1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
|
.. include:: _contributors.rst
.. currentmodule:: sklearn
.. _release_notes_1_2:
===========
Version 1.2
===========
For a short description of the main highlights of the release, please refer to
:ref:`sphx_glr_auto_examples_release_highlights_plot_release_highlights_1_2_0.py`.
.. include:: changelog_legend.inc
.. _changes_1_2_2:
Version 1.2.2
=============
**March 2023**
Changelog
---------
:mod:`sklearn.base`
...................
- |Fix| When `set_output(transform="pandas")`, :class:`base.TransformerMixin` maintains
the index if the :term:`transform` output is already a DataFrame. :pr:`25747` by
`Thomas Fan`_.
:mod:`sklearn.calibration`
..........................
- |Fix| A deprecation warning is raised when using the `base_estimator__` prefix to
set parameters of the estimator used in :class:`calibration.CalibratedClassifierCV`.
:pr:`25477` by :user:`Tim Head <betatim>`.
:mod:`sklearn.cluster`
......................
- |Fix| Fixed a bug in :class:`cluster.BisectingKMeans`, preventing `fit` to randomly
fail due to a permutation of the labels when running multiple inits.
:pr:`25563` by :user:`Jérémie du Boisberranger <jeremiedbb>`.
:mod:`sklearn.compose`
......................
- |Fix| Fixes a bug in :class:`compose.ColumnTransformer` which now supports
empty selection of columns when `set_output(transform="pandas")`.
:pr:`25570` by `Thomas Fan`_.
:mod:`sklearn.ensemble`
.......................
- |Fix| A deprecation warning is raised when using the `base_estimator__` prefix
to set parameters of the estimator used in :class:`ensemble.AdaBoostClassifier`,
:class:`ensemble.AdaBoostRegressor`, :class:`ensemble.BaggingClassifier`,
and :class:`ensemble.BaggingRegressor`.
:pr:`25477` by :user:`Tim Head <betatim>`.
:mod:`sklearn.feature_selection`
................................
- |Fix| Fixed a regression where a negative `tol` would not be accepted any more by
:class:`feature_selection.SequentialFeatureSelector`.
:pr:`25664` by :user:`Jérémie du Boisberranger <jeremiedbb>`.
:mod:`sklearn.inspection`
.........................
- |Fix| Raise a more informative error message in :func:`inspection.partial_dependence`
when dealing with mixed data type categories that cannot be sorted by
:func:`numpy.unique`. This problem usually happen when categories are `str` and
missing values are present using `np.nan`.
:pr:`25774` by :user:`Guillaume Lemaitre <glemaitre>`.
:mod:`sklearn.isotonic`
.......................
- |Fix| Fixes a bug in :class:`isotonic.IsotonicRegression` where
:meth:`isotonic.IsotonicRegression.predict` would return a pandas DataFrame
when the global configuration sets `transform_output="pandas"`.
:pr:`25500` by :user:`Guillaume Lemaitre <glemaitre>`.
:mod:`sklearn.preprocessing`
............................
- |Fix| `preprocessing.OneHotEncoder.drop_idx_` now properly
references the dropped category in the `categories_` attribute
when there are infrequent categories. :pr:`25589` by `Thomas Fan`_.
- |Fix| :class:`preprocessing.OrdinalEncoder` now correctly supports
`encoded_missing_value` or `unknown_value` set to a categories' cardinality
when there is missing values in the training data. :pr:`25704` by `Thomas Fan`_.
:mod:`sklearn.tree`
...................
- |Fix| Fixed a regression in :class:`tree.DecisionTreeClassifier`,
:class:`tree.DecisionTreeRegressor`, :class:`tree.ExtraTreeClassifier` and
:class:`tree.ExtraTreeRegressor` where an error was no longer raised in version
1.2 when `min_sample_split=1`.
:pr:`25744` by :user:`Jérémie du Boisberranger <jeremiedbb>`.
:mod:`sklearn.utils`
....................
- |Fix| Fixes a bug in :func:`utils.check_array` which now correctly performs
non-finite validation with the Array API specification. :pr:`25619` by
`Thomas Fan`_.
- |Fix| :func:`utils.multiclass.type_of_target` can identify pandas
nullable data types as classification targets. :pr:`25638` by `Thomas Fan`_.
.. _changes_1_2_1:
Version 1.2.1
=============
**January 2023**
Changed models
--------------
The following estimators and functions, when fit with the same data and
parameters, may produce different models from the previous version. This often
occurs due to changes in the modelling logic (bug fixes or enhancements), or in
random sampling procedures.
- |Fix| The fitted components in
:class:`decomposition.MiniBatchDictionaryLearning` might differ. The online
updates of the sufficient statistics now properly take the sizes of the
batches into account.
:pr:`25354` by :user:`Jérémie du Boisberranger <jeremiedbb>`.
- |Fix| The `categories_` attribute of :class:`preprocessing.OneHotEncoder` now
always contains an array of `object`s when using predefined categories that
are strings. Predefined categories encoded as bytes will no longer work
with `X` encoded as strings. :pr:`25174` by :user:`Tim Head <betatim>`.
Changes impacting all modules
-----------------------------
- |Fix| Support `pandas.Int64` dtyped `y` for classifiers and regressors.
:pr:`25089` by :user:`Tim Head <betatim>`.
- |Fix| Remove spurious warnings for estimators internally using neighbors search methods.
:pr:`25129` by :user:`Julien Jerphanion <jjerphan>`.
- |Fix| Fix a bug where the current configuration was ignored in estimators using
`n_jobs > 1`. This bug was triggered for tasks dispatched by the auxiliary
thread of `joblib` as :func:`sklearn.get_config` used to access an empty thread
local configuration instead of the configuration visible from the thread where
`joblib.Parallel` was first called.
:pr:`25363` by :user:`Guillaume Lemaitre <glemaitre>`.
Changelog
---------
:mod:`sklearn.base`
...................
- |Fix| Fix a regression in `BaseEstimator.__getstate__` that would prevent
certain estimators to be pickled when using Python 3.11. :pr:`25188` by
:user:`Benjamin Bossan <BenjaminBossan>`.
- |Fix| Inheriting from :class:`base.TransformerMixin` will only wrap the `transform`
method if the class defines `transform` itself. :pr:`25295` by `Thomas Fan`_.
:mod:`sklearn.datasets`
.......................
- |Fix| Fixes an inconsistency in :func:`datasets.fetch_openml` between liac-arff
and pandas parser when a leading space is introduced after the delimiter.
The ARFF specs requires to ignore the leading space.
:pr:`25312` by :user:`Guillaume Lemaitre <glemaitre>`.
- |Fix| Fixes a bug in :func:`datasets.fetch_openml` when using `parser="pandas"`
where single quote and backslash escape characters were not properly handled.
:pr:`25511` by :user:`Guillaume Lemaitre <glemaitre>`.
:mod:`sklearn.decomposition`
............................
- |Fix| Fixed a bug in :class:`decomposition.MiniBatchDictionaryLearning` where the
online updates of the sufficient statistics where not correct when calling
`partial_fit` on batches of different sizes.
:pr:`25354` by :user:`Jérémie du Boisberranger <jeremiedbb>`.
- |Fix| :class:`decomposition.DictionaryLearning` better supports readonly NumPy
arrays. In particular, it better supports large datasets which are memory-mapped
when it is used with coordinate descent algorithms (i.e. when `fit_algorithm='cd'`).
:pr:`25172` by :user:`Julien Jerphanion <jjerphan>`.
:mod:`sklearn.ensemble`
.......................
- |Fix| :class:`ensemble.RandomForestClassifier`,
:class:`ensemble.RandomForestRegressor` :class:`ensemble.ExtraTreesClassifier`
and :class:`ensemble.ExtraTreesRegressor` now support sparse readonly datasets.
:pr:`25341` by :user:`Julien Jerphanion <jjerphan>`
:mod:`sklearn.feature_extraction`
.................................
- |Fix| :class:`feature_extraction.FeatureHasher` raises an informative error
when the input is a list of strings. :pr:`25094` by `Thomas Fan`_.
:mod:`sklearn.linear_model`
...........................
- |Fix| Fix a regression in :class:`linear_model.SGDClassifier` and
:class:`linear_model.SGDRegressor` that makes them unusable with the
`verbose` parameter set to a value greater than 0.
:pr:`25250` by :user:`Jérémie Du Boisberranger <jeremiedbb>`.
:mod:`sklearn.manifold`
.......................
- |Fix| :class:`manifold.TSNE` now works correctly when output type is
set to pandas :pr:`25370` by :user:`Tim Head <betatim>`.
:mod:`sklearn.model_selection`
..............................
- |Fix| :func:`model_selection.cross_validate` with multimetric scoring in
case of some failing scorers the non-failing scorers now returns proper
scores instead of `error_score` values.
:pr:`23101` by :user:`András Simon <simonandras>` and `Thomas Fan`_.
:mod:`sklearn.neural_network`
.............................
- |Fix| :class:`neural_network.MLPClassifier` and :class:`neural_network.MLPRegressor`
no longer raise warnings when fitting data with feature names.
:pr:`24873` by :user:`Tim Head <betatim>`.
- |Fix| Improves error message in :class:`neural_network.MLPClassifier` and
:class:`neural_network.MLPRegressor`, when `early_stopping=True` and
`partial_fit` is called. :pr:`25694` by `Thomas Fan`_.
:mod:`sklearn.preprocessing`
............................
- |Fix| :meth:`preprocessing.FunctionTransformer.inverse_transform` correctly
supports DataFrames that are all numerical when `check_inverse=True`.
:pr:`25274` by `Thomas Fan`_.
- |Fix| :meth:`preprocessing.SplineTransformer.get_feature_names_out` correctly
returns feature names when `extrapolations="periodic"`. :pr:`25296` by
`Thomas Fan`_.
:mod:`sklearn.tree`
...................
- |Fix| :class:`tree.DecisionTreeClassifier`, :class:`tree.DecisionTreeRegressor`
:class:`tree.ExtraTreeClassifier` and :class:`tree.ExtraTreeRegressor`
now support sparse readonly datasets.
:pr:`25341` by :user:`Julien Jerphanion <jjerphan>`
:mod:`sklearn.utils`
....................
- |Fix| Restore :func:`utils.check_array`'s behaviour for pandas Series of type
boolean. The type is maintained, instead of converting to `float64.`
:pr:`25147` by :user:`Tim Head <betatim>`.
- |API| `utils.fixes.delayed` is deprecated in 1.2.1 and will be removed
in 1.5. Instead, import :func:`utils.parallel.delayed` and use it in
conjunction with the newly introduced :func:`utils.parallel.Parallel`
to ensure proper propagation of the scikit-learn configuration to
the workers.
:pr:`25363` by :user:`Guillaume Lemaitre <glemaitre>`.
.. _changes_1_2:
Version 1.2.0
=============
**December 2022**
Changed models
--------------
The following estimators and functions, when fit with the same data and
parameters, may produce different models from the previous version. This often
occurs due to changes in the modelling logic (bug fixes or enhancements), or in
random sampling procedures.
- |Enhancement| The default `eigen_tol` for :class:`cluster.SpectralClustering`,
:class:`manifold.SpectralEmbedding`, :func:`cluster.spectral_clustering`,
and :func:`manifold.spectral_embedding` is now `None` when using the `'amg'`
or `'lobpcg'` solvers. This change improves numerical stability of the
solver, but may result in a different model.
- |Enhancement| :class:`linear_model.GammaRegressor`,
:class:`linear_model.PoissonRegressor` and :class:`linear_model.TweedieRegressor`
can reach higher precision with the lbfgs solver, in particular when `tol` is set
to a tiny value. Moreover, `verbose` is now properly propagated to L-BFGS-B.
:pr:`23619` by :user:`Christian Lorentzen <lorentzenchr>`.
- |Enhancement| The default value for `eps` :func:`metrics.log_loss` has changed
from `1e-15` to `"auto"`. `"auto"` sets `eps` to `np.finfo(y_pred.dtype).eps`.
:pr:`24354` by :user:`Safiuddin Khaja <Safikh>` and :user:`gsiisg <gsiisg>`.
- |Fix| Make sign of `components_` deterministic in :class:`decomposition.SparsePCA`.
:pr:`23935` by :user:`Guillaume Lemaitre <glemaitre>`.
- |Fix| The `components_` signs in :class:`decomposition.FastICA` might differ.
It is now consistent and deterministic with all SVD solvers.
:pr:`22527` by :user:`Meekail Zain <micky774>` and `Thomas Fan`_.
- |Fix| The condition for early stopping has now been changed in
`linear_model._sgd_fast._plain_sgd` which is used by
:class:`linear_model.SGDRegressor` and :class:`linear_model.SGDClassifier`. The old
condition did not disambiguate between
training and validation set and had an effect of overscaling the error tolerance.
This has been fixed in :pr:`23798` by :user:`Harsh Agrawal <Harsh14901>`.
- |Fix| For :class:`model_selection.GridSearchCV` and
:class:`model_selection.RandomizedSearchCV` ranks corresponding to nan
scores will all be set to the maximum possible rank.
:pr:`24543` by :user:`Guillaume Lemaitre <glemaitre>`.
- |API| The default value of `tol` was changed from `1e-3` to `1e-4` for
:func:`linear_model.ridge_regression`, :class:`linear_model.Ridge` and
:class:`linear_model.RidgeClassifier`.
:pr:`24465` by :user:`Christian Lorentzen <lorentzenchr>`.
Changes impacting all modules
-----------------------------
- |MajorFeature| The `set_output` API has been adopted by all transformers.
Meta-estimators that contain transformers such as :class:`pipeline.Pipeline`
or :class:`compose.ColumnTransformer` also define a `set_output`.
For details, see
`SLEP018 <https://scikit-learn-enhancement-proposals.readthedocs.io/en/latest/slep018/proposal.html>`__.
:pr:`23734` and :pr:`24699` by `Thomas Fan`_.
- |Efficiency| Low-level routines for reductions on pairwise distances
for dense float32 datasets have been refactored. The following functions
and estimators now benefit from improved performances in terms of hardware
scalability and speed-ups:
- :func:`sklearn.metrics.pairwise_distances_argmin`
- :func:`sklearn.metrics.pairwise_distances_argmin_min`
- :class:`sklearn.cluster.AffinityPropagation`
- :class:`sklearn.cluster.Birch`
- :class:`sklearn.cluster.MeanShift`
- :class:`sklearn.cluster.OPTICS`
- :class:`sklearn.cluster.SpectralClustering`
- :func:`sklearn.feature_selection.mutual_info_regression`
- :class:`sklearn.neighbors.KNeighborsClassifier`
- :class:`sklearn.neighbors.KNeighborsRegressor`
- :class:`sklearn.neighbors.RadiusNeighborsClassifier`
- :class:`sklearn.neighbors.RadiusNeighborsRegressor`
- :class:`sklearn.neighbors.LocalOutlierFactor`
- :class:`sklearn.neighbors.NearestNeighbors`
- :class:`sklearn.manifold.Isomap`
- :class:`sklearn.manifold.LocallyLinearEmbedding`
- :class:`sklearn.manifold.TSNE`
- :func:`sklearn.manifold.trustworthiness`
- :class:`sklearn.semi_supervised.LabelPropagation`
- :class:`sklearn.semi_supervised.LabelSpreading`
For instance :meth:`sklearn.neighbors.NearestNeighbors.kneighbors` and
:meth:`sklearn.neighbors.NearestNeighbors.radius_neighbors`
can respectively be up to ×20 and ×5 faster than previously on a laptop.
Moreover, implementations of those two algorithms are now suitable
for machine with many cores, making them usable for datasets consisting
of millions of samples.
:pr:`23865` by :user:`Julien Jerphanion <jjerphan>`.
- |Enhancement| Finiteness checks (detection of NaN and infinite values) in all
estimators are now significantly more efficient for float32 data by leveraging
NumPy's SIMD optimized primitives.
:pr:`23446` by :user:`Meekail Zain <micky774>`
- |Enhancement| Finiteness checks (detection of NaN and infinite values) in all
estimators are now faster by utilizing a more efficient stop-on-first
second-pass algorithm.
:pr:`23197` by :user:`Meekail Zain <micky774>`
- |Enhancement| Support for combinations of dense and sparse datasets pairs
for all distance metrics and for float32 and float64 datasets has been added
or has seen its performance improved for the following estimators:
- :func:`sklearn.metrics.pairwise_distances_argmin`
- :func:`sklearn.metrics.pairwise_distances_argmin_min`
- :class:`sklearn.cluster.AffinityPropagation`
- :class:`sklearn.cluster.Birch`
- :class:`sklearn.cluster.SpectralClustering`
- :class:`sklearn.neighbors.KNeighborsClassifier`
- :class:`sklearn.neighbors.KNeighborsRegressor`
- :class:`sklearn.neighbors.RadiusNeighborsClassifier`
- :class:`sklearn.neighbors.RadiusNeighborsRegressor`
- :class:`sklearn.neighbors.LocalOutlierFactor`
- :class:`sklearn.neighbors.NearestNeighbors`
- :class:`sklearn.manifold.Isomap`
- :class:`sklearn.manifold.TSNE`
- :func:`sklearn.manifold.trustworthiness`
:pr:`23604` and :pr:`23585` by :user:`Julien Jerphanion <jjerphan>`,
:user:`Olivier Grisel <ogrisel>`, and `Thomas Fan`_,
:pr:`24556` by :user:`Vincent Maladière <Vincent-Maladiere>`.
- |Fix| Systematically check the sha256 digest of dataset tarballs used in code
examples in the documentation.
:pr:`24617` by :user:`Olivier Grisel <ogrisel>` and `Thomas Fan`_. Thanks to
`Sim4n6 <https://huntr.dev/users/sim4n6>`_ for the report.
Changelog
---------
..
Entries should be grouped by module (in alphabetic order) and prefixed with
one of the labels: |MajorFeature|, |Feature|, |Efficiency|, |Enhancement|,
|Fix| or |API| (see whats_new.rst for descriptions).
Entries should be ordered by those labels (e.g. |Fix| after |Efficiency|).
Changes not specific to a module should be listed under *Multiple Modules*
or *Miscellaneous*.
Entries should end with:
:pr:`123456` by :user:`Joe Bloggs <joeongithub>`.
where 123456 is the *pull request* number, not the issue number.
:mod:`sklearn.base`
...................
- |Enhancement| Introduces :class:`base.ClassNamePrefixFeaturesOutMixin` and
:class:`base.ClassNamePrefixFeaturesOutMixin` mixins that defines
:term:`get_feature_names_out` for common transformer uses cases.
:pr:`24688` by `Thomas Fan`_.
:mod:`sklearn.calibration`
..........................
- |API| Rename `base_estimator` to `estimator` in
:class:`calibration.CalibratedClassifierCV` to improve readability and consistency.
The parameter `base_estimator` is deprecated and will be removed in 1.4.
:pr:`22054` by :user:`Kevin Roice <kevroi>`.
:mod:`sklearn.cluster`
......................
- |Efficiency| :class:`cluster.KMeans` with `algorithm="lloyd"` is now faster
and uses less memory. :pr:`24264` by
:user:`Vincent Maladiere <Vincent-Maladiere>`.
- |Enhancement| The `predict` and `fit_predict` methods of :class:`cluster.OPTICS` now
accept sparse data type for input data. :pr:`14736` by :user:`Hunt Zhan <huntzhan>`,
:pr:`20802` by :user:`Brandon Pokorny <Clickedbigfoot>`,
and :pr:`22965` by :user:`Meekail Zain <micky774>`.
- |Enhancement| :class:`cluster.Birch` now preserves dtype for `numpy.float32`
inputs. :pr:`22968` by `Meekail Zain <micky774>`.
- |Enhancement| :class:`cluster.KMeans` and :class:`cluster.MiniBatchKMeans`
now accept a new `'auto'` option for `n_init` which changes the number of
random initializations to one when using `init='k-means++'` for efficiency.
This begins deprecation for the default values of `n_init` in the two classes
and both will have their defaults changed to `n_init='auto'` in 1.4.
:pr:`23038` by :user:`Meekail Zain <micky774>`.
- |Enhancement| :class:`cluster.SpectralClustering` and
:func:`cluster.spectral_clustering` now propagates the `eigen_tol` parameter
to all choices of `eigen_solver`. Includes a new option `eigen_tol="auto"`
and begins deprecation to change the default from `eigen_tol=0` to
`eigen_tol="auto"` in version 1.3.
:pr:`23210` by :user:`Meekail Zain <micky774>`.
- |Fix| :class:`cluster.KMeans` now supports readonly attributes when predicting.
:pr:`24258` by `Thomas Fan`_
- |API| The `affinity` attribute is now deprecated for
:class:`cluster.AgglomerativeClustering` and will be renamed to `metric` in v1.4.
:pr:`23470` by :user:`Meekail Zain <micky774>`.
:mod:`sklearn.datasets`
.......................
- |Enhancement| Introduce the new parameter `parser` in
:func:`datasets.fetch_openml`. `parser="pandas"` allows to use the very CPU
and memory efficient `pandas.read_csv` parser to load dense ARFF
formatted dataset files. It is possible to pass `parser="liac-arff"`
to use the old LIAC parser.
When `parser="auto"`, dense datasets are loaded with "pandas" and sparse
datasets are loaded with "liac-arff".
Currently, `parser="liac-arff"` by default and will change to `parser="auto"`
in version 1.4
:pr:`21938` by :user:`Guillaume Lemaitre <glemaitre>`.
- |Enhancement| :func:`datasets.dump_svmlight_file` is now accelerated with a
Cython implementation, providing 2-4x speedups.
:pr:`23127` by :user:`Meekail Zain <micky774>`
- |Enhancement| Path-like objects, such as those created with pathlib are now
allowed as paths in :func:`datasets.load_svmlight_file` and
:func:`datasets.load_svmlight_files`.
:pr:`19075` by :user:`Carlos Ramos Carreño <vnmabus>`.
- |Fix| Make sure that :func:`datasets.fetch_lfw_people` and
:func:`datasets.fetch_lfw_pairs` internally crops images based on the
`slice_` parameter.
:pr:`24951` by :user:`Guillaume Lemaitre <glemaitre>`.
:mod:`sklearn.decomposition`
............................
- |Efficiency| :func:`decomposition.FastICA.fit` has been optimised w.r.t
its memory footprint and runtime.
:pr:`22268` by :user:`MohamedBsh <Bsh>`.
- |Enhancement| :class:`decomposition.SparsePCA` and
:class:`decomposition.MiniBatchSparsePCA` now implements an `inverse_transform`
function.
:pr:`23905` by :user:`Guillaume Lemaitre <glemaitre>`.
- |Enhancement| :class:`decomposition.FastICA` now allows the user to select
how whitening is performed through the new `whiten_solver` parameter, which
supports `svd` and `eigh`. `whiten_solver` defaults to `svd` although `eigh`
may be faster and more memory efficient in cases where
`num_features > num_samples`.
:pr:`11860` by :user:`Pierre Ablin <pierreablin>`,
:pr:`22527` by :user:`Meekail Zain <micky774>` and `Thomas Fan`_.
- |Enhancement| :class:`decomposition.LatentDirichletAllocation` now preserves dtype
for `numpy.float32` input. :pr:`24528` by :user:`Takeshi Oura <takoika>` and
:user:`Jérémie du Boisberranger <jeremiedbb>`.
- |Fix| Make sign of `components_` deterministic in :class:`decomposition.SparsePCA`.
:pr:`23935` by :user:`Guillaume Lemaitre <glemaitre>`.
- |API| The `n_iter` parameter of :class:`decomposition.MiniBatchSparsePCA` is
deprecated and replaced by the parameters `max_iter`, `tol`, and
`max_no_improvement` to be consistent with
:class:`decomposition.MiniBatchDictionaryLearning`. `n_iter` will be removed
in version 1.3. :pr:`23726` by :user:`Guillaume Lemaitre <glemaitre>`.
- |API| The `n_features_` attribute of
:class:`decomposition.PCA` is deprecated in favor of
`n_features_in_` and will be removed in 1.4. :pr:`24421` by
:user:`Kshitij Mathur <Kshitij68>`.
:mod:`sklearn.discriminant_analysis`
....................................
- |MajorFeature| :class:`discriminant_analysis.LinearDiscriminantAnalysis` now
supports the `Array API <https://data-apis.org/array-api/latest/>`_ for
`solver="svd"`. Array API support is considered experimental and might evolve
without being subjected to our usual rolling deprecation cycle policy. See
:ref:`array_api` for more details. :pr:`22554` by `Thomas Fan`_.
- |Fix| Validate parameters only in `fit` and not in `__init__`
for :class:`discriminant_analysis.QuadraticDiscriminantAnalysis`.
:pr:`24218` by :user:`Stefanie Molin <stefmolin>`.
:mod:`sklearn.ensemble`
.......................
- |MajorFeature| :class:`ensemble.HistGradientBoostingClassifier` and
:class:`ensemble.HistGradientBoostingRegressor` now support
interaction constraints via the argument `interaction_cst` of their
constructors.
:pr:`21020` by :user:`Christian Lorentzen <lorentzenchr>`.
Using interaction constraints also makes fitting faster.
:pr:`24856` by :user:`Christian Lorentzen <lorentzenchr>`.
- |Feature| Adds `class_weight` to :class:`ensemble.HistGradientBoostingClassifier`.
:pr:`22014` by `Thomas Fan`_.
- |Efficiency| Improve runtime performance of :class:`ensemble.IsolationForest`
by avoiding data copies. :pr:`23252` by :user:`Zhehao Liu <MaxwellLZH>`.
- |Enhancement| :class:`ensemble.StackingClassifier` now accepts any kind of
base estimator.
:pr:`24538` by :user:`Guillem G Subies <GuillemGSubies>`.
- |Enhancement| Make it possible to pass the `categorical_features` parameter
of :class:`ensemble.HistGradientBoostingClassifier` and
:class:`ensemble.HistGradientBoostingRegressor` as feature names.
:pr:`24889` by :user:`Olivier Grisel <ogrisel>`.
- |Enhancement| :class:`ensemble.StackingClassifier` now supports
multilabel-indicator target
:pr:`24146` by :user:`Nicolas Peretti <nicoperetti>`,
:user:`Nestor Navarro <nestornav>`, :user:`Nati Tomattis <natitomattis>`,
and :user:`Vincent Maladiere <Vincent-Maladiere>`.
- |Enhancement| :class:`ensemble.HistGradientBoostingClassifier` and
:class:`ensemble.HistGradientBoostingClassifier` now accept their
`monotonic_cst` parameter to be passed as a dictionary in addition
to the previously supported array-like format.
Such dictionary have feature names as keys and one of `-1`, `0`, `1`
as value to specify monotonicity constraints for each feature.
:pr:`24855` by :user:`Olivier Grisel <ogrisel>`.
- |Enhancement| Interaction constraints for
:class:`ensemble.HistGradientBoostingClassifier`
and :class:`ensemble.HistGradientBoostingRegressor` can now be specified
as strings for two common cases: "no_interactions" and "pairwise" interactions.
:pr:`24849` by :user:`Tim Head <betatim>`.
- |Fix| Fixed the issue where :class:`ensemble.AdaBoostClassifier` outputs
NaN in feature importance when fitted with very small sample weight.
:pr:`20415` by :user:`Zhehao Liu <MaxwellLZH>`.
- |Fix| :class:`ensemble.HistGradientBoostingClassifier` and
:class:`ensemble.HistGradientBoostingRegressor` no longer error when predicting
on categories encoded as negative values and instead consider them a member
of the "missing category". :pr:`24283` by `Thomas Fan`_.
- |Fix| :class:`ensemble.HistGradientBoostingClassifier` and
:class:`ensemble.HistGradientBoostingRegressor`, with `verbose>=1`, print detailed
timing information on computing histograms and finding best splits. The time spent in
the root node was previously missing and is now included in the printed information.
:pr:`24894` by :user:`Christian Lorentzen <lorentzenchr>`.
- |API| Rename the constructor parameter `base_estimator` to `estimator` in
the following classes:
:class:`ensemble.BaggingClassifier`,
:class:`ensemble.BaggingRegressor`,
:class:`ensemble.AdaBoostClassifier`,
:class:`ensemble.AdaBoostRegressor`.
`base_estimator` is deprecated in 1.2 and will be removed in 1.4.
:pr:`23819` by :user:`Adrian Trujillo <trujillo9616>` and
:user:`Edoardo Abati <EdAbati>`.
- |API| Rename the fitted attribute `base_estimator_` to `estimator_` in
the following classes:
:class:`ensemble.BaggingClassifier`,
:class:`ensemble.BaggingRegressor`,
:class:`ensemble.AdaBoostClassifier`,
:class:`ensemble.AdaBoostRegressor`,
:class:`ensemble.RandomForestClassifier`,
:class:`ensemble.RandomForestRegressor`,
:class:`ensemble.ExtraTreesClassifier`,
:class:`ensemble.ExtraTreesRegressor`,
:class:`ensemble.RandomTreesEmbedding`,
:class:`ensemble.IsolationForest`.
`base_estimator_` is deprecated in 1.2 and will be removed in 1.4.
:pr:`23819` by :user:`Adrian Trujillo <trujillo9616>` and
:user:`Edoardo Abati <EdAbati>`.
:mod:`sklearn.feature_selection`
................................
- |Fix| Fix a bug in :func:`feature_selection.mutual_info_regression` and
:func:`feature_selection.mutual_info_classif`, where the continuous features
in `X` should be scaled to a unit variance independently if the target `y` is
continuous or discrete.
:pr:`24747` by :user:`Guillaume Lemaitre <glemaitre>`
:mod:`sklearn.gaussian_process`
...............................
- |Fix| Fix :class:`gaussian_process.kernels.Matern` gradient computation with
`nu=0.5` for PyPy (and possibly other non CPython interpreters). :pr:`24245`
by :user:`Loïc Estève <lesteve>`.
- |Fix| The `fit` method of :class:`gaussian_process.GaussianProcessRegressor`
will not modify the input X in case a custom kernel is used, with a `diag`
method that returns part of the input X. :pr:`24405`
by :user:`Omar Salman <OmarManzoor>`.
:mod:`sklearn.impute`
.....................
- |Enhancement| Added `keep_empty_features` parameter to
:class:`impute.SimpleImputer`, :class:`impute.KNNImputer` and
:class:`impute.IterativeImputer`, preventing removal of features
containing only missing values when transforming.
:pr:`16695` by :user:`Vitor Santa Rosa <vitorsrg>`.
:mod:`sklearn.inspection`
.........................
- |MajorFeature| Extended :func:`inspection.partial_dependence` and
:class:`inspection.PartialDependenceDisplay` to handle categorical features.
:pr:`18298` by :user:`Madhura Jayaratne <madhuracj>` and
:user:`Guillaume Lemaitre <glemaitre>`.
- |Fix| :class:`inspection.DecisionBoundaryDisplay` now raises error if input
data is not 2-dimensional.
:pr:`25077` by :user:`Arturo Amor <ArturoAmorQ>`.
:mod:`sklearn.kernel_approximation`
...................................
- |Enhancement| :class:`kernel_approximation.RBFSampler` now preserves
dtype for `numpy.float32` inputs. :pr:`24317` by `Tim Head <betatim>`.
- |Enhancement| :class:`kernel_approximation.SkewedChi2Sampler` now preserves
dtype for `numpy.float32` inputs. :pr:`24350` by :user:`Rahil Parikh <rprkh>`.
- |Enhancement| :class:`kernel_approximation.RBFSampler` now accepts
`'scale'` option for parameter `gamma`.
:pr:`24755` by :user:`Gleb Levitski <GLevV>`.
:mod:`sklearn.linear_model`
...........................
- |Enhancement| :class:`linear_model.LogisticRegression`,
:class:`linear_model.LogisticRegressionCV`, :class:`linear_model.GammaRegressor`,
:class:`linear_model.PoissonRegressor` and :class:`linear_model.TweedieRegressor` got
a new solver `solver="newton-cholesky"`. This is a 2nd order (Newton) optimisation
routine that uses a Cholesky decomposition of the hessian matrix.
When `n_samples >> n_features`, the `"newton-cholesky"` solver has been observed to
converge both faster and to a higher precision solution than the `"lbfgs"` solver on
problems with one-hot encoded categorical variables with some rare categorical
levels.
:pr:`24637` and :pr:`24767` by :user:`Christian Lorentzen <lorentzenchr>`.
- |Enhancement| :class:`linear_model.GammaRegressor`,
:class:`linear_model.PoissonRegressor` and :class:`linear_model.TweedieRegressor`
can reach higher precision with the lbfgs solver, in particular when `tol` is set
to a tiny value. Moreover, `verbose` is now properly propagated to L-BFGS-B.
:pr:`23619` by :user:`Christian Lorentzen <lorentzenchr>`.
- |Fix| :class:`linear_model.SGDClassifier` and :class:`linear_model.SGDRegressor` will
raise an error when all the validation samples have zero sample weight.
:pr:`23275` by `Zhehao Liu <MaxwellLZH>`.
- |Fix| :class:`linear_model.SGDOneClassSVM` no longer performs parameter
validation in the constructor. All validation is now handled in `fit()` and
`partial_fit()`.
:pr:`24433` by :user:`Yogendrasingh <iofall>`, :user:`Arisa Y. <arisayosh>`
and :user:`Tim Head <betatim>`.
- |Fix| Fix average loss calculation when early stopping is enabled in
:class:`linear_model.SGDRegressor` and :class:`linear_model.SGDClassifier`.
Also updated the condition for early stopping accordingly.
:pr:`23798` by :user:`Harsh Agrawal <Harsh14901>`.
- |API| The default value for the `solver` parameter in
:class:`linear_model.QuantileRegressor` will change from `"interior-point"`
to `"highs"` in version 1.4.
:pr:`23637` by :user:`Guillaume Lemaitre <glemaitre>`.
- |API| String option `"none"` is deprecated for `penalty` argument
in :class:`linear_model.LogisticRegression`, and will be removed in version 1.4.
Use `None` instead. :pr:`23877` by :user:`Zhehao Liu <MaxwellLZH>`.
- |API| The default value of `tol` was changed from `1e-3` to `1e-4` for
:func:`linear_model.ridge_regression`, :class:`linear_model.Ridge` and
:class:`linear_model.RidgeClassifier`.
:pr:`24465` by :user:`Christian Lorentzen <lorentzenchr>`.
:mod:`sklearn.manifold`
.......................
- |Feature| Adds option to use the normalized stress in :class:`manifold.MDS`. This is
enabled by setting the new `normalize` parameter to `True`.
:pr:`10168` by :user:`Łukasz Borchmann <Borchmann>`,
:pr:`12285` by :user:`Matthias Miltenberger <mattmilten>`,
:pr:`13042` by :user:`Matthieu Parizy <matthieu-pa>`,
:pr:`18094` by :user:`Roth E Conrad <rotheconrad>` and
:pr:`22562` by :user:`Meekail Zain <micky774>`.
- |Enhancement| Adds `eigen_tol` parameter to
:class:`manifold.SpectralEmbedding`. Both :func:`manifold.spectral_embedding`
and :class:`manifold.SpectralEmbedding` now propagate `eigen_tol` to all
choices of `eigen_solver`. Includes a new option `eigen_tol="auto"`
and begins deprecation to change the default from `eigen_tol=0` to
`eigen_tol="auto"` in version 1.3.
:pr:`23210` by :user:`Meekail Zain <micky774>`.
- |Enhancement| :class:`manifold.Isomap` now preserves
dtype for `np.float32` inputs. :pr:`24714` by :user:`Rahil Parikh <rprkh>`.
- |API| Added an `"auto"` option to the `normalized_stress` argument in
:class:`manifold.MDS` and :func:`manifold.smacof`. Note that
`normalized_stress` is only valid for non-metric MDS, therefore the `"auto"`
option enables `normalized_stress` when `metric=False` and disables it when
`metric=True`. `"auto"` will become the default value for `normalized_stress`
in version 1.4.
:pr:`23834` by :user:`Meekail Zain <micky774>`
:mod:`sklearn.metrics`
......................
- |Feature| :func:`metrics.ConfusionMatrixDisplay.from_estimator`,
:func:`metrics.ConfusionMatrixDisplay.from_predictions`, and
:meth:`metrics.ConfusionMatrixDisplay.plot` accepts a `text_kw` parameter which is
passed to matplotlib's `text` function. :pr:`24051` by `Thomas Fan`_.
- |Feature| :func:`metrics.class_likelihood_ratios` is added to compute the positive and
negative likelihood ratios derived from the confusion matrix
of a binary classification problem. :pr:`22518` by
:user:`Arturo Amor <ArturoAmorQ>`.
- |Feature| Add :class:`metrics.PredictionErrorDisplay` to plot residuals vs
predicted and actual vs predicted to qualitatively assess the behavior of a
regressor. The display can be created with the class methods
:func:`metrics.PredictionErrorDisplay.from_estimator` and
:func:`metrics.PredictionErrorDisplay.from_predictions`. :pr:`18020` by
:user:`Guillaume Lemaitre <glemaitre>`.
- |Feature| :func:`metrics.roc_auc_score` now supports micro-averaging
(`average="micro"`) for the One-vs-Rest multiclass case (`multi_class="ovr"`).
:pr:`24338` by :user:`Arturo Amor <ArturoAmorQ>`.
- |Enhancement| Adds an `"auto"` option to `eps` in :func:`metrics.log_loss`.
This option will automatically set the `eps` value depending on the data
type of `y_pred`. In addition, the default value of `eps` is changed from
`1e-15` to the new `"auto"` option.
:pr:`24354` by :user:`Safiuddin Khaja <Safikh>` and :user:`gsiisg <gsiisg>`.
- |Fix| Allows `csr_matrix` as input for parameter: `y_true` of
the :func:`metrics.label_ranking_average_precision_score` metric.
:pr:`23442` by :user:`Sean Atukorala <ShehanAT>`
- |Fix| :func:`metrics.ndcg_score` will now trigger a warning when the `y_true`
value contains a negative value. Users may still use negative values, but the
result may not be between 0 and 1. Starting in v1.4, passing in negative
values for `y_true` will raise an error.
:pr:`22710` by :user:`Conroy Trinh <trinhcon>` and
:pr:`23461` by :user:`Meekail Zain <micky774>`.
- |Fix| :func:`metrics.log_loss` with `eps=0` now returns a correct value of 0 or
`np.inf` instead of `nan` for predictions at the boundaries (0 or 1). It also accepts
integer input.
:pr:`24365` by :user:`Christian Lorentzen <lorentzenchr>`.
- |API| The parameter `sum_over_features` of
:func:`metrics.pairwise.manhattan_distances` is deprecated and will be removed in 1.4.
:pr:`24630` by :user:`Rushil Desai <rusdes>`.
:mod:`sklearn.model_selection`
..............................
- |Feature| Added the class :class:`model_selection.LearningCurveDisplay`
that allows to make easy plotting of learning curves obtained by the function
:func:`model_selection.learning_curve`.
:pr:`24084` by :user:`Guillaume Lemaitre <glemaitre>`.
- |Fix| For all `SearchCV` classes and scipy >= 1.10, rank corresponding to a
nan score is correctly set to the maximum possible rank, rather than
`np.iinfo(np.int32).min`. :pr:`24141` by :user:`Loïc Estève <lesteve>`.
- |Fix| In both :class:`model_selection.HalvingGridSearchCV` and
:class:`model_selection.HalvingRandomSearchCV` parameter
combinations with a NaN score now share the lowest rank.
:pr:`24539` by :user:`Tim Head <betatim>`.
- |Fix| For :class:`model_selection.GridSearchCV` and
:class:`model_selection.RandomizedSearchCV` ranks corresponding to nan
scores will all be set to the maximum possible rank.
:pr:`24543` by :user:`Guillaume Lemaitre <glemaitre>`.
:mod:`sklearn.multioutput`
..........................
- |Feature| Added boolean `verbose` flag to classes:
:class:`multioutput.ClassifierChain` and :class:`multioutput.RegressorChain`.
:pr:`23977` by :user:`Eric Fiegel <efiegel>`,
:user:`Chiara Marmo <cmarmo>`,
:user:`Lucy Liu <lucyleeow>`, and
:user:`Guillaume Lemaitre <glemaitre>`.
:mod:`sklearn.naive_bayes`
..........................
- |Feature| Add methods `predict_joint_log_proba` to all naive Bayes classifiers.
:pr:`23683` by :user:`Andrey Melnik <avm19>`.
- |Enhancement| A new parameter `force_alpha` was added to
:class:`naive_bayes.BernoulliNB`, :class:`naive_bayes.ComplementNB`,
:class:`naive_bayes.CategoricalNB`, and :class:`naive_bayes.MultinomialNB`,
allowing user to set parameter alpha to a very small number, greater or equal
0, which was earlier automatically changed to `1e-10` instead.
:pr:`16747` by :user:`arka204`,
:pr:`18805` by :user:`hongshaoyang`,
:pr:`22269` by :user:`Meekail Zain <micky774>`.
:mod:`sklearn.neighbors`
........................
- |Feature| Adds new function :func:`neighbors.sort_graph_by_row_values` to
sort a CSR sparse graph such that each row is stored with increasing values.
This is useful to improve efficiency when using precomputed sparse distance
matrices in a variety of estimators and avoid an `EfficiencyWarning`.
:pr:`23139` by `Tom Dupre la Tour`_.
- |Efficiency| :class:`neighbors.NearestCentroid` is faster and requires
less memory as it better leverages CPUs' caches to compute predictions.
:pr:`24645` by :user:`Olivier Grisel <ogrisel>`.
- |Enhancement| :class:`neighbors.KernelDensity` bandwidth parameter now accepts
definition using Scott's and Silverman's estimation methods.
:pr:`10468` by :user:`Ruben <icfly2>` and :pr:`22993` by
:user:`Jovan Stojanovic <jovan-stojanovic>`.
- |Enhancement| `neighbors.NeighborsBase` now accepts
Minkowski semi-metric (i.e. when :math:`0 < p < 1` for
`metric="minkowski"`) for `algorithm="auto"` or `algorithm="brute"`.
:pr:`24750` by :user:`Rudresh Veerkhare <RudreshVeerkhare>`
- |Fix| :class:`neighbors.NearestCentroid` now raises an informative error message at fit-time
instead of failing with a low-level error message at predict-time.
:pr:`23874` by :user:`Juan Gomez <2357juan>`.
- |Fix| Set `n_jobs=None` by default (instead of `1`) for
:class:`neighbors.KNeighborsTransformer` and
:class:`neighbors.RadiusNeighborsTransformer`.
:pr:`24075` by :user:`Valentin Laurent <Valentin-Laurent>`.
- |Enhancement| :class:`neighbors.LocalOutlierFactor` now preserves
dtype for `numpy.float32` inputs.
:pr:`22665` by :user:`Julien Jerphanion <jjerphan>`.
:mod:`sklearn.neural_network`
.............................
- |Fix| :class:`neural_network.MLPClassifier` and
:class:`neural_network.MLPRegressor` always expose the parameters `best_loss_`,
`validation_scores_`, and `best_validation_score_`. `best_loss_` is set to
`None` when `early_stopping=True`, while `validation_scores_` and
`best_validation_score_` are set to `None` when `early_stopping=False`.
:pr:`24683` by :user:`Guillaume Lemaitre <glemaitre>`.
:mod:`sklearn.pipeline`
.......................
- |Enhancement| :meth:`pipeline.FeatureUnion.get_feature_names_out` can now
be used when one of the transformers in the :class:`pipeline.FeatureUnion` is
`"passthrough"`. :pr:`24058` by :user:`Diederik Perdok <diederikwp>`
- |Enhancement| The :class:`pipeline.FeatureUnion` class now has a `named_transformers`
attribute for accessing transformers by name.
:pr:`20331` by :user:`Christopher Flynn <crflynn>`.
:mod:`sklearn.preprocessing`
............................
- |Enhancement| :class:`preprocessing.FunctionTransformer` will always try to set
`n_features_in_` and `feature_names_in_` regardless of the `validate` parameter.
:pr:`23993` by `Thomas Fan`_.
- |Fix| :class:`preprocessing.LabelEncoder` correctly encodes NaNs in `transform`.
:pr:`22629` by `Thomas Fan`_.
- |API| The `sparse` parameter of :class:`preprocessing.OneHotEncoder`
is now deprecated and will be removed in version 1.4. Use `sparse_output` instead.
:pr:`24412` by :user:`Rushil Desai <rusdes>`.
:mod:`sklearn.svm`
..................
- |API| The `class_weight_` attribute is now deprecated for
:class:`svm.NuSVR`, :class:`svm.SVR`, :class:`svm.OneClassSVM`.
:pr:`22898` by :user:`Meekail Zain <micky774>`.
:mod:`sklearn.tree`
...................
- |Enhancement| :func:`tree.plot_tree`, :func:`tree.export_graphviz` now uses
a lower case `x[i]` to represent feature `i`. :pr:`23480` by `Thomas Fan`_.
:mod:`sklearn.utils`
....................
- |Feature| A new module exposes development tools to discover estimators (i.e.
:func:`utils.discovery.all_estimators`), displays (i.e.
:func:`utils.discovery.all_displays`) and functions (i.e.
:func:`utils.discovery.all_functions`) in scikit-learn.
:pr:`21469` by :user:`Guillaume Lemaitre <glemaitre>`.
- |Enhancement| :func:`utils.extmath.randomized_svd` now accepts an argument,
`lapack_svd_driver`, to specify the lapack driver used in the internal
deterministic SVD used by the randomized SVD algorithm.
:pr:`20617` by :user:`Srinath Kailasa <skailasa>`
- |Enhancement| :func:`utils.validation.column_or_1d` now accepts a `dtype`
parameter to specific `y`'s dtype. :pr:`22629` by `Thomas Fan`_.
- |Enhancement| `utils.extmath.cartesian` now accepts arrays with different
`dtype` and will cast the output to the most permissive `dtype`.
:pr:`25067` by :user:`Guillaume Lemaitre <glemaitre>`.
- |Fix| :func:`utils.multiclass.type_of_target` now properly handles sparse matrices.
:pr:`14862` by :user:`Léonard Binet <leonardbinet>`.
- |Fix| HTML representation no longer errors when an estimator class is a value in
`get_params`. :pr:`24512` by `Thomas Fan`_.
- |Fix| :func:`utils.estimator_checks.check_estimator` now takes into account
the `requires_positive_X` tag correctly. :pr:`24667` by `Thomas Fan`_.
- |Fix| :func:`utils.check_array` now supports Pandas Series with `pd.NA`
by raising a better error message or returning a compatible `ndarray`.
:pr:`25080` by `Thomas Fan`_.
- |API| The extra keyword parameters of :func:`utils.extmath.density` are deprecated
and will be removed in 1.4.
:pr:`24523` by :user:`Mia Bajic <clytaemnestra>`.
.. rubric:: Code and documentation contributors
Thanks to everyone who has contributed to the maintenance and improvement of
the project since version 1.1, including:
2357juan, 3lLobo, Adam J. Stewart, Adam Kania, Adam Li, Aditya Anulekh, Admir
Demiraj, adoublet, Adrin Jalali, Ahmedbgh, Aiko, Akshita Prasanth, Ala-Na,
Alessandro Miola, Alex, Alexandr, Alexandre Perez-Lebel, Alex Buzenet, Ali H.
El-Kassas, aman kumar, Amit Bera, András Simon, Andreas Grivas, Andreas
Mueller, Andrew Wang, angela-maennel, Aniket Shirsat, Anthony22-dev, Antony
Lee, anupam, Apostolos Tsetoglou, Aravindh R, Artur Hermano, Arturo Amor,
as-90, ashah002, Ashwin Mathur, avm19, Azaria Gebremichael, b0rxington, Badr
MOUFAD, Bardiya Ak, Bartłomiej Gońda, BdeGraaff, Benjamin Bossan, Benjamin
Carter, berkecanrizai, Bernd Fritzke, Bhoomika, Biswaroop Mitra, Brandon TH
Chen, Brett Cannon, Bsh, cache-missing, carlo, Carlos Ramos Carreño, ceh,
chalulu, Changyao Chen, Charles Zablit, Chiara Marmo, Christian Lorentzen,
Christian Ritter, Christian Veenhuis, christianwaldmann, Christine P. Chai,
Claudio Salvatore Arcidiacono, Clément Verrier, crispinlogan, Da-Lan,
DanGonite57, Daniela Fernandes, DanielGaerber, darioka, Darren Nguyen,
davidblnc, david-cortes, David Gilbertson, David Poznik, Dayne, Dea María
Léon, Denis, Dev Khant, Dhanshree Arora, Diadochokinetic, diederikwp, Dimitri
Papadopoulos Orfanos, Dimitris Litsidis, drewhogg, Duarte OC, Dwight Lindquist,
Eden Brekke, Edern, Edoardo Abati, Eleanore Denies, EliaSchiavon, Emir,
ErmolaevPA, Fabrizio Damicelli, fcharras, Felipe Siola, Flynn,
francesco-tuveri, Franck Charras, ftorres16, Gael Varoquaux, Geevarghese
George, genvalen, GeorgiaMayDay, Gianr Lazz, Gleb Levitski, Glòria Macià
Muñoz, Guillaume Lemaitre, Guillem García Subies, Guitared, gunesbayir,
Haesun Park, Hansin Ahuja, Hao Chun Chang, Harsh Agrawal, harshit5674,
hasan-yaman, henrymooresc, Henry Sorsky, Hristo Vrigazov, htsedebenham, humahn,
i-aki-y, Ian Thompson, Ido M, Iglesys, Iliya Zhechev, Irene, ivanllt, Ivan
Sedykh, Jack McIvor, jakirkham, JanFidor, Jason G, Jérémie du Boisberranger,
Jiten Sidhpura, jkarolczak, João David, JohnathanPi, John Koumentis, John P,
John Pangas, johnthagen, Jordan Fleming, Joshua Choo Yun Keat, Jovan
Stojanovic, Juan Carlos Alfaro Jiménez, juanfe88, Juan Felipe Arias,
JuliaSchoepp, Julien Jerphanion, jygerardy, ka00ri, Kanishk Sachdev, Kanissh,
Kaushik Amar Das, Kendall, Kenneth Prabakaran, Kento Nozawa, kernc, Kevin
Roice, Kian Eliasi, Kilian Kluge, Kilian Lieret, Kirandevraj, Kraig, krishna
kumar, krishna vamsi, Kshitij Kapadni, Kshitij Mathur, Lauren Burke, Léonard
Binet, lingyi1110, Lisa Casino, Logan Thomas, Loic Esteve, Luciano Mantovani,
Lucy Liu, Maascha, Madhura Jayaratne, madinak, Maksym, Malte S. Kurz, Mansi
Agrawal, Marco Edward Gorelli, Marco Wurps, Maren Westermann, Maria Telenczuk,
Mario Kostelac, martin-kokos, Marvin Krawutschke, Masanori Kanazu, mathurinm,
Matt Haberland, mauroantonioserrano, Max Halford, Maxi Marufo, maximeSaur,
Maxim Smolskiy, Maxwell, m. bou, Meekail Zain, Mehgarg, mehmetcanakbay, Mia
Bajić, Michael Flaks, Michael Hornstein, Michel de Ruiter, Michelle Paradis,
Mikhail Iljin, Misa Ogura, Moritz Wilksch, mrastgoo, Naipawat Poolsawat, Naoise
Holohan, Nass, Nathan Jacobi, Nawazish Alam, Nguyễn Văn Diễn, Nicola
Fanelli, Nihal Thukarama Rao, Nikita Jare, nima10khodaveisi, Nima Sarajpoor,
nitinramvelraj, NNLNR, npache, Nwanna-Joseph, Nymark Kho, o-holman, Olivier
Grisel, Olle Lukowski, Omar Hassoun, Omar Salman, osman tamer, ouss1508,
Oyindamola Olatunji, PAB, Pandata, partev, Paulo Sergio Soares, Petar
Mlinarić, Peter Jansson, Peter Steinbach, Philipp Jung, Piet Brömmel, Pooja
M, Pooja Subramaniam, priyam kakati, puhuk, Rachel Freeland, Rachit Keerti Das,
Rafal Wojdyla, Raghuveer Bhat, Rahil Parikh, Ralf Gommers, ram vikram singh,
Ravi Makhija, Rehan Guha, Reshama Shaikh, Richard Klima, Rob Crockett, Robert
Hommes, Robert Juergens, Robin Lenz, Rocco Meli, Roman4oo, Ross Barnowski,
Rowan Mankoo, Rudresh Veerkhare, Rushil Desai, Sabri Monaf Sabri, Safikh,
Safiuddin Khaja, Salahuddin, Sam Adam Day, Sandra Yojana Meneses, Sandro
Ephrem, Sangam, SangamSwadik, SANJAI_3, SarahRemus, Sashka Warner, SavkoMax,
Scott Gigante, Scott Gustafson, Sean Atukorala, sec65, SELEE, seljaks, Shady el
Gewily, Shane, shellyfung, Shinsuke Mori, Shiva chauhan, Shoaib Khan, Shogo
Hida, Shrankhla Srivastava, Shuangchi He, Simon, sonnivs, Sortofamudkip,
Srinath Kailasa, Stanislav (Stanley) Modrak, Stefanie Molin, stellalin7,
Stéphane Collot, Steven Van Vaerenbergh, Steve Schmerler, Sven Stehle, Tabea
Kossen, TheDevPanda, the-syd-sre, Thijs van Weezel, Thomas Bonald, Thomas
Germer, Thomas J. Fan, Ti-Ion, Tim Head, Timofei Kornev, toastedyeast, Tobias
Pitters, Tom Dupré la Tour, tomiock, Tom Mathews, Tom McTiernan, tspeng, Tyler
Egashira, Valentin Laurent, Varun Jain, Vera Komeyer, Vicente Reyes-Puerta,
Vinayak Mehta, Vincent M, Vishal, Vyom Pathak, wattai, wchathura, WEN Hao,
William M, x110, Xiao Yuan, Xunius, yanhong-zhao-ef, Yusuf Raji, Z Adil Khwaja,
zeeshan lone
|