:

.. math::

    F_m(x) = F_{m-1}(x) + \nu h_m(x)

The parameter :math:`\nu` is also called the **learning rate** because
it scales the step length the gradient descent procedure; it can
be set via the ``learning_rate`` parameter.

The parameter ``learning_rate`` strongly interacts with the parameter
``n_estimators``, the number of weak learners to fit. Smaller values
of ``learning_rate`` require larger numbers of weak learners to maintain
a constant training error. Empirical evidence suggests that small
values of ``learning_rate`` favor better test error. [HTF]_
recommend to set the learning rate to a small constant
(e.g. ``learning_rate <= 0.1``) and choose ``n_estimators`` large enough
that early stopping applies,
see :ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_early_stopping.py`
for a more detailed discussion of the interaction between
``learning_rate`` and ``n_estimators`` see [R2007]_.

Subsampling
^^^^^^^^^^^^

[Friedman2002]_ proposed stochastic gradient boosting, which combines gradient
boosting with bootstrap averaging (bagging). At each iteration
the base classifier is trained on a fraction ``subsample`` of
the available training data. The subsample is drawn without replacement.
A typical value of ``subsample`` is 0.5.

The figure below illustrates the effect of shrinkage and subsampling
on the goodness-of-fit of the model. We can clearly see that shrinkage
outperforms no-shrinkage. Subsampling with shrinkage can further increase
the accuracy of the model. Subsampling without shrinkage, on the other hand,
does poorly.

.. figure:: ../auto_examples/ensemble/images/sphx_glr_plot_gradient_boosting_regularization_001.png
   :target: ../auto_examples/ensemble/plot_gradient_boosting_regularization.html
   :align: center
   :scale: 75

Another strategy to reduce the variance is by subsampling the features
analogous to the random splits in :class:`RandomForestClassifier`.
The number of subsampled features can be controlled via the ``max_features``
parameter.

.. note:: Using a small ``max_features`` value can significantly decrease the runtime.

Stochastic gradient boosting allows to compute out-of-bag estimates of the
test deviance by computing the improvement in deviance on the examples that are
not included in the bootstrap sample (i.e. the out-of-bag examples).
The improvements are stored in the attribute `oob_improvement_`.
``oob_improvement_[i]`` holds the improvement in terms of the loss on the OOB samples
if you add the i-th stage to the current predictions.
Out-of-bag estimates can be used for model selection, for example to determine
the optimal number of iterations. OOB estimates are usually very pessimistic thus
we recommend to use cross-validation instead and only use OOB if cross-validation
is too time consuming.

.. topic:: Examples:

 * :ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_regularization.py`
 * :ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_oob.py`
 * :ref:`sphx_glr_auto_examples_ensemble_plot_ensemble_oob.py`

Interpretation with feature importance
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Individual decision trees can be interpreted easily by simply
visualizing the tree structure. Gradient boosting models, however,
comprise hundreds of regression trees thus they cannot be easily
interpreted by visual inspection of the individual trees. Fortunately,
a number of techniques have been proposed to summarize and interpret
gradient boosting models.

Often features do not contribute equally to predict the target
response; in many situations the majority of the features are in fact
irrelevant.
When interpreting a model, the first question usually is: what are
those important features and how do they contributing in predicting
the target response?

Individual decision trees intrinsically perform feature selection by selecting
appropriate split points. This information can be used to measure the
importance of each feature; the basic idea is: the more often a
feature is used in the split points of a tree the more important that
feature is. This notion of importance can be extended to decision tree
ensembles by simply averaging the impurity-based feature importance of each tree (see
:ref:`random_forest_feature_importance` for more details).

The feature importance scores of a fit gradient boosting model can be
accessed via the ``feature_importances_`` property::

    >>> from sklearn.datasets import make_hastie_10_2
    >>> from sklearn.ensemble import GradientBoostingClassifier

    >>> X, y = make_hastie_10_2(random_state=0)
    >>> clf = GradientBoostingClassifier(n_estimators=100, learning_rate=1.0,
    ...     max_depth=1, random_state=0).fit(X, y)
    >>> clf.feature_importances_
    array([0.10..., 0.10..., 0.11..., ...

Note that this computation of feature importance is based on entropy, and it
is distinct from :func:`sklearn.inspection.permutation_importance` which is
based on permutation of the features.

.. topic:: Examples:

 * :ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_regression.py`

.. topic:: References

  .. [Friedman2001] Friedman, J.H. (2001). :doi:`Greedy function approximation: A gradient
      boosting machine <10.1214/aos/1013203451>`.
      Annals of Statistics, 29, 1189-1232.

  .. [Friedman2002] Friedman, J.H. (2002). `Stochastic gradient boosting.
     <https://statweb.stanford.edu/~jhf/ftp/stobst.pdf>`_.
     Computational Statistics & Data Analysis, 38, 367-378.

  .. [R2007] G. Ridgeway (2006). `Generalized Boosted Models: A guide to the gbm
     package <https://cran.r-project.org/web/packages/gbm/vignettes/gbm.pdf>`_

.. _forest:

Random forests and other randomized tree ensembles
===================================================

The :mod:`sklearn.ensemble` module includes two averaging algorithms based
on randomized :ref:`decision trees <tree>`: the RandomForest algorithm
and the Extra-Trees method. Both algorithms are perturb-and-combine
techniques [B1998]_ specifically designed for trees. This means a diverse
set of classifiers is created by introducing randomness in the classifier
construction.  The prediction of the ensemble is given as the averaged
prediction of the individual classifiers.

As other classifiers, forest classifiers have to be fitted with two
arrays: a sparse or dense array X of shape ``(n_samples, n_features)``
holding the training samples, and an array Y of shape ``(n_samples,)``
holding the target values (class labels) for the training samples::

    >>> from sklearn.ensemble import RandomForestClassifier
    >>> X = [[0, 0], [1, 1]]
    >>> Y = [0, 1]
    >>> clf = RandomForestClassifier(n_estimators=10)
    >>> clf = clf.fit(X, Y)

Like :ref:`decision trees <tree>`, forests of trees also extend to
:ref:`multi-output problems <tree_multioutput>`  (if Y is an array
of shape ``(n_samples, n_outputs)``).

Random Forests
--------------

In random forests (see :class:`RandomForestClassifier` and
:class:`RandomForestRegressor` classes), each tree in the ensemble is built
from a sample drawn with replacement (i.e., a bootstrap sample) from the
training set.

Furthermore, when splitting each node during the construction of a tree, the
best split is found through an exhaustive search of the features values of
either all input features or a random subset of size ``max_features``.
(See the :ref:`parameter tuning guidelines <random_forest_parameters>` for more details.)

The purpose of these two sources of randomness is to decrease the variance of
the forest estimator. Indeed, individual decision trees typically exhibit high
variance and tend to overfit. The injected randomness in forests yield decision
trees with somewhat decoupled prediction errors. By taking an average of those
predictions, some errors can cancel out. Random forests achieve a reduced
variance by combining diverse trees, sometimes at the cost of a slight increase
in bias. In practice the variance reduction is often significant hence yielding
an overall better model.

In contrast to the original publication [B2001]_, the scikit-learn
implementation combines classifiers by averaging their probabilistic
prediction, instead of letting each classifier vote for a single class.

A competitive alternative to random forests are
:ref:`histogram_based_gradient_boosting` (HGBT) models:

-  Building trees: Random forests typically rely on deep trees (that overfit
   individually) which uses much computational resources, as they require
   several splittings and evaluations of candidate splits. Boosting models
   build shallow trees (that underfit individually) which are faster to fit
   and predict.

-  Sequential boosting: In HGBT, the decision trees are built sequentially,
   where each tree is trained to correct the errors made by the previous ones.
   This allows them to iteratively improve the model's performance using
   relatively few trees. In contrast, random forests use a majority vote to
   predict the outcome, which can require a larger number of trees to achieve
   the same level of accuracy.

-  Efficient binning: HGBT uses an efficient binning algorithm that can handle
   large datasets with a high number of features. The binning algorithm can
   pre-process the data to speed up the subsequent tree construction (see
   :ref:`Why it's faster <Why_it's_faster>`). In contrast, the scikit-learn
   implementation of random forests does not use binning and relies on exact
   splitting, which can be computationally expensive.

Overall, the computational cost of HGBT versus RF depends on the specific
characteristics of the dataset and the modeling task. It's a good idea
to try both models and compare their performance and computational efficiency
on your specific problem to determine which model is the best fit.

.. topic:: Examples:

 * :ref:`sphx_glr_auto_examples_ensemble_plot_forest_hist_grad_boosting_comparison.py`

Extremely Randomized Trees
--------------------------

In extremely randomized trees (see :class:`ExtraTreesClassifier`
and :class:`ExtraTreesRegressor` classes), randomness goes one step
further in the way splits are computed. As in random forests, a random
subset of candidate features is used, but instead of looking for the
most discriminative thresholds, thresholds are drawn at random for each
candidate feature and the best of these randomly-generated thresholds is
picked as the splitting rule. This usually allows to reduce the variance
of the model a bit more, at the expense of a slightly greater increase
in bias::

    >>> from sklearn.model_selection import cross_val_score
    >>> from sklearn.datasets import make_blobs
    >>> from sklearn.ensemble import RandomForestClassifier
    >>> from sklearn.ensemble import ExtraTreesClassifier
    >>> from sklearn.tree import DecisionTreeClassifier

    >>> X, y = make_blobs(n_samples=10000, n_features=10, centers=100,
    ...     random_state=0)

    >>> clf = DecisionTreeClassifier(max_depth=None, min_samples_split=2,
    ...     random_state=0)
    >>> scores = cross_val_score(clf, X, y, cv=5)
    >>> scores.mean()
    0.98...

    >>> clf = RandomForestClassifier(n_estimators=10, max_depth=None,
    ...     min_samples_split=2, random_state=0)
    >>> scores = cross_val_score(clf, X, y, cv=5)
    >>> scores.mean()
    0.999...

    >>> clf = ExtraTreesClassifier(n_estimators=10, max_depth=None,
    ...     min_samples_split=2, random_state=0)
    >>> scores = cross_val_score(clf, X, y, cv=5)
    >>> scores.mean() > 0.999
    True

.. figure:: ../auto_examples/ensemble/images/sphx_glr_plot_forest_iris_001.png
    :target: ../auto_examples/ensemble/plot_forest_iris.html
    :align: center
    :scale: 75%

.. _random_forest_parameters:

Parameters
----------

The main parameters to adjust when using these methods is ``n_estimators`` and
``max_features``. The former is the number of trees in the forest. The larger
the better, but also the longer it will take to compute. In addition, note that
results will stop getting significantly better beyond a critical number of
trees. The latter is the size of the random subsets of features to consider
when splitting a node. The lower the greater the reduction of variance, but
also the greater the increase in bias. Empirical good default values are
``max_features=1.0`` or equivalently ``max_features=None`` (always considering
all features instead of a random subset) for regression problems, and
``max_features="sqrt"`` (using a random subset of size ``sqrt(n_features)``)
for classification tasks (where ``n_features`` is the number of features in
the data). The default value of ``max_features=1.0`` is equivalent to bagged
trees and more randomness can be achieved by setting smaller values (e.g. 0.3
is a typical default in the literature). Good results are often achieved when
setting ``max_depth=None`` in combination with ``min_samples_split=2`` (i.e.,
when fully developing the trees). Bear in mind though that these values are
usually not optimal, and might result in models that consume a lot of RAM.
The best parameter values should always be cross-validated. In addition, note
that in random forests, bootstrap samples are used by default
(``bootstrap=True``) while the default strategy for extra-trees is to use the
whole dataset (``bootstrap=False``). When using bootstrap sampling the
generalization error can be estimated on the left out or out-of-bag samples.
This can be enabled by setting ``oob_score=True``.

.. note::

    The size of the model with the default parameters is :math:`O( M * N * log (N) )`,
    where :math:`M` is the number of trees and :math:`N` is the number of samples.
    In order to reduce the size of the model, you can change these parameters:
    ``min_samples_split``, ``max_leaf_nodes``, ``max_depth`` and ``min_samples_leaf``.

Parallelization
---------------

Finally, this module also features the parallel construction of the trees
and the parallel computation of the predictions through the ``n_jobs``
parameter. If ``n_jobs=k`` then computations are partitioned into
``k`` jobs, and run on ``k`` cores of the machine. If ``n_jobs=-1``
then all cores available on the machine are used. Note that because of
inter-process communication overhead, the speedup might not be linear
(i.e., using ``k`` jobs will unfortunately not be ``k`` times as
fast). Significant speedup can still be achieved though when building
a large number of trees, or when building a single tree requires a fair
amount of time (e.g., on large datasets).

.. topic:: Examples:

 * :ref:`sphx_glr_auto_examples_ensemble_plot_forest_iris.py`
 * :ref:`sphx_glr_auto_examples_ensemble_plot_forest_importances_faces.py`
 * :ref:`sphx_glr_auto_examples_miscellaneous_plot_multioutput_face_completion.py`

.. topic:: References

 .. [B2001] L. Breiman, "Random Forests", Machine Learning, 45(1), 5-32, 2001.

 .. [B1998] L. Breiman, "Arcing Classifiers", Annals of Statistics 1998.

 * P. Geurts, D. Ernst., and L. Wehenkel, "Extremely randomized
   trees", Machine Learning, 63(1), 3-42, 2006.

.. _random_forest_feature_importance:

Feature importance evaluation
-----------------------------

The relative rank (i.e. depth) of a feature used as a decision node in a
tree can be used to assess the relative importance of that feature with
respect to the predictability of the target variable. Features used at
the top of the tree contribute to the final prediction decision of a
larger fraction of the input samples. The **expected fraction of the
samples** they contribute to can thus be used as an estimate of the
**relative importance of the features**. In scikit-learn, the fraction of
samples a feature contributes to is combined with the decrease in impurity
from splitting them to create a normalized estimate of the predictive power
of that feature.

By **averaging** the estimates of predictive ability over several randomized
trees one can **reduce the variance** of such an estimate and use it
for feature selection. This is known as the mean decrease in impurity, or MDI.
Refer to [L2014]_ for more information on MDI and feature importance
evaluation with Random Forests.

.. warning::

  The impurity-based feature importances computed on tree-based models suffer
  from two flaws that can lead to misleading conclusions. First they are
  computed on statistics derived from the training dataset and therefore **do
  not necessarily inform us on which features are most important to make good
  predictions on held-out dataset**. Secondly, **they favor high cardinality
  features**, that is features with many unique values.
  :ref:`permutation_importance` is an alternative to impurity-based feature
  importance that does not suffer from these flaws. These two methods of
  obtaining feature importance are explored in:
  :ref:`sphx_glr_auto_examples_inspection_plot_permutation_importance.py`.

The following example shows a color-coded representation of the relative
importances of each individual pixel for a face recognition task using
a :class:`ExtraTreesClassifier` model.

.. figure:: ../auto_examples/ensemble/images/sphx_glr_plot_forest_importances_faces_001.png
   :target: ../auto_examples/ensemble/plot_forest_importances_faces.html
   :align: center
   :scale: 75

In practice those estimates are stored as an attribute named
``feature_importances_`` on the fitted model. This is an array with shape
``(n_features,)`` whose values are positive and sum to 1.0. The higher
the value, the more important is the contribution of the matching feature
to the prediction function.

.. topic:: Examples:

 * :ref:`sphx_glr_auto_examples_ensemble_plot_forest_importances_faces.py`
 * :ref:`sphx_glr_auto_examples_ensemble_plot_forest_importances.py`

.. topic:: References

 .. [L2014] G. Louppe, :arxiv:`"Understanding Random Forests: From Theory to
    Practice" <1407.7502>`,
    PhD Thesis, U. of Liege, 2014.

.. _random_trees_embedding:

Totally Random Trees Embedding
------------------------------

:class:`RandomTreesEmbedding` implements an unsupervised transformation of the
data.  Using a forest of completely random trees, :class:`RandomTreesEmbedding`
encodes the data by the indices of the leaves a data point ends up in.  This
index is then encoded in a one-of-K manner, leading to a high dimensional,
sparse binary coding.
This coding can be computed very efficiently and can then be used as a basis
for other learning tasks.
The size and sparsity of the code can be influenced by choosing the number of
trees and the maximum depth per tree. For each tree in the ensemble, the coding
contains one entry of one. The size of the coding is at most ``n_estimators * 2
** max_depth``, the maximum number of leaves in the forest.

As neighboring data points are more likely to lie within the same leaf of a
tree, the transformation performs an implicit, non-parametric density
estimation.

.. topic:: Examples:

 * :ref:`sphx_glr_auto_examples_ensemble_plot_random_forest_embedding.py`

 * :ref:`sphx_glr_auto_examples_manifold_plot_lle_digits.py` compares non-linear
   dimensionality reduction techniques on handwritten digits.

 * :ref:`sphx_glr_auto_examples_ensemble_plot_feature_transformation.py` compares
   supervised and unsupervised tree based feature transformations.

.. seealso::

   :ref:`manifold` techniques can also be useful to derive non-linear
   representations of feature space, also these approaches focus also on
   dimensionality reduction.

.. _bagging:

Bagging meta-estimator
======================

In ensemble algorithms, bagging methods form a class of algorithms which build
several instances of a black-box estimator on random subsets of the original
training set and then aggregate their individual predictions to form a final
prediction. These methods are used as a way to reduce the variance of a base
estimator (e.g., a decision tree), by introducing randomization into its
construction procedure and then making an ensemble out of it. In many cases,
bagging methods constitute a very simple way to improve with respect to a
single model, without making it necessary to adapt the underlying base
algorithm. As they provide a way to reduce overfitting, bagging methods work
best with strong and complex models (e.g., fully developed decision trees), in
contrast with boosting methods which usually work best with weak models (e.g.,
shallow decision trees).

Bagging methods come in many flavours but mostly differ from each other by the
way they draw random subsets of the training set:

* When random subsets of the dataset are drawn as random subsets of the
  samples, then this algorithm is known as Pasting [B1999]_.

* When samples are drawn with replacement, then the method is known as
  Bagging [B1996]_.

* When random subsets of the dataset are drawn as random subsets of
  the features, then the method is known as Random Subspaces [H1998]_.

* Finally, when base estimators are built on subsets of both samples and
  features, then the method is known as Random Patches [LG2012]_.

In scikit-learn, bagging methods are offered as a unified
:class:`BaggingClassifier` meta-estimator  (resp. :class:`BaggingRegressor`),
taking as input a user-specified estimator along with parameters
specifying the strategy to draw random subsets. In particular, ``max_samples``
and ``max_features`` control the size of the subsets (in terms of samples and
features), while ``bootstrap`` and ``bootstrap_features`` control whether
samples and features are drawn with or without replacement. When using a subset
of the available samples the generalization accuracy can be estimated with the
out-of-bag samples by setting ``oob_score=True``. As an example, the
snippet below illustrates how to instantiate a bagging ensemble of
:class:`~sklearn.neighbors.KNeighborsClassifier` estimators, each built on random
subsets of 50% of the samples and 50% of the features.

    >>> from sklearn.ensemble import BaggingClassifier
    >>> from sklearn.neighbors import KNeighborsClassifier
    >>> bagging = BaggingClassifier(KNeighborsClassifier(),
    ...                             max_samples=0.5, max_features=0.5)

.. topic:: Examples:

 * :ref:`sphx_glr_auto_examples_ensemble_plot_bias_variance.py`

.. topic:: References

  .. [B1999] L. Breiman, "Pasting small votes for classification in large
         databases and on-line", Machine Learning, 36(1), 85-103, 1999.

  .. [B1996] L. Breiman, "Bagging predictors", Machine Learning, 24(2),
         123-140, 1996.

  .. [H1998] T. Ho, "The random subspace method for constructing decision
         forests", Pattern Analysis and Machine Intelligence, 20(8), 832-844,
         1998.

  .. [LG2012] G. Louppe and P. Geurts, "Ensembles on Random Patches",
         Machine Learning and Knowledge Discovery in Databases, 346-361, 2012.



.. _voting_classifier:

Voting Classifier
========================

The idea behind the :class:`VotingClassifier` is to combine
conceptually different machine learning classifiers and use a majority vote
or the average predicted probabilities (soft vote) to predict the class labels.
Such a classifier can be useful for a set of equally well performing models
in order to balance out their individual weaknesses.


Majority Class Labels (Majority/Hard Voting)
--------------------------------------------

In majority voting, the predicted class label for a particular sample is
the class label that represents the majority (mode) of the class labels
predicted by each individual classifier.

E.g., if the prediction for a given sample is

- classifier 1 -> class 1
- classifier 2 -> class 1
- classifier 3 -> class 2

the VotingClassifier (with ``voting='hard'``) would classify the sample
as "class 1" based on the majority class label.

In the cases of a tie, the :class:`VotingClassifier` will select the class
based on the ascending sort order. E.g., in the following scenario

- classifier 1 -> class 2
- classifier 2 -> class 1

the class label 1 will be assigned to the sample.

Usage
-----

The following example shows how to fit the majority rule classifier::

   >>> from sklearn import datasets
   >>> from sklearn.model_selection import cross_val_score
   >>> from sklearn.linear_model import LogisticRegression
   >>> from sklearn.naive_bayes import GaussianNB
   >>> from sklearn.ensemble import RandomForestClassifier
   >>> from sklearn.ensemble import VotingClassifier

   >>> iris = datasets.load_iris()
   >>> X, y = iris.data[:, 1:3], iris.target

   >>> clf1 = LogisticRegression(random_state=1)
   >>> clf2 = RandomForestClassifier(n_estimators=50, random_state=1)
   >>> clf3 = GaussianNB()

   >>> eclf = VotingClassifier(
   ...     estimators=[('lr', clf1), ('rf', clf2), ('gnb', clf3)],
   ...     voting='hard')

   >>> for clf, label in zip([clf1, clf2, clf3, eclf], ['Logistic Regression', 'Random Forest', 'naive Bayes', 'Ensemble']):
   ...     scores = cross_val_score(clf, X, y, scoring='accuracy', cv=5)
   ...     print("Accuracy: %0.2f (+/- %0.2f) [%s]" % (scores.mean(), scores.std(), label))
   Accuracy: 0.95 (+/- 0.04) [Logistic Regression]
   Accuracy: 0.94 (+/- 0.04) [Random Forest]
   Accuracy: 0.91 (+/- 0.04) [naive Bayes]
   Accuracy: 0.95 (+/- 0.04) [Ensemble]


Weighted Average Probabilities (Soft Voting)
--------------------------------------------

In contrast to majority voting (hard voting), soft voting
returns the class label as argmax of the sum of predicted probabilities.

Specific weights can be assigned to each classifier via the ``weights``
parameter. When weights are provided, the predicted class probabilities
for each classifier are collected, multiplied by the classifier weight,
and averaged. The final class label is then derived from the class label
with the highest average probability.

To illustrate this with a simple example, let's assume we have 3
classifiers and a 3-class classification problems where we assign
equal weights to all classifiers: w1=1, w2=1, w3=1.

The weighted average probabilities for a sample would then be
calculated as follows:

================  ==========    ==========      ==========
classifier        class 1       class 2         class 3
================  ==========    ==========      ==========
classifier 1	  w1 * 0.2      w1 * 0.5        w1 * 0.3
classifier 2	  w2 * 0.6      w2 * 0.3        w2 * 0.1
classifier 3      w3 * 0.3      w3 * 0.4        w3 * 0.3
weighted average  0.37	        0.4             0.23
================  ==========    ==========      ==========

Here, the predicted class label is 2, since it has the
highest average probability.

The following example illustrates how the decision regions may change
when a soft :class:`VotingClassifier` is used based on a linear Support
Vector Machine, a Decision Tree, and a K-nearest neighbor classifier::

   >>> from sklearn import datasets
   >>> from sklearn.tree import DecisionTreeClassifier
   >>> from sklearn.neighbors import KNeighborsClassifier
   >>> from sklearn.svm import SVC
   >>> from itertools import product
   >>> from sklearn.ensemble import VotingClassifier

   >>> # Loading some example data
   >>> iris = datasets.load_iris()
   >>> X = iris.data[:, [0, 2]]
   >>> y = iris.target

   >>> # Training classifiers
   >>> clf1 = DecisionTreeClassifier(max_depth=4)
   >>> clf2 = KNeighborsClassifier(n_neighbors=7)
   >>> clf3 = SVC(kernel='rbf', probability=True)
   >>> eclf = VotingClassifier(estimators=[('dt', clf1), ('knn', clf2), ('svc', clf3)],
   ...                         voting='soft', weights=[2, 1, 2])

   >>> clf1 = clf1.fit(X, y)
   >>> clf2 = clf2.fit(X, y)
   >>> clf3 = clf3.fit(X, y)
   >>> eclf = eclf.fit(X, y)

.. figure:: ../auto_examples/ensemble/images/sphx_glr_plot_voting_decision_regions_001.png
    :target: ../auto_examples/ensemble/plot_voting_decision_regions.html
    :align: center
    :scale: 75%

Using the `VotingClassifier` with `GridSearchCV`
------------------------------------------------

The :class:`VotingClassifier` can also be used together with
:class:`~sklearn.model_selection.GridSearchCV` in order to tune the
hyperparameters of the individual estimators::

   >>> from sklearn.model_selection import GridSearchCV
   >>> clf1 = LogisticRegression(random_state=1)
   >>> clf2 = RandomForestClassifier(random_state=1)
   >>> clf3 = GaussianNB()
   >>> eclf = VotingClassifier(
   ...     estimators=[('lr', clf1), ('rf', clf2), ('gnb', clf3)],
   ...     voting='soft'
   ... )

   >>> params = {'lr__C': [1.0, 100.0], 'rf__n_estimators': [20, 200]}

   >>> grid = GridSearchCV(estimator=eclf, param_grid=params, cv=5)
   >>> grid = grid.fit(iris.data, iris.target)

Usage
-----

In order to predict the class labels based on the predicted
class-probabilities (scikit-learn estimators in the VotingClassifier
must support ``predict_proba`` method)::

   >>> eclf = VotingClassifier(
   ...     estimators=[('lr', clf1), ('rf', clf2), ('gnb', clf3)],
   ...     voting='soft'
   ... )

Optionally, weights can be provided for the individual classifiers::

   >>> eclf = VotingClassifier(
   ...     estimators=[('lr', clf1), ('rf', clf2), ('gnb', clf3)],
   ...     voting='soft', weights=[2,5,1]
   ... )

.. _voting_regressor:

Voting Regressor
================

The idea behind the :class:`VotingRegressor` is to combine conceptually
different machine learning regressors and return the average predicted values.
Such a regressor can be useful for a set of equally well performing models
in order to balance out their individual weaknesses.

Usage
-----

The following example shows how to fit the VotingRegressor::

   >>> from sklearn.datasets import load_diabetes
   >>> from sklearn.ensemble import GradientBoostingRegressor
   >>> from sklearn.ensemble import RandomForestRegressor
   >>> from sklearn.linear_model import LinearRegression
   >>> from sklearn.ensemble import VotingRegressor

   >>> # Loading some example data
   >>> X, y = load_diabetes(return_X_y=True)

   >>> # Training classifiers
   >>> reg1 = GradientBoostingRegressor(random_state=1)
   >>> reg2 = RandomForestRegressor(random_state=1)
   >>> reg3 = LinearRegression()
   >>> ereg = VotingRegressor(estimators=[('gb', reg1), ('rf', reg2), ('lr', reg3)])
   >>> ereg = ereg.fit(X, y)

.. figure:: ../auto_examples/ensemble/images/sphx_glr_plot_voting_regressor_001.png
    :target: ../auto_examples/ensemble/plot_voting_regressor.html
    :align: center
    :scale: 75%

.. topic:: Examples:

  * :ref:`sphx_glr_auto_examples_ensemble_plot_voting_regressor.py`

.. _stacking:

Stacked generalization
======================

Stacked generalization is a method for combining estimators to reduce their
biases [W1992]_ [HTF]_. More precisely, the predictions of each individual
estimator are stacked together and used as input to a final estimator to
compute the prediction. This final estimator is trained through
cross-validation.

The :class:`StackingClassifier` and :class:`StackingRegressor` provide such
strategies which can be applied to classification and regression problems.

The `estimators` parameter corresponds to the list of the estimators which
are stacked together in parallel on the input data. It should be given as a
list of names and estimators::

  >>> from sklearn.linear_model import RidgeCV, LassoCV
  >>> from sklearn.neighbors import KNeighborsRegressor
  >>> estimators = [('ridge', RidgeCV()),
  ...               ('lasso', LassoCV(random_state=42)),
  ...               ('knr', KNeighborsRegressor(n_neighbors=20,
  ...                                           metric='euclidean'))]

The `final_estimator` will use the predictions of the `estimators` as input. It
needs to be a classifier or a regressor when using :class:`StackingClassifier`
or :class:`StackingRegressor`, respectively::

  >>> from sklearn.ensemble import GradientBoostingRegressor
  >>> from sklearn.ensemble import StackingRegressor
  >>> final_estimator = GradientBoostingRegressor(
  ...     n_estimators=25, subsample=0.5, min_samples_leaf=25, max_features=1,
  ...     random_state=42)
  >>> reg = StackingRegressor(
  ...     estimators=estimators,
  ...     final_estimator=final_estimator)

To train the `estimators` and `final_estimator`, the `fit` method needs
to be called on the training data::

  >>> from sklearn.datasets import load_diabetes
  >>> X, y = load_diabetes(return_X_y=True)
  >>> from sklearn.model_selection import train_test_split
  >>> X_train, X_test, y_train, y_test = train_test_split(X, y,
  ...                                                     random_state=42)
  >>> reg.fit(X_train, y_train)
  StackingRegressor(...)

During training, the `estimators` are fitted on the whole training data
`X_train`. They will be used when calling `predict` or `predict_proba`. To
generalize and avoid over-fitting, the `final_estimator` is trained on
out-samples using :func:`sklearn.model_selection.cross_val_predict` internally.

For :class:`StackingClassifier`, note that the output of the ``estimators`` is
controlled by the parameter `stack_method` and it is called by each estimator.
This parameter is either a string, being estimator method names, or `'auto'`
which will automatically identify an available method depending on the
availability, tested in the order of preference: `predict_proba`,
`decision_function` and `predict`.

A :class:`StackingRegressor` and :class:`StackingClassifier` can be used as
any other regressor or classifier, exposing a `predict`, `predict_proba`, and
`decision_function` methods, e.g.::

   >>> y_pred = reg.predict(X_test)
   >>> from sklearn.metrics import r2_score
   >>> print('R2 score: {:.2f}'.format(r2_score(y_test, y_pred)))
   R2 score: 0.53

Note that it is also possible to get the output of the stacked
`estimators` using the `transform` method::

  >>> reg.transform(X_test[:5])
  array([[142..., 138..., 146...],
         [179..., 182..., 151...],
         [139..., 132..., 158...],
         [286..., 292..., 225...],
         [126..., 124..., 164...]])

In practice, a stacking predictor predicts as good as the best predictor of the
base layer and even sometimes outperforms it by combining the different
strengths of the these predictors. However, training a stacking predictor is
computationally expensive.

.. note::
   For :class:`StackingClassifier`, when using `stack_method_='predict_proba'`,
   the first column is dropped when the problem is a binary classification
   problem. Indeed, both probability columns predicted by each estimator are
   perfectly collinear.

.. note::
   Multiple stacking layers can be achieved by assigning `final_estimator` to
   a :class:`StackingClassifier` or :class:`StackingRegressor`::

    >>> final_layer_rfr = RandomForestRegressor(
    ...     n_estimators=10, max_features=1, max_leaf_nodes=5,random_state=42)
    >>> final_layer_gbr = GradientBoostingRegressor(
    ...     n_estimators=10, max_features=1, max_leaf_nodes=5,random_state=42)
    >>> final_layer = StackingRegressor(
    ...     estimators=[('rf', final_layer_rfr),
    ...                 ('gbrt', final_layer_gbr)],
    ...     final_estimator=RidgeCV()
    ...     )
    >>> multi_layer_regressor = StackingRegressor(
    ...     estimators=[('ridge', RidgeCV()),
    ...                 ('lasso', LassoCV(random_state=42)),
    ...                 ('knr', KNeighborsRegressor(n_neighbors=20,
    ...                                             metric='euclidean'))],
    ...     final_estimator=final_layer
    ... )
    >>> multi_layer_regressor.fit(X_train, y_train)
    StackingRegressor(...)
    >>> print('R2 score: {:.2f}'
    ...       .format(multi_layer_regressor.score(X_test, y_test)))
    R2 score: 0.53

.. topic:: References

   .. [W1992] Wolpert, David H. "Stacked generalization." Neural networks 5.2
      (1992): 241-259.



.. _adaboost:

AdaBoost
========

The module :mod:`sklearn.ensemble` includes the popular boosting algorithm
AdaBoost, introduced in 1995 by Freund and Schapire [FS1995]_.

The core principle of AdaBoost is to fit a sequence of weak learners (i.e.,
models that are only slightly better than random guessing, such as small
decision trees) on repeatedly modified versions of the data. The predictions
from all of them are then combined through a weighted majority vote (or sum) to
produce the final prediction. The data modifications at each so-called boosting
iteration consists of applying weights :math:`w_1`, :math:`w_2`, ..., :math:`w_N`
to each of the training samples. Initially, those weights are all set to
:math:`w_i = 1/N`, so that the first step simply trains a weak learner on the
original data. For each successive iteration, the sample weights are
individually modified and the learning algorithm is reapplied to the reweighted
data. At a given step, those training examples that were incorrectly predicted
by the boosted model induced at the previous step have their weights increased,
whereas the weights are decreased for those that were predicted correctly. As
iterations proceed, examples that are difficult to predict receive
ever-increasing influence. Each subsequent weak learner is thereby forced to
concentrate on the examples that are missed by the previous ones in the sequence
[HTF]_.

.. figure:: ../auto_examples/ensemble/images/sphx_glr_plot_adaboost_multiclass_001.png
   :target: ../auto_examples/ensemble/plot_adaboost_multiclass.html
   :align: center
   :scale: 75

AdaBoost can be used both for classification and regression problems:

- For multi-class classification, :class:`AdaBoostClassifier` implements
  AdaBoost.SAMME [ZZRH2009]_.

- For regression, :class:`AdaBoostRegressor` implements AdaBoost.R2 [D1997]_.

Usage
-----

The following example shows how to fit an AdaBoost classifier with 100 weak
learners::

    >>> from sklearn.model_selection import cross_val_score
    >>> from sklearn.datasets import load_iris
    >>> from sklearn.ensemble import AdaBoostClassifier

    >>> X, y = load_iris(return_X_y=True)
    >>> clf = AdaBoostClassifier(n_estimators=100, algorithm="SAMME",)
    >>> scores = cross_val_score(clf, X, y, cv=5)
    >>> scores.mean()
    0.9...

The number of weak learners is controlled by the parameter ``n_estimators``. The
``learning_rate`` parameter controls the contribution of the weak learners in
the final combination. By default, weak learners are decision stumps. Different
weak learners can be specified through the ``estimator`` parameter.
The main parameters to tune to obtain good results are ``n_estimators`` and
the complexity of the base estimators (e.g., its depth ``max_depth`` or
minimum required number of samples to consider a split ``min_samples_split``).

.. topic:: Examples:

 * :ref:`sphx_glr_auto_examples_ensemble_plot_adaboost_multiclass.py` shows the performance
   of AdaBoost on a multi-class problem.

 * :ref:`sphx_glr_auto_examples_ensemble_plot_adaboost_twoclass.py` shows the decision boundary
   and decision function values for a non-linearly separable two-class problem
   using AdaBoost-SAMME.

 * :ref:`sphx_glr_auto_examples_ensemble_plot_adaboost_regression.py` demonstrates regression
   with the AdaBoost.R2 algorithm.

.. topic:: References

 .. [FS1995] Y. Freund, and R. Schapire, "A Decision-Theoretic Generalization of
             On-Line Learning and an Application to Boosting", 1997.

 .. [ZZRH2009] J. Zhu, H. Zou, S. Rosset, T. Hastie. "Multi-class AdaBoost",
               2009.

 .. [D1997] H. Drucker. "Improving Regressors using Boosting Techniques", 1997.

 .. [HTF] T. Hastie, R. Tibshirani and J. Friedman, "Elements of
              Statistical Learning Ed. 2", Springer, 2009.