1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926
|
.. currentmodule:: sklearn
.. _model_evaluation:
===========================================================
Metrics and scoring: quantifying the quality of predictions
===========================================================
There are 3 different APIs for evaluating the quality of a model's
predictions:
* **Estimator score method**: Estimators have a ``score`` method providing a
default evaluation criterion for the problem they are designed to solve.
This is not discussed on this page, but in each estimator's documentation.
* **Scoring parameter**: Model-evaluation tools using
:ref:`cross-validation <cross_validation>` (such as
:func:`model_selection.cross_val_score` and
:class:`model_selection.GridSearchCV`) rely on an internal *scoring* strategy.
This is discussed in the section :ref:`scoring_parameter`.
* **Metric functions**: The :mod:`sklearn.metrics` module implements functions
assessing prediction error for specific purposes. These metrics are detailed
in sections on :ref:`classification_metrics`,
:ref:`multilabel_ranking_metrics`, :ref:`regression_metrics` and
:ref:`clustering_metrics`.
Finally, :ref:`dummy_estimators` are useful to get a baseline
value of those metrics for random predictions.
.. seealso::
For "pairwise" metrics, between *samples* and not estimators or
predictions, see the :ref:`metrics` section.
.. _scoring_parameter:
The ``scoring`` parameter: defining model evaluation rules
==========================================================
Model selection and evaluation using tools, such as
:class:`model_selection.GridSearchCV` and
:func:`model_selection.cross_val_score`, take a ``scoring`` parameter that
controls what metric they apply to the estimators evaluated.
Common cases: predefined values
-------------------------------
For the most common use cases, you can designate a scorer object with the
``scoring`` parameter; the table below shows all possible values.
All scorer objects follow the convention that **higher return values are better
than lower return values**. Thus metrics which measure the distance between
the model and the data, like :func:`metrics.mean_squared_error`, are
available as neg_mean_squared_error which return the negated value
of the metric.
==================================== ============================================== ==================================
Scoring Function Comment
==================================== ============================================== ==================================
**Classification**
'accuracy' :func:`metrics.accuracy_score`
'balanced_accuracy' :func:`metrics.balanced_accuracy_score`
'top_k_accuracy' :func:`metrics.top_k_accuracy_score`
'average_precision' :func:`metrics.average_precision_score`
'neg_brier_score' :func:`metrics.brier_score_loss`
'f1' :func:`metrics.f1_score` for binary targets
'f1_micro' :func:`metrics.f1_score` micro-averaged
'f1_macro' :func:`metrics.f1_score` macro-averaged
'f1_weighted' :func:`metrics.f1_score` weighted average
'f1_samples' :func:`metrics.f1_score` by multilabel sample
'neg_log_loss' :func:`metrics.log_loss` requires ``predict_proba`` support
'precision' etc. :func:`metrics.precision_score` suffixes apply as with 'f1'
'recall' etc. :func:`metrics.recall_score` suffixes apply as with 'f1'
'jaccard' etc. :func:`metrics.jaccard_score` suffixes apply as with 'f1'
'roc_auc' :func:`metrics.roc_auc_score`
'roc_auc_ovr' :func:`metrics.roc_auc_score`
'roc_auc_ovo' :func:`metrics.roc_auc_score`
'roc_auc_ovr_weighted' :func:`metrics.roc_auc_score`
'roc_auc_ovo_weighted' :func:`metrics.roc_auc_score`
**Clustering**
'adjusted_mutual_info_score' :func:`metrics.adjusted_mutual_info_score`
'adjusted_rand_score' :func:`metrics.adjusted_rand_score`
'completeness_score' :func:`metrics.completeness_score`
'fowlkes_mallows_score' :func:`metrics.fowlkes_mallows_score`
'homogeneity_score' :func:`metrics.homogeneity_score`
'mutual_info_score' :func:`metrics.mutual_info_score`
'normalized_mutual_info_score' :func:`metrics.normalized_mutual_info_score`
'rand_score' :func:`metrics.rand_score`
'v_measure_score' :func:`metrics.v_measure_score`
**Regression**
'explained_variance' :func:`metrics.explained_variance_score`
'max_error' :func:`metrics.max_error`
'neg_mean_absolute_error' :func:`metrics.mean_absolute_error`
'neg_mean_squared_error' :func:`metrics.mean_squared_error`
'neg_root_mean_squared_error' :func:`metrics.root_mean_squared_error`
'neg_mean_squared_log_error' :func:`metrics.mean_squared_log_error`
'neg_root_mean_squared_log_error' :func:`metrics.root_mean_squared_log_error`
'neg_median_absolute_error' :func:`metrics.median_absolute_error`
'r2' :func:`metrics.r2_score`
'neg_mean_poisson_deviance' :func:`metrics.mean_poisson_deviance`
'neg_mean_gamma_deviance' :func:`metrics.mean_gamma_deviance`
'neg_mean_absolute_percentage_error' :func:`metrics.mean_absolute_percentage_error`
'd2_absolute_error_score' :func:`metrics.d2_absolute_error_score`
'd2_pinball_score' :func:`metrics.d2_pinball_score`
'd2_tweedie_score' :func:`metrics.d2_tweedie_score`
==================================== ============================================== ==================================
Usage examples:
>>> from sklearn import svm, datasets
>>> from sklearn.model_selection import cross_val_score
>>> X, y = datasets.load_iris(return_X_y=True)
>>> clf = svm.SVC(random_state=0)
>>> cross_val_score(clf, X, y, cv=5, scoring='recall_macro')
array([0.96..., 0.96..., 0.96..., 0.93..., 1. ])
.. note::
If a wrong scoring name is passed, an ``InvalidParameterError`` is raised.
You can retrieve the names of all available scorers by calling
:func:`~sklearn.metrics.get_scorer_names`.
.. currentmodule:: sklearn.metrics
.. _scoring:
Defining your scoring strategy from metric functions
-----------------------------------------------------
The module :mod:`sklearn.metrics` also exposes a set of simple functions
measuring a prediction error given ground truth and prediction:
- functions ending with ``_score`` return a value to
maximize, the higher the better.
- functions ending with ``_error`` or ``_loss`` return a
value to minimize, the lower the better. When converting
into a scorer object using :func:`make_scorer`, set
the ``greater_is_better`` parameter to ``False`` (``True`` by default; see the
parameter description below).
Metrics available for various machine learning tasks are detailed in sections
below.
Many metrics are not given names to be used as ``scoring`` values,
sometimes because they require additional parameters, such as
:func:`fbeta_score`. In such cases, you need to generate an appropriate
scoring object. The simplest way to generate a callable object for scoring
is by using :func:`make_scorer`. That function converts metrics
into callables that can be used for model evaluation.
One typical use case is to wrap an existing metric function from the library
with non-default values for its parameters, such as the ``beta`` parameter for
the :func:`fbeta_score` function::
>>> from sklearn.metrics import fbeta_score, make_scorer
>>> ftwo_scorer = make_scorer(fbeta_score, beta=2)
>>> from sklearn.model_selection import GridSearchCV
>>> from sklearn.svm import LinearSVC
>>> grid = GridSearchCV(LinearSVC(dual="auto"), param_grid={'C': [1, 10]},
... scoring=ftwo_scorer, cv=5)
|details-start|
**Custom scorer objects**
|details-split|
The second use case is to build a completely custom scorer object
from a simple python function using :func:`make_scorer`, which can
take several parameters:
* the python function you want to use (``my_custom_loss_func``
in the example below)
* whether the python function returns a score (``greater_is_better=True``,
the default) or a loss (``greater_is_better=False``). If a loss, the output
of the python function is negated by the scorer object, conforming to
the cross validation convention that scorers return higher values for better models.
* for classification metrics only: whether the python function you provided requires
continuous decision certainties. If the scoring function only accepts probability
estimates (e.g. :func:`metrics.log_loss`) then one needs to set the parameter
`response_method`, thus in this case `response_method="predict_proba"`. Some scoring
function do not necessarily require probability estimates but rather non-thresholded
decision values (e.g. :func:`metrics.roc_auc_score`). In this case, one provides a
list such as `response_method=["decision_function", "predict_proba"]`. In this case,
the scorer will use the first available method, in the order given in the list,
to compute the scores.
* any additional parameters, such as ``beta`` or ``labels`` in :func:`f1_score`.
Here is an example of building custom scorers, and of using the
``greater_is_better`` parameter::
>>> import numpy as np
>>> def my_custom_loss_func(y_true, y_pred):
... diff = np.abs(y_true - y_pred).max()
... return np.log1p(diff)
...
>>> # score will negate the return value of my_custom_loss_func,
>>> # which will be np.log(2), 0.693, given the values for X
>>> # and y defined below.
>>> score = make_scorer(my_custom_loss_func, greater_is_better=False)
>>> X = [[1], [1]]
>>> y = [0, 1]
>>> from sklearn.dummy import DummyClassifier
>>> clf = DummyClassifier(strategy='most_frequent', random_state=0)
>>> clf = clf.fit(X, y)
>>> my_custom_loss_func(y, clf.predict(X))
0.69...
>>> score(clf, X, y)
-0.69...
|details-end|
.. _diy_scoring:
Implementing your own scoring object
------------------------------------
You can generate even more flexible model scorers by constructing your own
scoring object from scratch, without using the :func:`make_scorer` factory.
|details-start|
**How to build a scorer from scratch**
|details-split|
For a callable to be a scorer, it needs to meet the protocol specified by
the following two rules:
- It can be called with parameters ``(estimator, X, y)``, where ``estimator``
is the model that should be evaluated, ``X`` is validation data, and ``y`` is
the ground truth target for ``X`` (in the supervised case) or ``None`` (in the
unsupervised case).
- It returns a floating point number that quantifies the
``estimator`` prediction quality on ``X``, with reference to ``y``.
Again, by convention higher numbers are better, so if your scorer
returns loss, that value should be negated.
- Advanced: If it requires extra metadata to be passed to it, it should expose
a ``get_metadata_routing`` method returning the requested metadata. The user
should be able to set the requested metadata via a ``set_score_request``
method. Please see :ref:`User Guide <metadata_routing>` and :ref:`Developer
Guide <sphx_glr_auto_examples_miscellaneous_plot_metadata_routing.py>` for
more details.
.. note:: **Using custom scorers in functions where n_jobs > 1**
While defining the custom scoring function alongside the calling function
should work out of the box with the default joblib backend (loky),
importing it from another module will be a more robust approach and work
independently of the joblib backend.
For example, to use ``n_jobs`` greater than 1 in the example below,
``custom_scoring_function`` function is saved in a user-created module
(``custom_scorer_module.py``) and imported::
>>> from custom_scorer_module import custom_scoring_function # doctest: +SKIP
>>> cross_val_score(model,
... X_train,
... y_train,
... scoring=make_scorer(custom_scoring_function, greater_is_better=False),
... cv=5,
... n_jobs=-1) # doctest: +SKIP
|details-end|
.. _multimetric_scoring:
Using multiple metric evaluation
--------------------------------
Scikit-learn also permits evaluation of multiple metrics in ``GridSearchCV``,
``RandomizedSearchCV`` and ``cross_validate``.
There are three ways to specify multiple scoring metrics for the ``scoring``
parameter:
- As an iterable of string metrics::
>>> scoring = ['accuracy', 'precision']
- As a ``dict`` mapping the scorer name to the scoring function::
>>> from sklearn.metrics import accuracy_score
>>> from sklearn.metrics import make_scorer
>>> scoring = {'accuracy': make_scorer(accuracy_score),
... 'prec': 'precision'}
Note that the dict values can either be scorer functions or one of the
predefined metric strings.
- As a callable that returns a dictionary of scores::
>>> from sklearn.model_selection import cross_validate
>>> from sklearn.metrics import confusion_matrix
>>> # A sample toy binary classification dataset
>>> X, y = datasets.make_classification(n_classes=2, random_state=0)
>>> svm = LinearSVC(dual="auto", random_state=0)
>>> def confusion_matrix_scorer(clf, X, y):
... y_pred = clf.predict(X)
... cm = confusion_matrix(y, y_pred)
... return {'tn': cm[0, 0], 'fp': cm[0, 1],
... 'fn': cm[1, 0], 'tp': cm[1, 1]}
>>> cv_results = cross_validate(svm, X, y, cv=5,
... scoring=confusion_matrix_scorer)
>>> # Getting the test set true positive scores
>>> print(cv_results['test_tp'])
[10 9 8 7 8]
>>> # Getting the test set false negative scores
>>> print(cv_results['test_fn'])
[0 1 2 3 2]
.. _classification_metrics:
Classification metrics
=======================
.. currentmodule:: sklearn.metrics
The :mod:`sklearn.metrics` module implements several loss, score, and utility
functions to measure classification performance.
Some metrics might require probability estimates of the positive class,
confidence values, or binary decisions values.
Most implementations allow each sample to provide a weighted contribution
to the overall score, through the ``sample_weight`` parameter.
Some of these are restricted to the binary classification case:
.. autosummary::
precision_recall_curve
roc_curve
class_likelihood_ratios
det_curve
Others also work in the multiclass case:
.. autosummary::
balanced_accuracy_score
cohen_kappa_score
confusion_matrix
hinge_loss
matthews_corrcoef
roc_auc_score
top_k_accuracy_score
Some also work in the multilabel case:
.. autosummary::
accuracy_score
classification_report
f1_score
fbeta_score
hamming_loss
jaccard_score
log_loss
multilabel_confusion_matrix
precision_recall_fscore_support
precision_score
recall_score
roc_auc_score
zero_one_loss
And some work with binary and multilabel (but not multiclass) problems:
.. autosummary::
average_precision_score
In the following sub-sections, we will describe each of those functions,
preceded by some notes on common API and metric definition.
.. _average:
From binary to multiclass and multilabel
----------------------------------------
Some metrics are essentially defined for binary classification tasks (e.g.
:func:`f1_score`, :func:`roc_auc_score`). In these cases, by default
only the positive label is evaluated, assuming by default that the positive
class is labelled ``1`` (though this may be configurable through the
``pos_label`` parameter).
In extending a binary metric to multiclass or multilabel problems, the data
is treated as a collection of binary problems, one for each class.
There are then a number of ways to average binary metric calculations across
the set of classes, each of which may be useful in some scenario.
Where available, you should select among these using the ``average`` parameter.
* ``"macro"`` simply calculates the mean of the binary metrics,
giving equal weight to each class. In problems where infrequent classes
are nonetheless important, macro-averaging may be a means of highlighting
their performance. On the other hand, the assumption that all classes are
equally important is often untrue, such that macro-averaging will
over-emphasize the typically low performance on an infrequent class.
* ``"weighted"`` accounts for class imbalance by computing the average of
binary metrics in which each class's score is weighted by its presence in the
true data sample.
* ``"micro"`` gives each sample-class pair an equal contribution to the overall
metric (except as a result of sample-weight). Rather than summing the
metric per class, this sums the dividends and divisors that make up the
per-class metrics to calculate an overall quotient.
Micro-averaging may be preferred in multilabel settings, including
multiclass classification where a majority class is to be ignored.
* ``"samples"`` applies only to multilabel problems. It does not calculate a
per-class measure, instead calculating the metric over the true and predicted
classes for each sample in the evaluation data, and returning their
(``sample_weight``-weighted) average.
* Selecting ``average=None`` will return an array with the score for each
class.
While multiclass data is provided to the metric, like binary targets, as an
array of class labels, multilabel data is specified as an indicator matrix,
in which cell ``[i, j]`` has value 1 if sample ``i`` has label ``j`` and value
0 otherwise.
.. _accuracy_score:
Accuracy score
--------------
The :func:`accuracy_score` function computes the
`accuracy <https://en.wikipedia.org/wiki/Accuracy_and_precision>`_, either the fraction
(default) or the count (normalize=False) of correct predictions.
In multilabel classification, the function returns the subset accuracy. If
the entire set of predicted labels for a sample strictly match with the true
set of labels, then the subset accuracy is 1.0; otherwise it is 0.0.
If :math:`\hat{y}_i` is the predicted value of
the :math:`i`-th sample and :math:`y_i` is the corresponding true value,
then the fraction of correct predictions over :math:`n_\text{samples}` is
defined as
.. math::
\texttt{accuracy}(y, \hat{y}) = \frac{1}{n_\text{samples}} \sum_{i=0}^{n_\text{samples}-1} 1(\hat{y}_i = y_i)
where :math:`1(x)` is the `indicator function
<https://en.wikipedia.org/wiki/Indicator_function>`_.
>>> import numpy as np
>>> from sklearn.metrics import accuracy_score
>>> y_pred = [0, 2, 1, 3]
>>> y_true = [0, 1, 2, 3]
>>> accuracy_score(y_true, y_pred)
0.5
>>> accuracy_score(y_true, y_pred, normalize=False)
2.0
In the multilabel case with binary label indicators::
>>> accuracy_score(np.array([[0, 1], [1, 1]]), np.ones((2, 2)))
0.5
.. topic:: Example:
* See :ref:`sphx_glr_auto_examples_model_selection_plot_permutation_tests_for_classification.py`
for an example of accuracy score usage using permutations of
the dataset.
.. _top_k_accuracy_score:
Top-k accuracy score
--------------------
The :func:`top_k_accuracy_score` function is a generalization of
:func:`accuracy_score`. The difference is that a prediction is considered
correct as long as the true label is associated with one of the ``k`` highest
predicted scores. :func:`accuracy_score` is the special case of `k = 1`.
The function covers the binary and multiclass classification cases but not the
multilabel case.
If :math:`\hat{f}_{i,j}` is the predicted class for the :math:`i`-th sample
corresponding to the :math:`j`-th largest predicted score and :math:`y_i` is the
corresponding true value, then the fraction of correct predictions over
:math:`n_\text{samples}` is defined as
.. math::
\texttt{top-k accuracy}(y, \hat{f}) = \frac{1}{n_\text{samples}} \sum_{i=0}^{n_\text{samples}-1} \sum_{j=1}^{k} 1(\hat{f}_{i,j} = y_i)
where :math:`k` is the number of guesses allowed and :math:`1(x)` is the
`indicator function <https://en.wikipedia.org/wiki/Indicator_function>`_.
>>> import numpy as np
>>> from sklearn.metrics import top_k_accuracy_score
>>> y_true = np.array([0, 1, 2, 2])
>>> y_score = np.array([[0.5, 0.2, 0.2],
... [0.3, 0.4, 0.2],
... [0.2, 0.4, 0.3],
... [0.7, 0.2, 0.1]])
>>> top_k_accuracy_score(y_true, y_score, k=2)
0.75
>>> # Not normalizing gives the number of "correctly" classified samples
>>> top_k_accuracy_score(y_true, y_score, k=2, normalize=False)
3
.. _balanced_accuracy_score:
Balanced accuracy score
-----------------------
The :func:`balanced_accuracy_score` function computes the `balanced accuracy
<https://en.wikipedia.org/wiki/Accuracy_and_precision>`_, which avoids inflated
performance estimates on imbalanced datasets. It is the macro-average of recall
scores per class or, equivalently, raw accuracy where each sample is weighted
according to the inverse prevalence of its true class.
Thus for balanced datasets, the score is equal to accuracy.
In the binary case, balanced accuracy is equal to the arithmetic mean of
`sensitivity <https://en.wikipedia.org/wiki/Sensitivity_and_specificity>`_
(true positive rate) and `specificity
<https://en.wikipedia.org/wiki/Sensitivity_and_specificity>`_ (true negative
rate), or the area under the ROC curve with binary predictions rather than
scores:
.. math::
\texttt{balanced-accuracy} = \frac{1}{2}\left( \frac{TP}{TP + FN} + \frac{TN}{TN + FP}\right )
If the classifier performs equally well on either class, this term reduces to
the conventional accuracy (i.e., the number of correct predictions divided by
the total number of predictions).
In contrast, if the conventional accuracy is above chance only because the
classifier takes advantage of an imbalanced test set, then the balanced
accuracy, as appropriate, will drop to :math:`\frac{1}{n\_classes}`.
The score ranges from 0 to 1, or when ``adjusted=True`` is used, it rescaled to
the range :math:`\frac{1}{1 - n\_classes}` to 1, inclusive, with
performance at random scoring 0.
If :math:`y_i` is the true value of the :math:`i`-th sample, and :math:`w_i`
is the corresponding sample weight, then we adjust the sample weight to:
.. math::
\hat{w}_i = \frac{w_i}{\sum_j{1(y_j = y_i) w_j}}
where :math:`1(x)` is the `indicator function <https://en.wikipedia.org/wiki/Indicator_function>`_.
Given predicted :math:`\hat{y}_i` for sample :math:`i`, balanced accuracy is
defined as:
.. math::
\texttt{balanced-accuracy}(y, \hat{y}, w) = \frac{1}{\sum{\hat{w}_i}} \sum_i 1(\hat{y}_i = y_i) \hat{w}_i
With ``adjusted=True``, balanced accuracy reports the relative increase from
:math:`\texttt{balanced-accuracy}(y, \mathbf{0}, w) =
\frac{1}{n\_classes}`. In the binary case, this is also known as
`*Youden's J statistic* <https://en.wikipedia.org/wiki/Youden%27s_J_statistic>`_,
or *informedness*.
.. note::
The multiclass definition here seems the most reasonable extension of the
metric used in binary classification, though there is no certain consensus
in the literature:
* Our definition: [Mosley2013]_, [Kelleher2015]_ and [Guyon2015]_, where
[Guyon2015]_ adopt the adjusted version to ensure that random predictions
have a score of :math:`0` and perfect predictions have a score of :math:`1`..
* Class balanced accuracy as described in [Mosley2013]_: the minimum between the precision
and the recall for each class is computed. Those values are then averaged over the total
number of classes to get the balanced accuracy.
* Balanced Accuracy as described in [Urbanowicz2015]_: the average of sensitivity and specificity
is computed for each class and then averaged over total number of classes.
.. topic:: References:
.. [Guyon2015] I. Guyon, K. Bennett, G. Cawley, H.J. Escalante, S. Escalera, T.K. Ho, N. Macià,
B. Ray, M. Saeed, A.R. Statnikov, E. Viegas, `Design of the 2015 ChaLearn AutoML Challenge
<https://ieeexplore.ieee.org/document/7280767>`_,
IJCNN 2015.
.. [Mosley2013] L. Mosley, `A balanced approach to the multi-class imbalance problem
<https://lib.dr.iastate.edu/etd/13537/>`_,
IJCV 2010.
.. [Kelleher2015] John. D. Kelleher, Brian Mac Namee, Aoife D'Arcy, `Fundamentals of
Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples,
and Case Studies <https://mitpress.mit.edu/books/fundamentals-machine-learning-predictive-data-analytics>`_,
2015.
.. [Urbanowicz2015] Urbanowicz R.J., Moore, J.H. :doi:`ExSTraCS 2.0: description
and evaluation of a scalable learning classifier
system <10.1007/s12065-015-0128-8>`, Evol. Intel. (2015) 8: 89.
.. _cohen_kappa:
Cohen's kappa
-------------
The function :func:`cohen_kappa_score` computes `Cohen's kappa
<https://en.wikipedia.org/wiki/Cohen%27s_kappa>`_ statistic.
This measure is intended to compare labelings by different human annotators,
not a classifier versus a ground truth.
The kappa score (see docstring) is a number between -1 and 1.
Scores above .8 are generally considered good agreement;
zero or lower means no agreement (practically random labels).
Kappa scores can be computed for binary or multiclass problems,
but not for multilabel problems (except by manually computing a per-label score)
and not for more than two annotators.
>>> from sklearn.metrics import cohen_kappa_score
>>> y_true = [2, 0, 2, 2, 0, 1]
>>> y_pred = [0, 0, 2, 2, 0, 2]
>>> cohen_kappa_score(y_true, y_pred)
0.4285714285714286
.. _confusion_matrix:
Confusion matrix
----------------
The :func:`confusion_matrix` function evaluates
classification accuracy by computing the `confusion matrix
<https://en.wikipedia.org/wiki/Confusion_matrix>`_ with each row corresponding
to the true class (Wikipedia and other references may use different convention
for axes).
By definition, entry :math:`i, j` in a confusion matrix is
the number of observations actually in group :math:`i`, but
predicted to be in group :math:`j`. Here is an example::
>>> from sklearn.metrics import confusion_matrix
>>> y_true = [2, 0, 2, 2, 0, 1]
>>> y_pred = [0, 0, 2, 2, 0, 2]
>>> confusion_matrix(y_true, y_pred)
array([[2, 0, 0],
[0, 0, 1],
[1, 0, 2]])
:class:`ConfusionMatrixDisplay` can be used to visually represent a confusion
matrix as shown in the
:ref:`sphx_glr_auto_examples_model_selection_plot_confusion_matrix.py`
example, which creates the following figure:
.. image:: ../auto_examples/model_selection/images/sphx_glr_plot_confusion_matrix_001.png
:target: ../auto_examples/model_selection/plot_confusion_matrix.html
:scale: 75
:align: center
The parameter ``normalize`` allows to report ratios instead of counts. The
confusion matrix can be normalized in 3 different ways: ``'pred'``, ``'true'``,
and ``'all'`` which will divide the counts by the sum of each columns, rows, or
the entire matrix, respectively.
>>> y_true = [0, 0, 0, 1, 1, 1, 1, 1]
>>> y_pred = [0, 1, 0, 1, 0, 1, 0, 1]
>>> confusion_matrix(y_true, y_pred, normalize='all')
array([[0.25 , 0.125],
[0.25 , 0.375]])
For binary problems, we can get counts of true negatives, false positives,
false negatives and true positives as follows::
>>> y_true = [0, 0, 0, 1, 1, 1, 1, 1]
>>> y_pred = [0, 1, 0, 1, 0, 1, 0, 1]
>>> tn, fp, fn, tp = confusion_matrix(y_true, y_pred).ravel()
>>> tn, fp, fn, tp
(2, 1, 2, 3)
.. topic:: Example:
* See :ref:`sphx_glr_auto_examples_model_selection_plot_confusion_matrix.py`
for an example of using a confusion matrix to evaluate classifier output
quality.
* See :ref:`sphx_glr_auto_examples_classification_plot_digits_classification.py`
for an example of using a confusion matrix to classify
hand-written digits.
* See :ref:`sphx_glr_auto_examples_text_plot_document_classification_20newsgroups.py`
for an example of using a confusion matrix to classify text
documents.
.. _classification_report:
Classification report
----------------------
The :func:`classification_report` function builds a text report showing the
main classification metrics. Here is a small example with custom ``target_names``
and inferred labels::
>>> from sklearn.metrics import classification_report
>>> y_true = [0, 1, 2, 2, 0]
>>> y_pred = [0, 0, 2, 1, 0]
>>> target_names = ['class 0', 'class 1', 'class 2']
>>> print(classification_report(y_true, y_pred, target_names=target_names))
precision recall f1-score support
<BLANKLINE>
class 0 0.67 1.00 0.80 2
class 1 0.00 0.00 0.00 1
class 2 1.00 0.50 0.67 2
<BLANKLINE>
accuracy 0.60 5
macro avg 0.56 0.50 0.49 5
weighted avg 0.67 0.60 0.59 5
<BLANKLINE>
.. topic:: Example:
* See :ref:`sphx_glr_auto_examples_classification_plot_digits_classification.py`
for an example of classification report usage for
hand-written digits.
* See :ref:`sphx_glr_auto_examples_model_selection_plot_grid_search_digits.py`
for an example of classification report usage for
grid search with nested cross-validation.
.. _hamming_loss:
Hamming loss
-------------
The :func:`hamming_loss` computes the average Hamming loss or `Hamming
distance <https://en.wikipedia.org/wiki/Hamming_distance>`_ between two sets
of samples.
If :math:`\hat{y}_{i,j}` is the predicted value for the :math:`j`-th label of a
given sample :math:`i`, :math:`y_{i,j}` is the corresponding true value,
:math:`n_\text{samples}` is the number of samples and :math:`n_\text{labels}`
is the number of labels, then the Hamming loss :math:`L_{Hamming}` is defined
as:
.. math::
L_{Hamming}(y, \hat{y}) = \frac{1}{n_\text{samples} * n_\text{labels}} \sum_{i=0}^{n_\text{samples}-1} \sum_{j=0}^{n_\text{labels} - 1} 1(\hat{y}_{i,j} \not= y_{i,j})
where :math:`1(x)` is the `indicator function
<https://en.wikipedia.org/wiki/Indicator_function>`_.
The equation above does not hold true in the case of multiclass classification.
Please refer to the note below for more information. ::
>>> from sklearn.metrics import hamming_loss
>>> y_pred = [1, 2, 3, 4]
>>> y_true = [2, 2, 3, 4]
>>> hamming_loss(y_true, y_pred)
0.25
In the multilabel case with binary label indicators::
>>> hamming_loss(np.array([[0, 1], [1, 1]]), np.zeros((2, 2)))
0.75
.. note::
In multiclass classification, the Hamming loss corresponds to the Hamming
distance between ``y_true`` and ``y_pred`` which is similar to the
:ref:`zero_one_loss` function. However, while zero-one loss penalizes
prediction sets that do not strictly match true sets, the Hamming loss
penalizes individual labels. Thus the Hamming loss, upper bounded by the zero-one
loss, is always between zero and one, inclusive; and predicting a proper subset
or superset of the true labels will give a Hamming loss between
zero and one, exclusive.
.. _precision_recall_f_measure_metrics:
Precision, recall and F-measures
---------------------------------
Intuitively, `precision
<https://en.wikipedia.org/wiki/Precision_and_recall#Precision>`_ is the ability
of the classifier not to label as positive a sample that is negative, and
`recall <https://en.wikipedia.org/wiki/Precision_and_recall#Recall>`_ is the
ability of the classifier to find all the positive samples.
The `F-measure <https://en.wikipedia.org/wiki/F1_score>`_
(:math:`F_\beta` and :math:`F_1` measures) can be interpreted as a weighted
harmonic mean of the precision and recall. A
:math:`F_\beta` measure reaches its best value at 1 and its worst score at 0.
With :math:`\beta = 1`, :math:`F_\beta` and
:math:`F_1` are equivalent, and the recall and the precision are equally important.
The :func:`precision_recall_curve` computes a precision-recall curve
from the ground truth label and a score given by the classifier
by varying a decision threshold.
The :func:`average_precision_score` function computes the
`average precision <https://en.wikipedia.org/w/index.php?title=Information_retrieval&oldid=793358396#Average_precision>`_
(AP) from prediction scores. The value is between 0 and 1 and higher is better.
AP is defined as
.. math::
\text{AP} = \sum_n (R_n - R_{n-1}) P_n
where :math:`P_n` and :math:`R_n` are the precision and recall at the
nth threshold. With random predictions, the AP is the fraction of positive
samples.
References [Manning2008]_ and [Everingham2010]_ present alternative variants of
AP that interpolate the precision-recall curve. Currently,
:func:`average_precision_score` does not implement any interpolated variant.
References [Davis2006]_ and [Flach2015]_ describe why a linear interpolation of
points on the precision-recall curve provides an overly-optimistic measure of
classifier performance. This linear interpolation is used when computing area
under the curve with the trapezoidal rule in :func:`auc`.
Several functions allow you to analyze the precision, recall and F-measures
score:
.. autosummary::
average_precision_score
f1_score
fbeta_score
precision_recall_curve
precision_recall_fscore_support
precision_score
recall_score
Note that the :func:`precision_recall_curve` function is restricted to the
binary case. The :func:`average_precision_score` function supports multiclass
and multilabel formats by computing each class score in a One-vs-the-rest (OvR)
fashion and averaging them or not depending of its ``average`` argument value.
The :func:`PrecisionRecallDisplay.from_estimator` and
:func:`PrecisionRecallDisplay.from_predictions` functions will plot the
precision-recall curve as follows.
.. image:: ../auto_examples/model_selection/images/sphx_glr_plot_precision_recall_001.png
:target: ../auto_examples/model_selection/plot_precision_recall.html#plot-the-precision-recall-curve
:scale: 75
:align: center
.. topic:: Examples:
* See :ref:`sphx_glr_auto_examples_model_selection_plot_grid_search_digits.py`
for an example of :func:`precision_score` and :func:`recall_score` usage
to estimate parameters using grid search with nested cross-validation.
* See :ref:`sphx_glr_auto_examples_model_selection_plot_precision_recall.py`
for an example of :func:`precision_recall_curve` usage to evaluate
classifier output quality.
.. topic:: References:
.. [Manning2008] C.D. Manning, P. Raghavan, H. Schütze, `Introduction to Information Retrieval
<https://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-ranked-retrieval-results-1.html>`_,
2008.
.. [Everingham2010] M. Everingham, L. Van Gool, C.K.I. Williams, J. Winn, A. Zisserman,
`The Pascal Visual Object Classes (VOC) Challenge
<https://citeseerx.ist.psu.edu/doc_view/pid/b6bebfd529b233f00cb854b7d8070319600cf59d>`_,
IJCV 2010.
.. [Davis2006] J. Davis, M. Goadrich, `The Relationship Between Precision-Recall and ROC Curves
<https://www.biostat.wisc.edu/~page/rocpr.pdf>`_,
ICML 2006.
.. [Flach2015] P.A. Flach, M. Kull, `Precision-Recall-Gain Curves: PR Analysis Done Right
<https://papers.nips.cc/paper/5867-precision-recall-gain-curves-pr-analysis-done-right.pdf>`_,
NIPS 2015.
Binary classification
^^^^^^^^^^^^^^^^^^^^^
In a binary classification task, the terms ''positive'' and ''negative'' refer
to the classifier's prediction, and the terms ''true'' and ''false'' refer to
whether that prediction corresponds to the external judgment (sometimes known
as the ''observation''). Given these definitions, we can formulate the
following table:
+-------------------+------------------------------------------------+
| | Actual class (observation) |
+-------------------+---------------------+--------------------------+
| Predicted class | tp (true positive) | fp (false positive) |
| (expectation) | Correct result | Unexpected result |
| +---------------------+--------------------------+
| | fn (false negative) | tn (true negative) |
| | Missing result | Correct absence of result|
+-------------------+---------------------+--------------------------+
In this context, we can define the notions of precision and recall:
.. math::
\text{precision} = \frac{\text{tp}}{\text{tp} + \text{fp}},
.. math::
\text{recall} = \frac{\text{tp}}{\text{tp} + \text{fn}},
(Sometimes recall is also called ''sensitivity'')
F-measure is the weighted harmonic mean of precision and recall, with precision's
contribution to the mean weighted by some parameter :math:`\beta`:
.. math::
F_\beta = (1 + \beta^2) \frac{\text{precision} \times \text{recall}}{\beta^2 \text{precision} + \text{recall}}
To avoid division by zero when precision and recall are zero, Scikit-Learn calculates F-measure with this
otherwise-equivalent formula:
.. math::
F_\beta = \frac{(1 + \beta^2) \text{tp}}{(1 + \beta^2) \text{tp} + \text{fp} + \beta^2 \text{fn}}
Note that this formula is still undefined when there are no true positives, false
positives, or false negatives. By default, F-1 for a set of exclusively true negatives
is calculated as 0, however this behavior can be changed using the `zero_division`
parameter.
Here are some small examples in binary classification::
>>> from sklearn import metrics
>>> y_pred = [0, 1, 0, 0]
>>> y_true = [0, 1, 0, 1]
>>> metrics.precision_score(y_true, y_pred)
1.0
>>> metrics.recall_score(y_true, y_pred)
0.5
>>> metrics.f1_score(y_true, y_pred)
0.66...
>>> metrics.fbeta_score(y_true, y_pred, beta=0.5)
0.83...
>>> metrics.fbeta_score(y_true, y_pred, beta=1)
0.66...
>>> metrics.fbeta_score(y_true, y_pred, beta=2)
0.55...
>>> metrics.precision_recall_fscore_support(y_true, y_pred, beta=0.5)
(array([0.66..., 1. ]), array([1. , 0.5]), array([0.71..., 0.83...]), array([2, 2]))
>>> import numpy as np
>>> from sklearn.metrics import precision_recall_curve
>>> from sklearn.metrics import average_precision_score
>>> y_true = np.array([0, 0, 1, 1])
>>> y_scores = np.array([0.1, 0.4, 0.35, 0.8])
>>> precision, recall, threshold = precision_recall_curve(y_true, y_scores)
>>> precision
array([0.5 , 0.66..., 0.5 , 1. , 1. ])
>>> recall
array([1. , 1. , 0.5, 0.5, 0. ])
>>> threshold
array([0.1 , 0.35, 0.4 , 0.8 ])
>>> average_precision_score(y_true, y_scores)
0.83...
Multiclass and multilabel classification
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
In a multiclass and multilabel classification task, the notions of precision,
recall, and F-measures can be applied to each label independently.
There are a few ways to combine results across labels,
specified by the ``average`` argument to the
:func:`average_precision_score`, :func:`f1_score`,
:func:`fbeta_score`, :func:`precision_recall_fscore_support`,
:func:`precision_score` and :func:`recall_score` functions, as described
:ref:`above <average>`. Note that if all labels are included, "micro"-averaging
in a multiclass setting will produce precision, recall and :math:`F`
that are all identical to accuracy. Also note that "weighted" averaging may
produce an F-score that is not between precision and recall.
To make this more explicit, consider the following notation:
* :math:`y` the set of *true* :math:`(sample, label)` pairs
* :math:`\hat{y}` the set of *predicted* :math:`(sample, label)` pairs
* :math:`L` the set of labels
* :math:`S` the set of samples
* :math:`y_s` the subset of :math:`y` with sample :math:`s`,
i.e. :math:`y_s := \left\{(s', l) \in y | s' = s\right\}`
* :math:`y_l` the subset of :math:`y` with label :math:`l`
* similarly, :math:`\hat{y}_s` and :math:`\hat{y}_l` are subsets of
:math:`\hat{y}`
* :math:`P(A, B) := \frac{\left| A \cap B \right|}{\left|B\right|}` for some
sets :math:`A` and :math:`B`
* :math:`R(A, B) := \frac{\left| A \cap B \right|}{\left|A\right|}`
(Conventions vary on handling :math:`A = \emptyset`; this implementation uses
:math:`R(A, B):=0`, and similar for :math:`P`.)
* :math:`F_\beta(A, B) := \left(1 + \beta^2\right) \frac{P(A, B) \times R(A, B)}{\beta^2 P(A, B) + R(A, B)}`
Then the metrics are defined as:
+---------------+------------------------------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------+
|``average`` | Precision | Recall | F\_beta |
+===============+==================================================================================================================+==================================================================================================================+======================================================================================================================+
|``"micro"`` | :math:`P(y, \hat{y})` | :math:`R(y, \hat{y})` | :math:`F_\beta(y, \hat{y})` |
+---------------+------------------------------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------+
|``"samples"`` | :math:`\frac{1}{\left|S\right|} \sum_{s \in S} P(y_s, \hat{y}_s)` | :math:`\frac{1}{\left|S\right|} \sum_{s \in S} R(y_s, \hat{y}_s)` | :math:`\frac{1}{\left|S\right|} \sum_{s \in S} F_\beta(y_s, \hat{y}_s)` |
+---------------+------------------------------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------+
|``"macro"`` | :math:`\frac{1}{\left|L\right|} \sum_{l \in L} P(y_l, \hat{y}_l)` | :math:`\frac{1}{\left|L\right|} \sum_{l \in L} R(y_l, \hat{y}_l)` | :math:`\frac{1}{\left|L\right|} \sum_{l \in L} F_\beta(y_l, \hat{y}_l)` |
+---------------+------------------------------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------+
|``"weighted"`` | :math:`\frac{1}{\sum_{l \in L} \left|y_l\right|} \sum_{l \in L} \left|y_l\right| P(y_l, \hat{y}_l)` | :math:`\frac{1}{\sum_{l \in L} \left|y_l\right|} \sum_{l \in L} \left|y_l\right| R(y_l, \hat{y}_l)` | :math:`\frac{1}{\sum_{l \in L} \left|y_l\right|} \sum_{l \in L} \left|y_l\right| F_\beta(y_l, \hat{y}_l)` |
+---------------+------------------------------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------+
|``None`` | :math:`\langle P(y_l, \hat{y}_l) | l \in L \rangle` | :math:`\langle R(y_l, \hat{y}_l) | l \in L \rangle` | :math:`\langle F_\beta(y_l, \hat{y}_l) | l \in L \rangle` |
+---------------+------------------------------------------------------------------------------------------------------------------+------------------------------------------------------------------------------------------------------------------+----------------------------------------------------------------------------------------------------------------------+
>>> from sklearn import metrics
>>> y_true = [0, 1, 2, 0, 1, 2]
>>> y_pred = [0, 2, 1, 0, 0, 1]
>>> metrics.precision_score(y_true, y_pred, average='macro')
0.22...
>>> metrics.recall_score(y_true, y_pred, average='micro')
0.33...
>>> metrics.f1_score(y_true, y_pred, average='weighted')
0.26...
>>> metrics.fbeta_score(y_true, y_pred, average='macro', beta=0.5)
0.23...
>>> metrics.precision_recall_fscore_support(y_true, y_pred, beta=0.5, average=None)
(array([0.66..., 0. , 0. ]), array([1., 0., 0.]), array([0.71..., 0. , 0. ]), array([2, 2, 2]...))
For multiclass classification with a "negative class", it is possible to exclude some labels:
>>> metrics.recall_score(y_true, y_pred, labels=[1, 2], average='micro')
... # excluding 0, no labels were correctly recalled
0.0
Similarly, labels not present in the data sample may be accounted for in macro-averaging.
>>> metrics.precision_score(y_true, y_pred, labels=[0, 1, 2, 3], average='macro')
0.166...
.. _jaccard_similarity_score:
Jaccard similarity coefficient score
-------------------------------------
The :func:`jaccard_score` function computes the average of `Jaccard similarity
coefficients <https://en.wikipedia.org/wiki/Jaccard_index>`_, also called the
Jaccard index, between pairs of label sets.
The Jaccard similarity coefficient with a ground truth label set :math:`y` and
predicted label set :math:`\hat{y}`, is defined as
.. math::
J(y, \hat{y}) = \frac{|y \cap \hat{y}|}{|y \cup \hat{y}|}.
The :func:`jaccard_score` (like :func:`precision_recall_fscore_support`) applies
natively to binary targets. By computing it set-wise it can be extended to apply
to multilabel and multiclass through the use of `average` (see
:ref:`above <average>`).
In the binary case::
>>> import numpy as np
>>> from sklearn.metrics import jaccard_score
>>> y_true = np.array([[0, 1, 1],
... [1, 1, 0]])
>>> y_pred = np.array([[1, 1, 1],
... [1, 0, 0]])
>>> jaccard_score(y_true[0], y_pred[0])
0.6666...
In the 2D comparison case (e.g. image similarity):
>>> jaccard_score(y_true, y_pred, average="micro")
0.6
In the multilabel case with binary label indicators::
>>> jaccard_score(y_true, y_pred, average='samples')
0.5833...
>>> jaccard_score(y_true, y_pred, average='macro')
0.6666...
>>> jaccard_score(y_true, y_pred, average=None)
array([0.5, 0.5, 1. ])
Multiclass problems are binarized and treated like the corresponding
multilabel problem::
>>> y_pred = [0, 2, 1, 2]
>>> y_true = [0, 1, 2, 2]
>>> jaccard_score(y_true, y_pred, average=None)
array([1. , 0. , 0.33...])
>>> jaccard_score(y_true, y_pred, average='macro')
0.44...
>>> jaccard_score(y_true, y_pred, average='micro')
0.33...
.. _hinge_loss:
Hinge loss
----------
The :func:`hinge_loss` function computes the average distance between
the model and the data using
`hinge loss <https://en.wikipedia.org/wiki/Hinge_loss>`_, a one-sided metric
that considers only prediction errors. (Hinge
loss is used in maximal margin classifiers such as support vector machines.)
If the true label :math:`y_i` of a binary classification task is encoded as
:math:`y_i=\left\{-1, +1\right\}` for every sample :math:`i`; and :math:`w_i`
is the corresponding predicted decision (an array of shape (`n_samples`,) as
output by the `decision_function` method), then the hinge loss is defined as:
.. math::
L_\text{Hinge}(y, w) = \frac{1}{n_\text{samples}} \sum_{i=0}^{n_\text{samples}-1} \max\left\{1 - w_i y_i, 0\right\}
If there are more than two labels, :func:`hinge_loss` uses a multiclass variant
due to Crammer & Singer.
`Here <https://jmlr.csail.mit.edu/papers/volume2/crammer01a/crammer01a.pdf>`_ is
the paper describing it.
In this case the predicted decision is an array of shape (`n_samples`,
`n_labels`). If :math:`w_{i, y_i}` is the predicted decision for the true label
:math:`y_i` of the :math:`i`-th sample; and
:math:`\hat{w}_{i, y_i} = \max\left\{w_{i, y_j}~|~y_j \ne y_i \right\}`
is the maximum of the
predicted decisions for all the other labels, then the multi-class hinge loss
is defined by:
.. math::
L_\text{Hinge}(y, w) = \frac{1}{n_\text{samples}}
\sum_{i=0}^{n_\text{samples}-1} \max\left\{1 + \hat{w}_{i, y_i}
- w_{i, y_i}, 0\right\}
Here is a small example demonstrating the use of the :func:`hinge_loss` function
with a svm classifier in a binary class problem::
>>> from sklearn import svm
>>> from sklearn.metrics import hinge_loss
>>> X = [[0], [1]]
>>> y = [-1, 1]
>>> est = svm.LinearSVC(dual="auto", random_state=0)
>>> est.fit(X, y)
LinearSVC(dual='auto', random_state=0)
>>> pred_decision = est.decision_function([[-2], [3], [0.5]])
>>> pred_decision
array([-2.18..., 2.36..., 0.09...])
>>> hinge_loss([-1, 1, 1], pred_decision)
0.3...
Here is an example demonstrating the use of the :func:`hinge_loss` function
with a svm classifier in a multiclass problem::
>>> X = np.array([[0], [1], [2], [3]])
>>> Y = np.array([0, 1, 2, 3])
>>> labels = np.array([0, 1, 2, 3])
>>> est = svm.LinearSVC(dual="auto")
>>> est.fit(X, Y)
LinearSVC(dual='auto')
>>> pred_decision = est.decision_function([[-1], [2], [3]])
>>> y_true = [0, 2, 3]
>>> hinge_loss(y_true, pred_decision, labels=labels)
0.56...
.. _log_loss:
Log loss
--------
Log loss, also called logistic regression loss or
cross-entropy loss, is defined on probability estimates. It is
commonly used in (multinomial) logistic regression and neural networks, as well
as in some variants of expectation-maximization, and can be used to evaluate the
probability outputs (``predict_proba``) of a classifier instead of its
discrete predictions.
For binary classification with a true label :math:`y \in \{0,1\}`
and a probability estimate :math:`p = \operatorname{Pr}(y = 1)`,
the log loss per sample is the negative log-likelihood
of the classifier given the true label:
.. math::
L_{\log}(y, p) = -\log \operatorname{Pr}(y|p) = -(y \log (p) + (1 - y) \log (1 - p))
This extends to the multiclass case as follows.
Let the true labels for a set of samples
be encoded as a 1-of-K binary indicator matrix :math:`Y`,
i.e., :math:`y_{i,k} = 1` if sample :math:`i` has label :math:`k`
taken from a set of :math:`K` labels.
Let :math:`P` be a matrix of probability estimates,
with :math:`p_{i,k} = \operatorname{Pr}(y_{i,k} = 1)`.
Then the log loss of the whole set is
.. math::
L_{\log}(Y, P) = -\log \operatorname{Pr}(Y|P) = - \frac{1}{N} \sum_{i=0}^{N-1} \sum_{k=0}^{K-1} y_{i,k} \log p_{i,k}
To see how this generalizes the binary log loss given above,
note that in the binary case,
:math:`p_{i,0} = 1 - p_{i,1}` and :math:`y_{i,0} = 1 - y_{i,1}`,
so expanding the inner sum over :math:`y_{i,k} \in \{0,1\}`
gives the binary log loss.
The :func:`log_loss` function computes log loss given a list of ground-truth
labels and a probability matrix, as returned by an estimator's ``predict_proba``
method.
>>> from sklearn.metrics import log_loss
>>> y_true = [0, 0, 1, 1]
>>> y_pred = [[.9, .1], [.8, .2], [.3, .7], [.01, .99]]
>>> log_loss(y_true, y_pred)
0.1738...
The first ``[.9, .1]`` in ``y_pred`` denotes 90% probability that the first
sample has label 0. The log loss is non-negative.
.. _matthews_corrcoef:
Matthews correlation coefficient
---------------------------------
The :func:`matthews_corrcoef` function computes the
`Matthew's correlation coefficient (MCC) <https://en.wikipedia.org/wiki/Matthews_correlation_coefficient>`_
for binary classes. Quoting Wikipedia:
"The Matthews correlation coefficient is used in machine learning as a
measure of the quality of binary (two-class) classifications. It takes
into account true and false positives and negatives and is generally
regarded as a balanced measure which can be used even if the classes are
of very different sizes. The MCC is in essence a correlation coefficient
value between -1 and +1. A coefficient of +1 represents a perfect
prediction, 0 an average random prediction and -1 an inverse prediction.
The statistic is also known as the phi coefficient."
In the binary (two-class) case, :math:`tp`, :math:`tn`, :math:`fp` and
:math:`fn` are respectively the number of true positives, true negatives, false
positives and false negatives, the MCC is defined as
.. math::
MCC = \frac{tp \times tn - fp \times fn}{\sqrt{(tp + fp)(tp + fn)(tn + fp)(tn + fn)}}.
In the multiclass case, the Matthews correlation coefficient can be `defined
<http://rk.kvl.dk/introduction/index.html>`_ in terms of a
:func:`confusion_matrix` :math:`C` for :math:`K` classes. To simplify the
definition consider the following intermediate variables:
* :math:`t_k=\sum_{i}^{K} C_{ik}` the number of times class :math:`k` truly occurred,
* :math:`p_k=\sum_{i}^{K} C_{ki}` the number of times class :math:`k` was predicted,
* :math:`c=\sum_{k}^{K} C_{kk}` the total number of samples correctly predicted,
* :math:`s=\sum_{i}^{K} \sum_{j}^{K} C_{ij}` the total number of samples.
Then the multiclass MCC is defined as:
.. math::
MCC = \frac{
c \times s - \sum_{k}^{K} p_k \times t_k
}{\sqrt{
(s^2 - \sum_{k}^{K} p_k^2) \times
(s^2 - \sum_{k}^{K} t_k^2)
}}
When there are more than two labels, the value of the MCC will no longer range
between -1 and +1. Instead the minimum value will be somewhere between -1 and 0
depending on the number and distribution of ground true labels. The maximum
value is always +1.
Here is a small example illustrating the usage of the :func:`matthews_corrcoef`
function:
>>> from sklearn.metrics import matthews_corrcoef
>>> y_true = [+1, +1, +1, -1]
>>> y_pred = [+1, -1, +1, +1]
>>> matthews_corrcoef(y_true, y_pred)
-0.33...
.. _multilabel_confusion_matrix:
Multi-label confusion matrix
----------------------------
The :func:`multilabel_confusion_matrix` function computes class-wise (default)
or sample-wise (samplewise=True) multilabel confusion matrix to evaluate
the accuracy of a classification. multilabel_confusion_matrix also treats
multiclass data as if it were multilabel, as this is a transformation commonly
applied to evaluate multiclass problems with binary classification metrics
(such as precision, recall, etc.).
When calculating class-wise multilabel confusion matrix :math:`C`, the
count of true negatives for class :math:`i` is :math:`C_{i,0,0}`, false
negatives is :math:`C_{i,1,0}`, true positives is :math:`C_{i,1,1}`
and false positives is :math:`C_{i,0,1}`.
Here is an example demonstrating the use of the
:func:`multilabel_confusion_matrix` function with
:term:`multilabel indicator matrix` input::
>>> import numpy as np
>>> from sklearn.metrics import multilabel_confusion_matrix
>>> y_true = np.array([[1, 0, 1],
... [0, 1, 0]])
>>> y_pred = np.array([[1, 0, 0],
... [0, 1, 1]])
>>> multilabel_confusion_matrix(y_true, y_pred)
array([[[1, 0],
[0, 1]],
<BLANKLINE>
[[1, 0],
[0, 1]],
<BLANKLINE>
[[0, 1],
[1, 0]]])
Or a confusion matrix can be constructed for each sample's labels:
>>> multilabel_confusion_matrix(y_true, y_pred, samplewise=True)
array([[[1, 0],
[1, 1]],
<BLANKLINE>
[[1, 1],
[0, 1]]])
Here is an example demonstrating the use of the
:func:`multilabel_confusion_matrix` function with
:term:`multiclass` input::
>>> y_true = ["cat", "ant", "cat", "cat", "ant", "bird"]
>>> y_pred = ["ant", "ant", "cat", "cat", "ant", "cat"]
>>> multilabel_confusion_matrix(y_true, y_pred,
... labels=["ant", "bird", "cat"])
array([[[3, 1],
[0, 2]],
<BLANKLINE>
[[5, 0],
[1, 0]],
<BLANKLINE>
[[2, 1],
[1, 2]]])
Here are some examples demonstrating the use of the
:func:`multilabel_confusion_matrix` function to calculate recall
(or sensitivity), specificity, fall out and miss rate for each class in a
problem with multilabel indicator matrix input.
Calculating
`recall <https://en.wikipedia.org/wiki/Sensitivity_and_specificity>`__
(also called the true positive rate or the sensitivity) for each class::
>>> y_true = np.array([[0, 0, 1],
... [0, 1, 0],
... [1, 1, 0]])
>>> y_pred = np.array([[0, 1, 0],
... [0, 0, 1],
... [1, 1, 0]])
>>> mcm = multilabel_confusion_matrix(y_true, y_pred)
>>> tn = mcm[:, 0, 0]
>>> tp = mcm[:, 1, 1]
>>> fn = mcm[:, 1, 0]
>>> fp = mcm[:, 0, 1]
>>> tp / (tp + fn)
array([1. , 0.5, 0. ])
Calculating
`specificity <https://en.wikipedia.org/wiki/Sensitivity_and_specificity>`__
(also called the true negative rate) for each class::
>>> tn / (tn + fp)
array([1. , 0. , 0.5])
Calculating `fall out <https://en.wikipedia.org/wiki/False_positive_rate>`__
(also called the false positive rate) for each class::
>>> fp / (fp + tn)
array([0. , 1. , 0.5])
Calculating `miss rate
<https://en.wikipedia.org/wiki/False_positives_and_false_negatives>`__
(also called the false negative rate) for each class::
>>> fn / (fn + tp)
array([0. , 0.5, 1. ])
.. _roc_metrics:
Receiver operating characteristic (ROC)
---------------------------------------
The function :func:`roc_curve` computes the
`receiver operating characteristic curve, or ROC curve <https://en.wikipedia.org/wiki/Receiver_operating_characteristic>`_.
Quoting Wikipedia :
"A receiver operating characteristic (ROC), or simply ROC curve, is a
graphical plot which illustrates the performance of a binary classifier
system as its discrimination threshold is varied. It is created by plotting
the fraction of true positives out of the positives (TPR = true positive
rate) vs. the fraction of false positives out of the negatives (FPR = false
positive rate), at various threshold settings. TPR is also known as
sensitivity, and FPR is one minus the specificity or true negative rate."
This function requires the true binary value and the target scores, which can
either be probability estimates of the positive class, confidence values, or
binary decisions. Here is a small example of how to use the :func:`roc_curve`
function::
>>> import numpy as np
>>> from sklearn.metrics import roc_curve
>>> y = np.array([1, 1, 2, 2])
>>> scores = np.array([0.1, 0.4, 0.35, 0.8])
>>> fpr, tpr, thresholds = roc_curve(y, scores, pos_label=2)
>>> fpr
array([0. , 0. , 0.5, 0.5, 1. ])
>>> tpr
array([0. , 0.5, 0.5, 1. , 1. ])
>>> thresholds
array([ inf, 0.8 , 0.4 , 0.35, 0.1 ])
Compared to metrics such as the subset accuracy, the Hamming loss, or the
F1 score, ROC doesn't require optimizing a threshold for each label.
The :func:`roc_auc_score` function, denoted by ROC-AUC or AUROC, computes the
area under the ROC curve. By doing so, the curve information is summarized in
one number.
The following figure shows the ROC curve and ROC-AUC score for a classifier
aimed to distinguish the virginica flower from the rest of the species in the
:ref:`iris_dataset`:
.. image:: ../auto_examples/model_selection/images/sphx_glr_plot_roc_001.png
:target: ../auto_examples/model_selection/plot_roc.html
:scale: 75
:align: center
For more information see the `Wikipedia article on AUC
<https://en.wikipedia.org/wiki/Receiver_operating_characteristic#Area_under_the_curve>`_.
.. _roc_auc_binary:
Binary case
^^^^^^^^^^^
In the **binary case**, you can either provide the probability estimates, using
the `classifier.predict_proba()` method, or the non-thresholded decision values
given by the `classifier.decision_function()` method. In the case of providing
the probability estimates, the probability of the class with the
"greater label" should be provided. The "greater label" corresponds to
`classifier.classes_[1]` and thus `classifier.predict_proba(X)[:, 1]`.
Therefore, the `y_score` parameter is of size (n_samples,).
>>> from sklearn.datasets import load_breast_cancer
>>> from sklearn.linear_model import LogisticRegression
>>> from sklearn.metrics import roc_auc_score
>>> X, y = load_breast_cancer(return_X_y=True)
>>> clf = LogisticRegression(solver="liblinear").fit(X, y)
>>> clf.classes_
array([0, 1])
We can use the probability estimates corresponding to `clf.classes_[1]`.
>>> y_score = clf.predict_proba(X)[:, 1]
>>> roc_auc_score(y, y_score)
0.99...
Otherwise, we can use the non-thresholded decision values
>>> roc_auc_score(y, clf.decision_function(X))
0.99...
.. _roc_auc_multiclass:
Multi-class case
^^^^^^^^^^^^^^^^
The :func:`roc_auc_score` function can also be used in **multi-class
classification**. Two averaging strategies are currently supported: the
one-vs-one algorithm computes the average of the pairwise ROC AUC scores, and
the one-vs-rest algorithm computes the average of the ROC AUC scores for each
class against all other classes. In both cases, the predicted labels are
provided in an array with values from 0 to ``n_classes``, and the scores
correspond to the probability estimates that a sample belongs to a particular
class. The OvO and OvR algorithms support weighting uniformly
(``average='macro'``) and by prevalence (``average='weighted'``).
**One-vs-one Algorithm**: Computes the average AUC of all possible pairwise
combinations of classes. [HT2001]_ defines a multiclass AUC metric weighted
uniformly:
.. math::
\frac{1}{c(c-1)}\sum_{j=1}^{c}\sum_{k > j}^c (\text{AUC}(j | k) +
\text{AUC}(k | j))
where :math:`c` is the number of classes and :math:`\text{AUC}(j | k)` is the
AUC with class :math:`j` as the positive class and class :math:`k` as the
negative class. In general,
:math:`\text{AUC}(j | k) \neq \text{AUC}(k | j))` in the multiclass
case. This algorithm is used by setting the keyword argument ``multiclass``
to ``'ovo'`` and ``average`` to ``'macro'``.
The [HT2001]_ multiclass AUC metric can be extended to be weighted by the
prevalence:
.. math::
\frac{1}{c(c-1)}\sum_{j=1}^{c}\sum_{k > j}^c p(j \cup k)(
\text{AUC}(j | k) + \text{AUC}(k | j))
where :math:`c` is the number of classes. This algorithm is used by setting
the keyword argument ``multiclass`` to ``'ovo'`` and ``average`` to
``'weighted'``. The ``'weighted'`` option returns a prevalence-weighted average
as described in [FC2009]_.
**One-vs-rest Algorithm**: Computes the AUC of each class against the rest
[PD2000]_. The algorithm is functionally the same as the multilabel case. To
enable this algorithm set the keyword argument ``multiclass`` to ``'ovr'``.
Additionally to ``'macro'`` [F2006]_ and ``'weighted'`` [F2001]_ averaging, OvR
supports ``'micro'`` averaging.
In applications where a high false positive rate is not tolerable the parameter
``max_fpr`` of :func:`roc_auc_score` can be used to summarize the ROC curve up
to the given limit.
The following figure shows the micro-averaged ROC curve and its corresponding
ROC-AUC score for a classifier aimed to distinguish the different species in
the :ref:`iris_dataset`:
.. image:: ../auto_examples/model_selection/images/sphx_glr_plot_roc_002.png
:target: ../auto_examples/model_selection/plot_roc.html
:scale: 75
:align: center
.. _roc_auc_multilabel:
Multi-label case
^^^^^^^^^^^^^^^^
In **multi-label classification**, the :func:`roc_auc_score` function is
extended by averaging over the labels as :ref:`above <average>`. In this case,
you should provide a `y_score` of shape `(n_samples, n_classes)`. Thus, when
using the probability estimates, one needs to select the probability of the
class with the greater label for each output.
>>> from sklearn.datasets import make_multilabel_classification
>>> from sklearn.multioutput import MultiOutputClassifier
>>> X, y = make_multilabel_classification(random_state=0)
>>> inner_clf = LogisticRegression(solver="liblinear", random_state=0)
>>> clf = MultiOutputClassifier(inner_clf).fit(X, y)
>>> y_score = np.transpose([y_pred[:, 1] for y_pred in clf.predict_proba(X)])
>>> roc_auc_score(y, y_score, average=None)
array([0.82..., 0.86..., 0.94..., 0.85... , 0.94...])
And the decision values do not require such processing.
>>> from sklearn.linear_model import RidgeClassifierCV
>>> clf = RidgeClassifierCV().fit(X, y)
>>> y_score = clf.decision_function(X)
>>> roc_auc_score(y, y_score, average=None)
array([0.81..., 0.84... , 0.93..., 0.87..., 0.94...])
.. topic:: Examples:
* See :ref:`sphx_glr_auto_examples_model_selection_plot_roc.py`
for an example of using ROC to
evaluate the quality of the output of a classifier.
* See :ref:`sphx_glr_auto_examples_model_selection_plot_roc_crossval.py`
for an example of using ROC to
evaluate classifier output quality, using cross-validation.
* See :ref:`sphx_glr_auto_examples_applications_plot_species_distribution_modeling.py`
for an example of using ROC to
model species distribution.
.. topic:: References:
.. [HT2001] Hand, D.J. and Till, R.J., (2001). `A simple generalisation
of the area under the ROC curve for multiple class classification problems.
<http://link.springer.com/article/10.1023/A:1010920819831>`_
Machine learning, 45(2), pp. 171-186.
.. [FC2009] Ferri, Cèsar & Hernandez-Orallo, Jose & Modroiu, R. (2009).
`An Experimental Comparison of Performance Measures for Classification.
<https://www.math.ucdavis.edu/~saito/data/roc/ferri-class-perf-metrics.pdf>`_
Pattern Recognition Letters. 30. 27-38.
.. [PD2000] Provost, F., Domingos, P. (2000). `Well-trained PETs: Improving
probability estimation trees
<https://fosterprovost.com/publication/well-trained-pets-improving-probability-estimation-trees/>`_
(Section 6.2), CeDER Working Paper #IS-00-04, Stern School of Business,
New York University.
.. [F2006] Fawcett, T., 2006. `An introduction to ROC analysis.
<http://www.sciencedirect.com/science/article/pii/S016786550500303X>`_
Pattern Recognition Letters, 27(8), pp. 861-874.
.. [F2001] Fawcett, T., 2001. `Using rule sets to maximize
ROC performance <https://ieeexplore.ieee.org/document/989510/>`_
In Data Mining, 2001.
Proceedings IEEE International Conference, pp. 131-138.
.. _det_curve:
Detection error tradeoff (DET)
------------------------------
The function :func:`det_curve` computes the
detection error tradeoff curve (DET) curve [WikipediaDET2017]_.
Quoting Wikipedia:
"A detection error tradeoff (DET) graph is a graphical plot of error rates
for binary classification systems, plotting false reject rate vs. false
accept rate. The x- and y-axes are scaled non-linearly by their standard
normal deviates (or just by logarithmic transformation), yielding tradeoff
curves that are more linear than ROC curves, and use most of the image area
to highlight the differences of importance in the critical operating region."
DET curves are a variation of receiver operating characteristic (ROC) curves
where False Negative Rate is plotted on the y-axis instead of True Positive
Rate.
DET curves are commonly plotted in normal deviate scale by transformation with
:math:`\phi^{-1}` (with :math:`\phi` being the cumulative distribution
function).
The resulting performance curves explicitly visualize the tradeoff of error
types for given classification algorithms.
See [Martin1997]_ for examples and further motivation.
This figure compares the ROC and DET curves of two example classifiers on the
same classification task:
.. image:: ../auto_examples/model_selection/images/sphx_glr_plot_det_001.png
:target: ../auto_examples/model_selection/plot_det.html
:scale: 75
:align: center
**Properties:**
* DET curves form a linear curve in normal deviate scale if the detection
scores are normally (or close-to normally) distributed.
It was shown by [Navratil2007]_ that the reverse is not necessarily true and
even more general distributions are able to produce linear DET curves.
* The normal deviate scale transformation spreads out the points such that a
comparatively larger space of plot is occupied.
Therefore curves with similar classification performance might be easier to
distinguish on a DET plot.
* With False Negative Rate being "inverse" to True Positive Rate the point
of perfection for DET curves is the origin (in contrast to the top left
corner for ROC curves).
**Applications and limitations:**
DET curves are intuitive to read and hence allow quick visual assessment of a
classifier's performance.
Additionally DET curves can be consulted for threshold analysis and operating
point selection.
This is particularly helpful if a comparison of error types is required.
On the other hand DET curves do not provide their metric as a single number.
Therefore for either automated evaluation or comparison to other
classification tasks metrics like the derived area under ROC curve might be
better suited.
.. topic:: Examples:
* See :ref:`sphx_glr_auto_examples_model_selection_plot_det.py`
for an example comparison between receiver operating characteristic (ROC)
curves and Detection error tradeoff (DET) curves.
.. topic:: References:
.. [WikipediaDET2017] Wikipedia contributors. Detection error tradeoff.
Wikipedia, The Free Encyclopedia. September 4, 2017, 23:33 UTC.
Available at: https://en.wikipedia.org/w/index.php?title=Detection_error_tradeoff&oldid=798982054.
Accessed February 19, 2018.
.. [Martin1997] A. Martin, G. Doddington, T. Kamm, M. Ordowski, and M. Przybocki,
`The DET Curve in Assessment of Detection Task Performance
<https://ccc.inaoep.mx/~villasen/bib/martin97det.pdf>`_,
NIST 1997.
.. [Navratil2007] J. Navractil and D. Klusacek,
"`On Linear DETs,
<https://ieeexplore.ieee.org/document/4218079>`_"
2007 IEEE International Conference on Acoustics,
Speech and Signal Processing - ICASSP '07, Honolulu,
HI, 2007, pp. IV-229-IV-232.
.. _zero_one_loss:
Zero one loss
--------------
The :func:`zero_one_loss` function computes the sum or the average of the 0-1
classification loss (:math:`L_{0-1}`) over :math:`n_{\text{samples}}`. By
default, the function normalizes over the sample. To get the sum of the
:math:`L_{0-1}`, set ``normalize`` to ``False``.
In multilabel classification, the :func:`zero_one_loss` scores a subset as
one if its labels strictly match the predictions, and as a zero if there
are any errors. By default, the function returns the percentage of imperfectly
predicted subsets. To get the count of such subsets instead, set
``normalize`` to ``False``
If :math:`\hat{y}_i` is the predicted value of
the :math:`i`-th sample and :math:`y_i` is the corresponding true value,
then the 0-1 loss :math:`L_{0-1}` is defined as:
.. math::
L_{0-1}(y, \hat{y}) = \frac{1}{n_\text{samples}} \sum_{i=0}^{n_\text{samples}-1} 1(\hat{y}_i \not= y_i)
where :math:`1(x)` is the `indicator function
<https://en.wikipedia.org/wiki/Indicator_function>`_. The zero one
loss can also be computed as :math:`zero-one loss = 1 - accuracy`.
>>> from sklearn.metrics import zero_one_loss
>>> y_pred = [1, 2, 3, 4]
>>> y_true = [2, 2, 3, 4]
>>> zero_one_loss(y_true, y_pred)
0.25
>>> zero_one_loss(y_true, y_pred, normalize=False)
1.0
In the multilabel case with binary label indicators, where the first label
set [0,1] has an error::
>>> zero_one_loss(np.array([[0, 1], [1, 1]]), np.ones((2, 2)))
0.5
>>> zero_one_loss(np.array([[0, 1], [1, 1]]), np.ones((2, 2)), normalize=False)
1.0
.. topic:: Example:
* See :ref:`sphx_glr_auto_examples_feature_selection_plot_rfe_with_cross_validation.py`
for an example of zero one loss usage to perform recursive feature
elimination with cross-validation.
.. _brier_score_loss:
Brier score loss
----------------
The :func:`brier_score_loss` function computes the
`Brier score <https://en.wikipedia.org/wiki/Brier_score>`_
for binary classes [Brier1950]_. Quoting Wikipedia:
"The Brier score is a proper score function that measures the accuracy of
probabilistic predictions. It is applicable to tasks in which predictions
must assign probabilities to a set of mutually exclusive discrete outcomes."
This function returns the mean squared error of the actual outcome
:math:`y \in \{0,1\}` and the predicted probability estimate
:math:`p = \operatorname{Pr}(y = 1)` (:term:`predict_proba`) as outputted by:
.. math::
BS = \frac{1}{n_{\text{samples}}} \sum_{i=0}^{n_{\text{samples}} - 1}(y_i - p_i)^2
The Brier score loss is also between 0 to 1 and the lower the value (the mean
square difference is smaller), the more accurate the prediction is.
Here is a small example of usage of this function::
>>> import numpy as np
>>> from sklearn.metrics import brier_score_loss
>>> y_true = np.array([0, 1, 1, 0])
>>> y_true_categorical = np.array(["spam", "ham", "ham", "spam"])
>>> y_prob = np.array([0.1, 0.9, 0.8, 0.4])
>>> y_pred = np.array([0, 1, 1, 0])
>>> brier_score_loss(y_true, y_prob)
0.055
>>> brier_score_loss(y_true, 1 - y_prob, pos_label=0)
0.055
>>> brier_score_loss(y_true_categorical, y_prob, pos_label="ham")
0.055
>>> brier_score_loss(y_true, y_prob > 0.5)
0.0
The Brier score can be used to assess how well a classifier is calibrated.
However, a lower Brier score loss does not always mean a better calibration.
This is because, by analogy with the bias-variance decomposition of the mean
squared error, the Brier score loss can be decomposed as the sum of calibration
loss and refinement loss [Bella2012]_. Calibration loss is defined as the mean
squared deviation from empirical probabilities derived from the slope of ROC
segments. Refinement loss can be defined as the expected optimal loss as
measured by the area under the optimal cost curve. Refinement loss can change
independently from calibration loss, thus a lower Brier score loss does not
necessarily mean a better calibrated model. "Only when refinement loss remains
the same does a lower Brier score loss always mean better calibration"
[Bella2012]_, [Flach2008]_.
.. topic:: Example:
* See :ref:`sphx_glr_auto_examples_calibration_plot_calibration.py`
for an example of Brier score loss usage to perform probability
calibration of classifiers.
.. topic:: References:
.. [Brier1950] G. Brier, `Verification of forecasts expressed in terms of
probability
<ftp://ftp.library.noaa.gov/docs.lib/htdocs/rescue/mwr/078/mwr-078-01-0001.pdf>`_,
Monthly weather review 78.1 (1950)
.. [Bella2012] Bella, Ferri, Hernández-Orallo, and Ramírez-Quintana
`"Calibration of Machine Learning Models"
<http://dmip.webs.upv.es/papers/BFHRHandbook2010.pdf>`_
in Khosrow-Pour, M. "Machine learning: concepts, methodologies, tools
and applications." Hershey, PA: Information Science Reference (2012).
.. [Flach2008] Flach, Peter, and Edson Matsubara. `"On classification, ranking,
and probability estimation." <https://drops.dagstuhl.de/opus/volltexte/2008/1382/>`_
Dagstuhl Seminar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum fr Informatik (2008).
.. _class_likelihood_ratios:
Class likelihood ratios
-----------------------
The :func:`class_likelihood_ratios` function computes the `positive and negative
likelihood ratios
<https://en.wikipedia.org/wiki/Likelihood_ratios_in_diagnostic_testing>`_
:math:`LR_\pm` for binary classes, which can be interpreted as the ratio of
post-test to pre-test odds as explained below. As a consequence, this metric is
invariant w.r.t. the class prevalence (the number of samples in the positive
class divided by the total number of samples) and **can be extrapolated between
populations regardless of any possible class imbalance.**
The :math:`LR_\pm` metrics are therefore very useful in settings where the data
available to learn and evaluate a classifier is a study population with nearly
balanced classes, such as a case-control study, while the target application,
i.e. the general population, has very low prevalence.
The positive likelihood ratio :math:`LR_+` is the probability of a classifier to
correctly predict that a sample belongs to the positive class divided by the
probability of predicting the positive class for a sample belonging to the
negative class:
.. math::
LR_+ = \frac{\text{PR}(P+|T+)}{\text{PR}(P+|T-)}.
The notation here refers to predicted (:math:`P`) or true (:math:`T`) label and
the sign :math:`+` and :math:`-` refer to the positive and negative class,
respectively, e.g. :math:`P+` stands for "predicted positive".
Analogously, the negative likelihood ratio :math:`LR_-` is the probability of a
sample of the positive class being classified as belonging to the negative class
divided by the probability of a sample of the negative class being correctly
classified:
.. math::
LR_- = \frac{\text{PR}(P-|T+)}{\text{PR}(P-|T-)}.
For classifiers above chance :math:`LR_+` above 1 **higher is better**, while
:math:`LR_-` ranges from 0 to 1 and **lower is better**.
Values of :math:`LR_\pm\approx 1` correspond to chance level.
Notice that probabilities differ from counts, for instance
:math:`\operatorname{PR}(P+|T+)` is not equal to the number of true positive
counts ``tp`` (see `the wikipedia page
<https://en.wikipedia.org/wiki/Likelihood_ratios_in_diagnostic_testing>`_ for
the actual formulas).
**Interpretation across varying prevalence:**
Both class likelihood ratios are interpretable in terms of an odds ratio
(pre-test and post-tests):
.. math::
\text{post-test odds} = \text{Likelihood ratio} \times \text{pre-test odds}.
Odds are in general related to probabilities via
.. math::
\text{odds} = \frac{\text{probability}}{1 - \text{probability}},
or equivalently
.. math::
\text{probability} = \frac{\text{odds}}{1 + \text{odds}}.
On a given population, the pre-test probability is given by the prevalence. By
converting odds to probabilities, the likelihood ratios can be translated into a
probability of truly belonging to either class before and after a classifier
prediction:
.. math::
\text{post-test odds} = \text{Likelihood ratio} \times
\frac{\text{pre-test probability}}{1 - \text{pre-test probability}},
.. math::
\text{post-test probability} = \frac{\text{post-test odds}}{1 + \text{post-test odds}}.
**Mathematical divergences:**
The positive likelihood ratio is undefined when :math:`fp = 0`, which can be
interpreted as the classifier perfectly identifying positive cases. If :math:`fp
= 0` and additionally :math:`tp = 0`, this leads to a zero/zero division. This
happens, for instance, when using a `DummyClassifier` that always predicts the
negative class and therefore the interpretation as a perfect classifier is lost.
The negative likelihood ratio is undefined when :math:`tn = 0`. Such divergence
is invalid, as :math:`LR_- > 1` would indicate an increase in the odds of a
sample belonging to the positive class after being classified as negative, as if
the act of classifying caused the positive condition. This includes the case of
a `DummyClassifier` that always predicts the positive class (i.e. when
:math:`tn=fn=0`).
Both class likelihood ratios are undefined when :math:`tp=fn=0`, which means
that no samples of the positive class were present in the testing set. This can
also happen when cross-validating highly imbalanced data.
In all the previous cases the :func:`class_likelihood_ratios` function raises by
default an appropriate warning message and returns `nan` to avoid pollution when
averaging over cross-validation folds.
For a worked-out demonstration of the :func:`class_likelihood_ratios` function,
see the example below.
.. topic:: Examples:
* :ref:`sphx_glr_auto_examples_model_selection_plot_likelihood_ratios.py`
.. topic:: References:
* `Wikipedia entry for Likelihood ratios in diagnostic testing
<https://en.wikipedia.org/wiki/Likelihood_ratios_in_diagnostic_testing>`_
* Brenner, H., & Gefeller, O. (1997).
Variation of sensitivity, specificity, likelihood ratios and predictive
values with disease prevalence.
Statistics in medicine, 16(9), 981-991.
.. _multilabel_ranking_metrics:
Multilabel ranking metrics
==========================
.. currentmodule:: sklearn.metrics
In multilabel learning, each sample can have any number of ground truth labels
associated with it. The goal is to give high scores and better rank to
the ground truth labels.
.. _coverage_error:
Coverage error
--------------
The :func:`coverage_error` function computes the average number of labels that
have to be included in the final prediction such that all true labels
are predicted. This is useful if you want to know how many top-scored-labels
you have to predict in average without missing any true one. The best value
of this metrics is thus the average number of true labels.
.. note::
Our implementation's score is 1 greater than the one given in Tsoumakas
et al., 2010. This extends it to handle the degenerate case in which an
instance has 0 true labels.
Formally, given a binary indicator matrix of the ground truth labels
:math:`y \in \left\{0, 1\right\}^{n_\text{samples} \times n_\text{labels}}` and the
score associated with each label
:math:`\hat{f} \in \mathbb{R}^{n_\text{samples} \times n_\text{labels}}`,
the coverage is defined as
.. math::
coverage(y, \hat{f}) = \frac{1}{n_{\text{samples}}}
\sum_{i=0}^{n_{\text{samples}} - 1} \max_{j:y_{ij} = 1} \text{rank}_{ij}
with :math:`\text{rank}_{ij} = \left|\left\{k: \hat{f}_{ik} \geq \hat{f}_{ij} \right\}\right|`.
Given the rank definition, ties in ``y_scores`` are broken by giving the
maximal rank that would have been assigned to all tied values.
Here is a small example of usage of this function::
>>> import numpy as np
>>> from sklearn.metrics import coverage_error
>>> y_true = np.array([[1, 0, 0], [0, 0, 1]])
>>> y_score = np.array([[0.75, 0.5, 1], [1, 0.2, 0.1]])
>>> coverage_error(y_true, y_score)
2.5
.. _label_ranking_average_precision:
Label ranking average precision
-------------------------------
The :func:`label_ranking_average_precision_score` function
implements label ranking average precision (LRAP). This metric is linked to
the :func:`average_precision_score` function, but is based on the notion of
label ranking instead of precision and recall.
Label ranking average precision (LRAP) averages over the samples the answer to
the following question: for each ground truth label, what fraction of
higher-ranked labels were true labels? This performance measure will be higher
if you are able to give better rank to the labels associated with each sample.
The obtained score is always strictly greater than 0, and the best value is 1.
If there is exactly one relevant label per sample, label ranking average
precision is equivalent to the `mean
reciprocal rank <https://en.wikipedia.org/wiki/Mean_reciprocal_rank>`_.
Formally, given a binary indicator matrix of the ground truth labels
:math:`y \in \left\{0, 1\right\}^{n_\text{samples} \times n_\text{labels}}`
and the score associated with each label
:math:`\hat{f} \in \mathbb{R}^{n_\text{samples} \times n_\text{labels}}`,
the average precision is defined as
.. math::
LRAP(y, \hat{f}) = \frac{1}{n_{\text{samples}}}
\sum_{i=0}^{n_{\text{samples}} - 1} \frac{1}{||y_i||_0}
\sum_{j:y_{ij} = 1} \frac{|\mathcal{L}_{ij}|}{\text{rank}_{ij}}
where
:math:`\mathcal{L}_{ij} = \left\{k: y_{ik} = 1, \hat{f}_{ik} \geq \hat{f}_{ij} \right\}`,
:math:`\text{rank}_{ij} = \left|\left\{k: \hat{f}_{ik} \geq \hat{f}_{ij} \right\}\right|`,
:math:`|\cdot|` computes the cardinality of the set (i.e., the number of
elements in the set), and :math:`||\cdot||_0` is the :math:`\ell_0` "norm"
(which computes the number of nonzero elements in a vector).
Here is a small example of usage of this function::
>>> import numpy as np
>>> from sklearn.metrics import label_ranking_average_precision_score
>>> y_true = np.array([[1, 0, 0], [0, 0, 1]])
>>> y_score = np.array([[0.75, 0.5, 1], [1, 0.2, 0.1]])
>>> label_ranking_average_precision_score(y_true, y_score)
0.416...
.. _label_ranking_loss:
Ranking loss
------------
The :func:`label_ranking_loss` function computes the ranking loss which
averages over the samples the number of label pairs that are incorrectly
ordered, i.e. true labels have a lower score than false labels, weighted by
the inverse of the number of ordered pairs of false and true labels.
The lowest achievable ranking loss is zero.
Formally, given a binary indicator matrix of the ground truth labels
:math:`y \in \left\{0, 1\right\}^{n_\text{samples} \times n_\text{labels}}` and the
score associated with each label
:math:`\hat{f} \in \mathbb{R}^{n_\text{samples} \times n_\text{labels}}`,
the ranking loss is defined as
.. math::
ranking\_loss(y, \hat{f}) = \frac{1}{n_{\text{samples}}}
\sum_{i=0}^{n_{\text{samples}} - 1} \frac{1}{||y_i||_0(n_\text{labels} - ||y_i||_0)}
\left|\left\{(k, l): \hat{f}_{ik} \leq \hat{f}_{il}, y_{ik} = 1, y_{il} = 0 \right\}\right|
where :math:`|\cdot|` computes the cardinality of the set (i.e., the number of
elements in the set) and :math:`||\cdot||_0` is the :math:`\ell_0` "norm"
(which computes the number of nonzero elements in a vector).
Here is a small example of usage of this function::
>>> import numpy as np
>>> from sklearn.metrics import label_ranking_loss
>>> y_true = np.array([[1, 0, 0], [0, 0, 1]])
>>> y_score = np.array([[0.75, 0.5, 1], [1, 0.2, 0.1]])
>>> label_ranking_loss(y_true, y_score)
0.75...
>>> # With the following prediction, we have perfect and minimal loss
>>> y_score = np.array([[1.0, 0.1, 0.2], [0.1, 0.2, 0.9]])
>>> label_ranking_loss(y_true, y_score)
0.0
.. topic:: References:
* Tsoumakas, G., Katakis, I., & Vlahavas, I. (2010). Mining multi-label data. In
Data mining and knowledge discovery handbook (pp. 667-685). Springer US.
.. _ndcg:
Normalized Discounted Cumulative Gain
-------------------------------------
Discounted Cumulative Gain (DCG) and Normalized Discounted Cumulative Gain
(NDCG) are ranking metrics implemented in :func:`~sklearn.metrics.dcg_score`
and :func:`~sklearn.metrics.ndcg_score` ; they compare a predicted order to
ground-truth scores, such as the relevance of answers to a query.
From the Wikipedia page for Discounted Cumulative Gain:
"Discounted cumulative gain (DCG) is a measure of ranking quality. In
information retrieval, it is often used to measure effectiveness of web search
engine algorithms or related applications. Using a graded relevance scale of
documents in a search-engine result set, DCG measures the usefulness, or gain,
of a document based on its position in the result list. The gain is accumulated
from the top of the result list to the bottom, with the gain of each result
discounted at lower ranks"
DCG orders the true targets (e.g. relevance of query answers) in the predicted
order, then multiplies them by a logarithmic decay and sums the result. The sum
can be truncated after the first :math:`K` results, in which case we call it
DCG@K.
NDCG, or NDCG@K is DCG divided by the DCG obtained by a perfect prediction, so
that it is always between 0 and 1. Usually, NDCG is preferred to DCG.
Compared with the ranking loss, NDCG can take into account relevance scores,
rather than a ground-truth ranking. So if the ground-truth consists only of an
ordering, the ranking loss should be preferred; if the ground-truth consists of
actual usefulness scores (e.g. 0 for irrelevant, 1 for relevant, 2 for very
relevant), NDCG can be used.
For one sample, given the vector of continuous ground-truth values for each
target :math:`y \in \mathbb{R}^{M}`, where :math:`M` is the number of outputs, and
the prediction :math:`\hat{y}`, which induces the ranking function :math:`f`, the
DCG score is
.. math::
\sum_{r=1}^{\min(K, M)}\frac{y_{f(r)}}{\log(1 + r)}
and the NDCG score is the DCG score divided by the DCG score obtained for
:math:`y`.
.. topic:: References:
* `Wikipedia entry for Discounted Cumulative Gain
<https://en.wikipedia.org/wiki/Discounted_cumulative_gain>`_
* Jarvelin, K., & Kekalainen, J. (2002).
Cumulated gain-based evaluation of IR techniques. ACM Transactions on
Information Systems (TOIS), 20(4), 422-446.
* Wang, Y., Wang, L., Li, Y., He, D., Chen, W., & Liu, T. Y. (2013, May).
A theoretical analysis of NDCG ranking measures. In Proceedings of the 26th
Annual Conference on Learning Theory (COLT 2013)
* McSherry, F., & Najork, M. (2008, March). Computing information retrieval
performance measures efficiently in the presence of tied scores. In
European conference on information retrieval (pp. 414-421). Springer,
Berlin, Heidelberg.
.. _regression_metrics:
Regression metrics
===================
.. currentmodule:: sklearn.metrics
The :mod:`sklearn.metrics` module implements several loss, score, and utility
functions to measure regression performance. Some of those have been enhanced
to handle the multioutput case: :func:`mean_squared_error`,
:func:`mean_absolute_error`, :func:`r2_score`,
:func:`explained_variance_score`, :func:`mean_pinball_loss`, :func:`d2_pinball_score`
and :func:`d2_absolute_error_score`.
These functions have a ``multioutput`` keyword argument which specifies the
way the scores or losses for each individual target should be averaged. The
default is ``'uniform_average'``, which specifies a uniformly weighted mean
over outputs. If an ``ndarray`` of shape ``(n_outputs,)`` is passed, then its
entries are interpreted as weights and an according weighted average is
returned. If ``multioutput`` is ``'raw_values'``, then all unaltered
individual scores or losses will be returned in an array of shape
``(n_outputs,)``.
The :func:`r2_score` and :func:`explained_variance_score` accept an additional
value ``'variance_weighted'`` for the ``multioutput`` parameter. This option
leads to a weighting of each individual score by the variance of the
corresponding target variable. This setting quantifies the globally captured
unscaled variance. If the target variables are of different scale, then this
score puts more importance on explaining the higher variance variables.
``multioutput='variance_weighted'`` is the default value for :func:`r2_score`
for backward compatibility. This will be changed to ``uniform_average`` in the
future.
.. _r2_score:
R² score, the coefficient of determination
-------------------------------------------
The :func:`r2_score` function computes the `coefficient of
determination <https://en.wikipedia.org/wiki/Coefficient_of_determination>`_,
usually denoted as :math:`R^2`.
It represents the proportion of variance (of y) that has been explained by the
independent variables in the model. It provides an indication of goodness of
fit and therefore a measure of how well unseen samples are likely to be
predicted by the model, through the proportion of explained variance.
As such variance is dataset dependent, :math:`R^2` may not be meaningfully comparable
across different datasets. Best possible score is 1.0 and it can be negative
(because the model can be arbitrarily worse). A constant model that always
predicts the expected (average) value of y, disregarding the input features,
would get an :math:`R^2` score of 0.0.
Note: when the prediction residuals have zero mean, the :math:`R^2` score and
the :ref:`explained_variance_score` are identical.
If :math:`\hat{y}_i` is the predicted value of the :math:`i`-th sample
and :math:`y_i` is the corresponding true value for total :math:`n` samples,
the estimated :math:`R^2` is defined as:
.. math::
R^2(y, \hat{y}) = 1 - \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{\sum_{i=1}^{n} (y_i - \bar{y})^2}
where :math:`\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i` and :math:`\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} \epsilon_i^2`.
Note that :func:`r2_score` calculates unadjusted :math:`R^2` without correcting for
bias in sample variance of y.
In the particular case where the true target is constant, the :math:`R^2` score is
not finite: it is either ``NaN`` (perfect predictions) or ``-Inf`` (imperfect
predictions). Such non-finite scores may prevent correct model optimization
such as grid-search cross-validation to be performed correctly. For this reason
the default behaviour of :func:`r2_score` is to replace them with 1.0 (perfect
predictions) or 0.0 (imperfect predictions). If ``force_finite``
is set to ``False``, this score falls back on the original :math:`R^2` definition.
Here is a small example of usage of the :func:`r2_score` function::
>>> from sklearn.metrics import r2_score
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> r2_score(y_true, y_pred)
0.948...
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> r2_score(y_true, y_pred, multioutput='variance_weighted')
0.938...
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> r2_score(y_true, y_pred, multioutput='uniform_average')
0.936...
>>> r2_score(y_true, y_pred, multioutput='raw_values')
array([0.965..., 0.908...])
>>> r2_score(y_true, y_pred, multioutput=[0.3, 0.7])
0.925...
>>> y_true = [-2, -2, -2]
>>> y_pred = [-2, -2, -2]
>>> r2_score(y_true, y_pred)
1.0
>>> r2_score(y_true, y_pred, force_finite=False)
nan
>>> y_true = [-2, -2, -2]
>>> y_pred = [-2, -2, -2 + 1e-8]
>>> r2_score(y_true, y_pred)
0.0
>>> r2_score(y_true, y_pred, force_finite=False)
-inf
.. topic:: Example:
* See :ref:`sphx_glr_auto_examples_linear_model_plot_lasso_and_elasticnet.py`
for an example of R² score usage to
evaluate Lasso and Elastic Net on sparse signals.
.. _mean_absolute_error:
Mean absolute error
-------------------
The :func:`mean_absolute_error` function computes `mean absolute
error <https://en.wikipedia.org/wiki/Mean_absolute_error>`_, a risk
metric corresponding to the expected value of the absolute error loss or
:math:`l1`-norm loss.
If :math:`\hat{y}_i` is the predicted value of the :math:`i`-th sample,
and :math:`y_i` is the corresponding true value, then the mean absolute error
(MAE) estimated over :math:`n_{\text{samples}}` is defined as
.. math::
\text{MAE}(y, \hat{y}) = \frac{1}{n_{\text{samples}}} \sum_{i=0}^{n_{\text{samples}}-1} \left| y_i - \hat{y}_i \right|.
Here is a small example of usage of the :func:`mean_absolute_error` function::
>>> from sklearn.metrics import mean_absolute_error
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> mean_absolute_error(y_true, y_pred)
0.5
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> mean_absolute_error(y_true, y_pred)
0.75
>>> mean_absolute_error(y_true, y_pred, multioutput='raw_values')
array([0.5, 1. ])
>>> mean_absolute_error(y_true, y_pred, multioutput=[0.3, 0.7])
0.85...
.. _mean_squared_error:
Mean squared error
-------------------
The :func:`mean_squared_error` function computes `mean square
error <https://en.wikipedia.org/wiki/Mean_squared_error>`_, a risk
metric corresponding to the expected value of the squared (quadratic) error or
loss.
If :math:`\hat{y}_i` is the predicted value of the :math:`i`-th sample,
and :math:`y_i` is the corresponding true value, then the mean squared error
(MSE) estimated over :math:`n_{\text{samples}}` is defined as
.. math::
\text{MSE}(y, \hat{y}) = \frac{1}{n_\text{samples}} \sum_{i=0}^{n_\text{samples} - 1} (y_i - \hat{y}_i)^2.
Here is a small example of usage of the :func:`mean_squared_error`
function::
>>> from sklearn.metrics import mean_squared_error
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> mean_squared_error(y_true, y_pred)
0.375
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> mean_squared_error(y_true, y_pred)
0.7083...
.. topic:: Examples:
* See :ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_regression.py`
for an example of mean squared error usage to
evaluate gradient boosting regression.
Taking the square root of the MSE, called the root mean squared error (RMSE), is another
common metric that provides a measure in the same units as the target variable. RSME is
available through the :func:`root_mean_squared_error` function.
.. _mean_squared_log_error:
Mean squared logarithmic error
------------------------------
The :func:`mean_squared_log_error` function computes a risk metric
corresponding to the expected value of the squared logarithmic (quadratic)
error or loss.
If :math:`\hat{y}_i` is the predicted value of the :math:`i`-th sample,
and :math:`y_i` is the corresponding true value, then the mean squared
logarithmic error (MSLE) estimated over :math:`n_{\text{samples}}` is
defined as
.. math::
\text{MSLE}(y, \hat{y}) = \frac{1}{n_\text{samples}} \sum_{i=0}^{n_\text{samples} - 1} (\log_e (1 + y_i) - \log_e (1 + \hat{y}_i) )^2.
Where :math:`\log_e (x)` means the natural logarithm of :math:`x`. This metric
is best to use when targets having exponential growth, such as population
counts, average sales of a commodity over a span of years etc. Note that this
metric penalizes an under-predicted estimate greater than an over-predicted
estimate.
Here is a small example of usage of the :func:`mean_squared_log_error`
function::
>>> from sklearn.metrics import mean_squared_log_error
>>> y_true = [3, 5, 2.5, 7]
>>> y_pred = [2.5, 5, 4, 8]
>>> mean_squared_log_error(y_true, y_pred)
0.039...
>>> y_true = [[0.5, 1], [1, 2], [7, 6]]
>>> y_pred = [[0.5, 2], [1, 2.5], [8, 8]]
>>> mean_squared_log_error(y_true, y_pred)
0.044...
The root mean squared logarithmic error (RMSLE) is available through the
:func:`root_mean_squared_log_error` function.
.. _mean_absolute_percentage_error:
Mean absolute percentage error
------------------------------
The :func:`mean_absolute_percentage_error` (MAPE), also known as mean absolute
percentage deviation (MAPD), is an evaluation metric for regression problems.
The idea of this metric is to be sensitive to relative errors. It is for example
not changed by a global scaling of the target variable.
If :math:`\hat{y}_i` is the predicted value of the :math:`i`-th sample
and :math:`y_i` is the corresponding true value, then the mean absolute percentage
error (MAPE) estimated over :math:`n_{\text{samples}}` is defined as
.. math::
\text{MAPE}(y, \hat{y}) = \frac{1}{n_{\text{samples}}} \sum_{i=0}^{n_{\text{samples}}-1} \frac{{}\left| y_i - \hat{y}_i \right|}{\max(\epsilon, \left| y_i \right|)}
where :math:`\epsilon` is an arbitrary small yet strictly positive number to
avoid undefined results when y is zero.
The :func:`mean_absolute_percentage_error` function supports multioutput.
Here is a small example of usage of the :func:`mean_absolute_percentage_error`
function::
>>> from sklearn.metrics import mean_absolute_percentage_error
>>> y_true = [1, 10, 1e6]
>>> y_pred = [0.9, 15, 1.2e6]
>>> mean_absolute_percentage_error(y_true, y_pred)
0.2666...
In above example, if we had used `mean_absolute_error`, it would have ignored
the small magnitude values and only reflected the error in prediction of highest
magnitude value. But that problem is resolved in case of MAPE because it calculates
relative percentage error with respect to actual output.
.. _median_absolute_error:
Median absolute error
---------------------
The :func:`median_absolute_error` is particularly interesting because it is
robust to outliers. The loss is calculated by taking the median of all absolute
differences between the target and the prediction.
If :math:`\hat{y}_i` is the predicted value of the :math:`i`-th sample
and :math:`y_i` is the corresponding true value, then the median absolute error
(MedAE) estimated over :math:`n_{\text{samples}}` is defined as
.. math::
\text{MedAE}(y, \hat{y}) = \text{median}(\mid y_1 - \hat{y}_1 \mid, \ldots, \mid y_n - \hat{y}_n \mid).
The :func:`median_absolute_error` does not support multioutput.
Here is a small example of usage of the :func:`median_absolute_error`
function::
>>> from sklearn.metrics import median_absolute_error
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> median_absolute_error(y_true, y_pred)
0.5
.. _max_error:
Max error
-------------------
The :func:`max_error` function computes the maximum `residual error
<https://en.wikipedia.org/wiki/Errors_and_residuals>`_ , a metric
that captures the worst case error between the predicted value and
the true value. In a perfectly fitted single output regression
model, ``max_error`` would be ``0`` on the training set and though this
would be highly unlikely in the real world, this metric shows the
extent of error that the model had when it was fitted.
If :math:`\hat{y}_i` is the predicted value of the :math:`i`-th sample,
and :math:`y_i` is the corresponding true value, then the max error is
defined as
.. math::
\text{Max Error}(y, \hat{y}) = \max(| y_i - \hat{y}_i |)
Here is a small example of usage of the :func:`max_error` function::
>>> from sklearn.metrics import max_error
>>> y_true = [3, 2, 7, 1]
>>> y_pred = [9, 2, 7, 1]
>>> max_error(y_true, y_pred)
6
The :func:`max_error` does not support multioutput.
.. _explained_variance_score:
Explained variance score
-------------------------
The :func:`explained_variance_score` computes the `explained variance
regression score <https://en.wikipedia.org/wiki/Explained_variation>`_.
If :math:`\hat{y}` is the estimated target output, :math:`y` the corresponding
(correct) target output, and :math:`Var` is `Variance
<https://en.wikipedia.org/wiki/Variance>`_, the square of the standard deviation,
then the explained variance is estimated as follow:
.. math::
explained\_{}variance(y, \hat{y}) = 1 - \frac{Var\{ y - \hat{y}\}}{Var\{y\}}
The best possible score is 1.0, lower values are worse.
.. topic:: Link to :ref:`r2_score`
The difference between the explained variance score and the :ref:`r2_score`
is that when the explained variance score does not account for
systematic offset in the prediction. For this reason, the
:ref:`r2_score` should be preferred in general.
In the particular case where the true target is constant, the Explained
Variance score is not finite: it is either ``NaN`` (perfect predictions) or
``-Inf`` (imperfect predictions). Such non-finite scores may prevent correct
model optimization such as grid-search cross-validation to be performed
correctly. For this reason the default behaviour of
:func:`explained_variance_score` is to replace them with 1.0 (perfect
predictions) or 0.0 (imperfect predictions). You can set the ``force_finite``
parameter to ``False`` to prevent this fix from happening and fallback on the
original Explained Variance score.
Here is a small example of usage of the :func:`explained_variance_score`
function::
>>> from sklearn.metrics import explained_variance_score
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> explained_variance_score(y_true, y_pred)
0.957...
>>> y_true = [[0.5, 1], [-1, 1], [7, -6]]
>>> y_pred = [[0, 2], [-1, 2], [8, -5]]
>>> explained_variance_score(y_true, y_pred, multioutput='raw_values')
array([0.967..., 1. ])
>>> explained_variance_score(y_true, y_pred, multioutput=[0.3, 0.7])
0.990...
>>> y_true = [-2, -2, -2]
>>> y_pred = [-2, -2, -2]
>>> explained_variance_score(y_true, y_pred)
1.0
>>> explained_variance_score(y_true, y_pred, force_finite=False)
nan
>>> y_true = [-2, -2, -2]
>>> y_pred = [-2, -2, -2 + 1e-8]
>>> explained_variance_score(y_true, y_pred)
0.0
>>> explained_variance_score(y_true, y_pred, force_finite=False)
-inf
.. _mean_tweedie_deviance:
Mean Poisson, Gamma, and Tweedie deviances
------------------------------------------
The :func:`mean_tweedie_deviance` function computes the `mean Tweedie
deviance error
<https://en.wikipedia.org/wiki/Tweedie_distribution#The_Tweedie_deviance>`_
with a ``power`` parameter (:math:`p`). This is a metric that elicits
predicted expectation values of regression targets.
Following special cases exist,
- when ``power=0`` it is equivalent to :func:`mean_squared_error`.
- when ``power=1`` it is equivalent to :func:`mean_poisson_deviance`.
- when ``power=2`` it is equivalent to :func:`mean_gamma_deviance`.
If :math:`\hat{y}_i` is the predicted value of the :math:`i`-th sample,
and :math:`y_i` is the corresponding true value, then the mean Tweedie
deviance error (D) for power :math:`p`, estimated over :math:`n_{\text{samples}}`
is defined as
.. math::
\text{D}(y, \hat{y}) = \frac{1}{n_\text{samples}}
\sum_{i=0}^{n_\text{samples} - 1}
\begin{cases}
(y_i-\hat{y}_i)^2, & \text{for }p=0\text{ (Normal)}\\
2(y_i \log(y_i/\hat{y}_i) + \hat{y}_i - y_i), & \text{for }p=1\text{ (Poisson)}\\
2(\log(\hat{y}_i/y_i) + y_i/\hat{y}_i - 1), & \text{for }p=2\text{ (Gamma)}\\
2\left(\frac{\max(y_i,0)^{2-p}}{(1-p)(2-p)}-
\frac{y_i\,\hat{y}_i^{1-p}}{1-p}+\frac{\hat{y}_i^{2-p}}{2-p}\right),
& \text{otherwise}
\end{cases}
Tweedie deviance is a homogeneous function of degree ``2-power``.
Thus, Gamma distribution with ``power=2`` means that simultaneously scaling
``y_true`` and ``y_pred`` has no effect on the deviance. For Poisson
distribution ``power=1`` the deviance scales linearly, and for Normal
distribution (``power=0``), quadratically. In general, the higher
``power`` the less weight is given to extreme deviations between true
and predicted targets.
For instance, let's compare the two predictions 1.5 and 150 that are both
50% larger than their corresponding true value.
The mean squared error (``power=0``) is very sensitive to the
prediction difference of the second point,::
>>> from sklearn.metrics import mean_tweedie_deviance
>>> mean_tweedie_deviance([1.0], [1.5], power=0)
0.25
>>> mean_tweedie_deviance([100.], [150.], power=0)
2500.0
If we increase ``power`` to 1,::
>>> mean_tweedie_deviance([1.0], [1.5], power=1)
0.18...
>>> mean_tweedie_deviance([100.], [150.], power=1)
18.9...
the difference in errors decreases. Finally, by setting, ``power=2``::
>>> mean_tweedie_deviance([1.0], [1.5], power=2)
0.14...
>>> mean_tweedie_deviance([100.], [150.], power=2)
0.14...
we would get identical errors. The deviance when ``power=2`` is thus only
sensitive to relative errors.
.. _pinball_loss:
Pinball loss
------------
The :func:`mean_pinball_loss` function is used to evaluate the predictive
performance of `quantile regression
<https://en.wikipedia.org/wiki/Quantile_regression>`_ models.
.. math::
\text{pinball}(y, \hat{y}) = \frac{1}{n_{\text{samples}}} \sum_{i=0}^{n_{\text{samples}}-1} \alpha \max(y_i - \hat{y}_i, 0) + (1 - \alpha) \max(\hat{y}_i - y_i, 0)
The value of pinball loss is equivalent to half of :func:`mean_absolute_error` when the quantile
parameter ``alpha`` is set to 0.5.
Here is a small example of usage of the :func:`mean_pinball_loss` function::
>>> from sklearn.metrics import mean_pinball_loss
>>> y_true = [1, 2, 3]
>>> mean_pinball_loss(y_true, [0, 2, 3], alpha=0.1)
0.03...
>>> mean_pinball_loss(y_true, [1, 2, 4], alpha=0.1)
0.3...
>>> mean_pinball_loss(y_true, [0, 2, 3], alpha=0.9)
0.3...
>>> mean_pinball_loss(y_true, [1, 2, 4], alpha=0.9)
0.03...
>>> mean_pinball_loss(y_true, y_true, alpha=0.1)
0.0
>>> mean_pinball_loss(y_true, y_true, alpha=0.9)
0.0
It is possible to build a scorer object with a specific choice of ``alpha``::
>>> from sklearn.metrics import make_scorer
>>> mean_pinball_loss_95p = make_scorer(mean_pinball_loss, alpha=0.95)
Such a scorer can be used to evaluate the generalization performance of a
quantile regressor via cross-validation:
>>> from sklearn.datasets import make_regression
>>> from sklearn.model_selection import cross_val_score
>>> from sklearn.ensemble import GradientBoostingRegressor
>>>
>>> X, y = make_regression(n_samples=100, random_state=0)
>>> estimator = GradientBoostingRegressor(
... loss="quantile",
... alpha=0.95,
... random_state=0,
... )
>>> cross_val_score(estimator, X, y, cv=5, scoring=mean_pinball_loss_95p)
array([13.6..., 9.7..., 23.3..., 9.5..., 10.4...])
It is also possible to build scorer objects for hyper-parameter tuning. The
sign of the loss must be switched to ensure that greater means better as
explained in the example linked below.
.. topic:: Example:
* See :ref:`sphx_glr_auto_examples_ensemble_plot_gradient_boosting_quantile.py`
for an example of using the pinball loss to evaluate and tune the
hyper-parameters of quantile regression models on data with non-symmetric
noise and outliers.
.. _d2_score:
D² score
--------
The D² score computes the fraction of deviance explained.
It is a generalization of R², where the squared error is generalized and replaced
by a deviance of choice :math:`\text{dev}(y, \hat{y})`
(e.g., Tweedie, pinball or mean absolute error). D² is a form of a *skill score*.
It is calculated as
.. math::
D^2(y, \hat{y}) = 1 - \frac{\text{dev}(y, \hat{y})}{\text{dev}(y, y_{\text{null}})} \,.
Where :math:`y_{\text{null}}` is the optimal prediction of an intercept-only model
(e.g., the mean of `y_true` for the Tweedie case, the median for absolute
error and the alpha-quantile for pinball loss).
Like R², the best possible score is 1.0 and it can be negative (because the
model can be arbitrarily worse). A constant model that always predicts
:math:`y_{\text{null}}`, disregarding the input features, would get a D² score
of 0.0.
D² Tweedie score
^^^^^^^^^^^^^^^^
The :func:`d2_tweedie_score` function implements the special case of D²
where :math:`\text{dev}(y, \hat{y})` is the Tweedie deviance, see :ref:`mean_tweedie_deviance`.
It is also known as D² Tweedie and is related to McFadden's likelihood ratio index.
The argument ``power`` defines the Tweedie power as for
:func:`mean_tweedie_deviance`. Note that for `power=0`,
:func:`d2_tweedie_score` equals :func:`r2_score` (for single targets).
A scorer object with a specific choice of ``power`` can be built by::
>>> from sklearn.metrics import d2_tweedie_score, make_scorer
>>> d2_tweedie_score_15 = make_scorer(d2_tweedie_score, power=1.5)
D² pinball score
^^^^^^^^^^^^^^^^^^^^^
The :func:`d2_pinball_score` function implements the special case
of D² with the pinball loss, see :ref:`pinball_loss`, i.e.:
.. math::
\text{dev}(y, \hat{y}) = \text{pinball}(y, \hat{y}).
The argument ``alpha`` defines the slope of the pinball loss as for
:func:`mean_pinball_loss` (:ref:`pinball_loss`). It determines the
quantile level ``alpha`` for which the pinball loss and also D²
are optimal. Note that for `alpha=0.5` (the default) :func:`d2_pinball_score`
equals :func:`d2_absolute_error_score`.
A scorer object with a specific choice of ``alpha`` can be built by::
>>> from sklearn.metrics import d2_pinball_score, make_scorer
>>> d2_pinball_score_08 = make_scorer(d2_pinball_score, alpha=0.8)
D² absolute error score
^^^^^^^^^^^^^^^^^^^^^^^
The :func:`d2_absolute_error_score` function implements the special case of
the :ref:`mean_absolute_error`:
.. math::
\text{dev}(y, \hat{y}) = \text{MAE}(y, \hat{y}).
Here are some usage examples of the :func:`d2_absolute_error_score` function::
>>> from sklearn.metrics import d2_absolute_error_score
>>> y_true = [3, -0.5, 2, 7]
>>> y_pred = [2.5, 0.0, 2, 8]
>>> d2_absolute_error_score(y_true, y_pred)
0.764...
>>> y_true = [1, 2, 3]
>>> y_pred = [1, 2, 3]
>>> d2_absolute_error_score(y_true, y_pred)
1.0
>>> y_true = [1, 2, 3]
>>> y_pred = [2, 2, 2]
>>> d2_absolute_error_score(y_true, y_pred)
0.0
.. _visualization_regression_evaluation:
Visual evaluation of regression models
--------------------------------------
Among methods to assess the quality of regression models, scikit-learn provides
the :class:`~sklearn.metrics.PredictionErrorDisplay` class. It allows to
visually inspect the prediction errors of a model in two different manners.
.. image:: ../auto_examples/model_selection/images/sphx_glr_plot_cv_predict_001.png
:target: ../auto_examples/model_selection/plot_cv_predict.html
:scale: 75
:align: center
The plot on the left shows the actual values vs predicted values. For a
noise-free regression task aiming to predict the (conditional) expectation of
`y`, a perfect regression model would display data points on the diagonal
defined by predicted equal to actual values. The further away from this optimal
line, the larger the error of the model. In a more realistic setting with
irreducible noise, that is, when not all the variations of `y` can be explained
by features in `X`, then the best model would lead to a cloud of points densely
arranged around the diagonal.
Note that the above only holds when the predicted values is the expected value
of `y` given `X`. This is typically the case for regression models that
minimize the mean squared error objective function or more generally the
:ref:`mean Tweedie deviance <mean_tweedie_deviance>` for any value of its
"power" parameter.
When plotting the predictions of an estimator that predicts a quantile
of `y` given `X`, e.g. :class:`~sklearn.linear_model.QuantileRegressor`
or any other model minimizing the :ref:`pinball loss <pinball_loss>`, a
fraction of the points are either expected to lie above or below the diagonal
depending on the estimated quantile level.
All in all, while intuitive to read, this plot does not really inform us on
what to do to obtain a better model.
The right-hand side plot shows the residuals (i.e. the difference between the
actual and the predicted values) vs. the predicted values.
This plot makes it easier to visualize if the residuals follow and
`homoscedastic or heteroschedastic
<https://en.wikipedia.org/wiki/Homoscedasticity_and_heteroscedasticity>`_
distribution.
In particular, if the true distribution of `y|X` is Poisson or Gamma
distributed, it is expected that the variance of the residuals of the optimal
model would grow with the predicted value of `E[y|X]` (either linearly for
Poisson or quadratically for Gamma).
When fitting a linear least squares regression model (see
:class:`~sklearn.linear_model.LinearRegression` and
:class:`~sklearn.linear_model.Ridge`), we can use this plot to check
if some of the `model assumptions
<https://en.wikipedia.org/wiki/Ordinary_least_squares#Assumptions>`_
are met, in particular that the residuals should be uncorrelated, their
expected value should be null and that their variance should be constant
(homoschedasticity).
If this is not the case, and in particular if the residuals plot show some
banana-shaped structure, this is a hint that the model is likely mis-specified
and that non-linear feature engineering or switching to a non-linear regression
model might be useful.
Refer to the example below to see a model evaluation that makes use of this
display.
.. topic:: Example:
* See :ref:`sphx_glr_auto_examples_compose_plot_transformed_target.py` for
an example on how to use :class:`~sklearn.metrics.PredictionErrorDisplay`
to visualize the prediction quality improvement of a regression model
obtained by transforming the target before learning.
.. _clustering_metrics:
Clustering metrics
======================
.. currentmodule:: sklearn.metrics
The :mod:`sklearn.metrics` module implements several loss, score, and utility
functions. For more information see the :ref:`clustering_evaluation`
section for instance clustering, and :ref:`biclustering_evaluation` for
biclustering.
.. _dummy_estimators:
Dummy estimators
=================
.. currentmodule:: sklearn.dummy
When doing supervised learning, a simple sanity check consists of comparing
one's estimator against simple rules of thumb. :class:`DummyClassifier`
implements several such simple strategies for classification:
- ``stratified`` generates random predictions by respecting the training
set class distribution.
- ``most_frequent`` always predicts the most frequent label in the training set.
- ``prior`` always predicts the class that maximizes the class prior
(like ``most_frequent``) and ``predict_proba`` returns the class prior.
- ``uniform`` generates predictions uniformly at random.
- ``constant`` always predicts a constant label that is provided by the user.
A major motivation of this method is F1-scoring, when the positive class
is in the minority.
Note that with all these strategies, the ``predict`` method completely ignores
the input data!
To illustrate :class:`DummyClassifier`, first let's create an imbalanced
dataset::
>>> from sklearn.datasets import load_iris
>>> from sklearn.model_selection import train_test_split
>>> X, y = load_iris(return_X_y=True)
>>> y[y != 1] = -1
>>> X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
Next, let's compare the accuracy of ``SVC`` and ``most_frequent``::
>>> from sklearn.dummy import DummyClassifier
>>> from sklearn.svm import SVC
>>> clf = SVC(kernel='linear', C=1).fit(X_train, y_train)
>>> clf.score(X_test, y_test)
0.63...
>>> clf = DummyClassifier(strategy='most_frequent', random_state=0)
>>> clf.fit(X_train, y_train)
DummyClassifier(random_state=0, strategy='most_frequent')
>>> clf.score(X_test, y_test)
0.57...
We see that ``SVC`` doesn't do much better than a dummy classifier. Now, let's
change the kernel::
>>> clf = SVC(kernel='rbf', C=1).fit(X_train, y_train)
>>> clf.score(X_test, y_test)
0.94...
We see that the accuracy was boosted to almost 100%. A cross validation
strategy is recommended for a better estimate of the accuracy, if it
is not too CPU costly. For more information see the :ref:`cross_validation`
section. Moreover if you want to optimize over the parameter space, it is highly
recommended to use an appropriate methodology; see the :ref:`grid_search`
section for details.
More generally, when the accuracy of a classifier is too close to random, it
probably means that something went wrong: features are not helpful, a
hyperparameter is not correctly tuned, the classifier is suffering from class
imbalance, etc...
:class:`DummyRegressor` also implements four simple rules of thumb for regression:
- ``mean`` always predicts the mean of the training targets.
- ``median`` always predicts the median of the training targets.
- ``quantile`` always predicts a user provided quantile of the training targets.
- ``constant`` always predicts a constant value that is provided by the user.
In all these strategies, the ``predict`` method completely ignores
the input data.
|