File: v1.3.rst

package info (click to toggle)
scikit-learn 1.4.2%2Bdfsg-8
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 25,036 kB
  • sloc: python: 201,105; cpp: 5,790; ansic: 854; makefile: 304; sh: 56; javascript: 20
file content (1003 lines) | stat: -rw-r--r-- 45,212 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
.. include:: _contributors.rst

.. currentmodule:: sklearn

.. _release_notes_1_3:

===========
Version 1.3
===========

For a short description of the main highlights of the release, please refer to
:ref:`sphx_glr_auto_examples_release_highlights_plot_release_highlights_1_3_0.py`.

.. include:: changelog_legend.inc

.. _changes_1_3_2:

Version 1.3.2
=============

**October 2023**

Changelog
---------

:mod:`sklearn.datasets`
.......................

- |Fix| All dataset fetchers now accept `data_home` as any object that implements
  the :class:`os.PathLike` interface, for instance, :class:`pathlib.Path`.
  :pr:`27468` by :user:`Yao Xiao <Charlie-XIAO>`.

:mod:`sklearn.decomposition`
............................

- |Fix| Fixes a bug in :class:`decomposition.KernelPCA` by forcing the output of
  the internal :class:`preprocessing.KernelCenterer` to be a default array. When the
  arpack solver is used, it expects an array with a `dtype` attribute.
  :pr:`27583` by :user:`Guillaume Lemaitre <glemaitre>`.

:mod:`sklearn.metrics`
......................

- |Fix| Fixes a bug for metrics using `zero_division=np.nan`
  (e.g. :func:`~metrics.precision_score`) within a paralell loop
  (e.g. :func:`~model_selection.cross_val_score`) where the singleton for `np.nan`
  will be different in the sub-processes.
  :pr:`27573` by :user:`Guillaume Lemaitre <glemaitre>`.

:mod:`sklearn.tree`
...................

- |Fix| Do not leak data via non-initialized memory in decision tree pickle files and make
  the generation of those files deterministic. :pr:`27580` by :user:`Loïc Estève <lesteve>`.


.. _changes_1_3_1:

Version 1.3.1
=============

**September 2023**

Changed models
--------------

The following estimators and functions, when fit with the same data and
parameters, may produce different models from the previous version. This often
occurs due to changes in the modelling logic (bug fixes or enhancements), or in
random sampling procedures.

- |Fix| Ridge models with `solver='sparse_cg'` may have slightly different
  results with scipy>=1.12, because of an underlying change in the scipy solver
  (see `scipy#18488 <https://github.com/scipy/scipy/pull/18488>`_ for more
  details)
  :pr:`26814` by :user:`Loïc Estève <lesteve>`

Changes impacting all modules
-----------------------------

- |Fix| The `set_output` API correctly works with list input. :pr:`27044` by
  `Thomas Fan`_.

Changelog
---------

:mod:`sklearn.calibration`
..........................

- |Fix| :class:`calibration.CalibratedClassifierCV` can now handle models that
  produce large prediction scores. Before it was numerically unstable.
  :pr:`26913` by :user:`Omar Salman <OmarManzoor>`.

:mod:`sklearn.cluster`
......................

- |Fix| :class:`cluster.BisectingKMeans` could crash when predicting on data
  with a different scale than the data used to fit the model.
  :pr:`27167` by `Olivier Grisel`_.

- |Fix| :class:`cluster.BisectingKMeans` now works with data that has a single feature.
  :pr:`27243` by :user:`Jérémie du Boisberranger <jeremiedbb>`.

:mod:`sklearn.cross_decomposition`
..................................

- |Fix| :class:`cross_decomposition.PLSRegression` now automatically ravels the output
  of `predict` if fitted with one dimensional `y`.
  :pr:`26602` by :user:`Yao Xiao <Charlie-XIAO>`.

:mod:`sklearn.ensemble`
.......................

- |Fix| Fix a bug in :class:`ensemble.AdaBoostClassifier` with `algorithm="SAMME"`
  where the decision function of each weak learner should be symmetric (i.e.
  the sum of the scores should sum to zero for a sample).
  :pr:`26521` by :user:`Guillaume Lemaitre <glemaitre>`.

:mod:`sklearn.feature_selection`
................................

- |Fix| :func:`feature_selection.mutual_info_regression` now correctly computes the
  result when `X` is of integer dtype. :pr:`26748` by :user:`Yao Xiao <Charlie-XIAO>`.

:mod:`sklearn.impute`
.....................

- |Fix| :class:`impute.KNNImputer` now correctly adds a missing indicator column in
  ``transform`` when ``add_indicator`` is set to ``True`` and missing values are observed
  during ``fit``. :pr:`26600` by :user:`Shreesha Kumar Bhat <Shreesha3112>`.

:mod:`sklearn.metrics`
......................

- |Fix| Scorers used with :func:`metrics.get_scorer` handle properly
  multilabel-indicator matrix.
  :pr:`27002` by :user:`Guillaume Lemaitre <glemaitre>`.

:mod:`sklearn.mixture`
......................

- |Fix| The initialization of :class:`mixture.GaussianMixture` from user-provided
  `precisions_init` for `covariance_type` of `full` or `tied` was not correct,
  and has been fixed.
  :pr:`26416` by :user:`Yang Tao <mchikyt3>`.

:mod:`sklearn.neighbors`
........................

- |Fix| :meth:`neighbors.KNeighborsClassifier.predict` no longer raises an
  exception for `pandas.DataFrames` input.
  :pr:`26772` by :user:`Jérémie du Boisberranger <jeremiedbb>`.

- |Fix| Reintroduce `sklearn.neighbors.BallTree.valid_metrics` and
  `sklearn.neighbors.KDTree.valid_metrics` as public class attributes.
  :pr:`26754` by :user:`Julien Jerphanion <jjerphan>`.

- |Fix| :class:`sklearn.model_selection.HalvingRandomSearchCV` no longer raises
  when the input to the `param_distributions` parameter is a list of dicts.
  :pr:`26893` by :user:`Stefanie Senger <StefanieSenger>`.

- |Fix| Neighbors based estimators now correctly work when `metric="minkowski"` and the
  metric parameter `p` is in the range `0 < p < 1`, regardless of the `dtype` of `X`.
  :pr:`26760` by :user:`Shreesha Kumar Bhat <Shreesha3112>`.

:mod:`sklearn.preprocessing`
............................

- |Fix| :class:`preprocessing.LabelEncoder` correctly accepts `y` as a keyword
  argument. :pr:`26940` by `Thomas Fan`_.

- |Fix| :class:`preprocessing.OneHotEncoder` shows a more informative error message
  when `sparse_output=True` and the output is configured to be pandas.
  :pr:`26931` by `Thomas Fan`_.

:mod:`sklearn.tree`
...................

- |Fix| :func:`tree.plot_tree` now accepts `class_names=True` as documented.
  :pr:`26903` by :user:`Thomas Roehr <2maz>`

- |Fix| The `feature_names` parameter of :func:`tree.plot_tree` now accepts any kind of
  array-like instead of just a list. :pr:`27292` by :user:`Rahil Parikh <rprkh>`.

.. _changes_1_3:

Version 1.3.0
=============

**June 2023**

Changed models
--------------

The following estimators and functions, when fit with the same data and
parameters, may produce different models from the previous version. This often
occurs due to changes in the modelling logic (bug fixes or enhancements), or in
random sampling procedures.

- |Enhancement| :meth:`multiclass.OutputCodeClassifier.predict` now uses a more
  efficient pairwise distance reduction. As a consequence, the tie-breaking
  strategy is different and thus the predicted labels may be different.
  :pr:`25196` by :user:`Guillaume Lemaitre <glemaitre>`.

- |Enhancement| The `fit_transform` method of :class:`decomposition.DictionaryLearning`
  is more efficient but may produce different results as in previous versions when
  `transform_algorithm` is not the same as `fit_algorithm` and the number of iterations
  is small. :pr:`24871` by :user:`Omar Salman <OmarManzoor>`.

- |Enhancement| The `sample_weight` parameter now will be used in centroids
  initialization for :class:`cluster.KMeans`, :class:`cluster.BisectingKMeans`
  and :class:`cluster.MiniBatchKMeans`.
  This change will break backward compatibility, since numbers generated
  from same random seeds will be different.
  :pr:`25752` by :user:`Gleb Levitski <glevv>`,
  :user:`Jérémie du Boisberranger <jeremiedbb>`,
  :user:`Guillaume Lemaitre <glemaitre>`.

- |Fix| Treat more consistently small values in the `W` and `H` matrices during the
  `fit` and `transform` steps of :class:`decomposition.NMF` and
  :class:`decomposition.MiniBatchNMF` which can produce different results than previous
  versions. :pr:`25438` by :user:`Yotam Avidar-Constantini <yotamcons>`.

- |Fix| :class:`decomposition.KernelPCA` may produce different results through
  `inverse_transform` if `gamma` is `None`. Now it will be chosen correctly as
  `1/n_features` of the data that it is fitted on, while previously it might be
  incorrectly chosen as `1/n_features` of the data passed to `inverse_transform`.
  A new attribute `gamma_` is provided for revealing the actual value of `gamma`
  used each time the kernel is called.
  :pr:`26337` by :user:`Yao Xiao <Charlie-XIAO>`.

Changed displays
----------------

- |Enhancement| :class:`model_selection.LearningCurveDisplay` displays both the
  train and test curves by default. You can set `score_type="test"` to keep the
  past behaviour.
  :pr:`25120` by :user:`Guillaume Lemaitre <glemaitre>`.

- |Fix| :class:`model_selection.ValidationCurveDisplay` now accepts passing a
  list to the `param_range` parameter.
  :pr:`27311` by :user:`Arturo Amor <ArturoAmorQ>`.

Changes impacting all modules
-----------------------------

- |Enhancement| The `get_feature_names_out` method of the following classes now
  raises a `NotFittedError` if the instance is not fitted. This ensures the error is
  consistent in all estimators with the `get_feature_names_out` method.

  - :class:`impute.MissingIndicator`
  - :class:`feature_extraction.DictVectorizer`
  - :class:`feature_extraction.text.TfidfTransformer`
  - :class:`feature_selection.GenericUnivariateSelect`
  - :class:`feature_selection.RFE`
  - :class:`feature_selection.RFECV`
  - :class:`feature_selection.SelectFdr`
  - :class:`feature_selection.SelectFpr`
  - :class:`feature_selection.SelectFromModel`
  - :class:`feature_selection.SelectFwe`
  - :class:`feature_selection.SelectKBest`
  - :class:`feature_selection.SelectPercentile`
  - :class:`feature_selection.SequentialFeatureSelector`
  - :class:`feature_selection.VarianceThreshold`
  - :class:`kernel_approximation.AdditiveChi2Sampler`
  - :class:`impute.IterativeImputer`
  - :class:`impute.KNNImputer`
  - :class:`impute.SimpleImputer`
  - :class:`isotonic.IsotonicRegression`
  - :class:`preprocessing.Binarizer`
  - :class:`preprocessing.KBinsDiscretizer`
  - :class:`preprocessing.MaxAbsScaler`
  - :class:`preprocessing.MinMaxScaler`
  - :class:`preprocessing.Normalizer`
  - :class:`preprocessing.OrdinalEncoder`
  - :class:`preprocessing.PowerTransformer`
  - :class:`preprocessing.QuantileTransformer`
  - :class:`preprocessing.RobustScaler`
  - :class:`preprocessing.SplineTransformer`
  - :class:`preprocessing.StandardScaler`
  - :class:`random_projection.GaussianRandomProjection`
  - :class:`random_projection.SparseRandomProjection`

  The `NotFittedError` displays an informative message asking to fit the instance
  with the appropriate arguments.

  :pr:`25294`, :pr:`25308`, :pr:`25291`, :pr:`25367`, :pr:`25402`,
  by :user:`John Pangas <jpangas>`, :user:`Rahil Parikh <rprkh>` ,
  and :user:`Alex Buzenet <albuzenet>`.

- |Enhancement| Added a multi-threaded Cython routine to the compute squared
  Euclidean distances (sometimes followed by a fused reduction operation) for a
  pair of datasets consisting of a sparse CSR matrix and a dense NumPy.

  This can improve the performance of following functions and estimators:

  - :func:`sklearn.metrics.pairwise_distances_argmin`
  - :func:`sklearn.metrics.pairwise_distances_argmin_min`
  - :class:`sklearn.cluster.AffinityPropagation`
  - :class:`sklearn.cluster.Birch`
  - :class:`sklearn.cluster.MeanShift`
  - :class:`sklearn.cluster.OPTICS`
  - :class:`sklearn.cluster.SpectralClustering`
  - :func:`sklearn.feature_selection.mutual_info_regression`
  - :class:`sklearn.neighbors.KNeighborsClassifier`
  - :class:`sklearn.neighbors.KNeighborsRegressor`
  - :class:`sklearn.neighbors.RadiusNeighborsClassifier`
  - :class:`sklearn.neighbors.RadiusNeighborsRegressor`
  - :class:`sklearn.neighbors.LocalOutlierFactor`
  - :class:`sklearn.neighbors.NearestNeighbors`
  - :class:`sklearn.manifold.Isomap`
  - :class:`sklearn.manifold.LocallyLinearEmbedding`
  - :class:`sklearn.manifold.TSNE`
  - :func:`sklearn.manifold.trustworthiness`
  - :class:`sklearn.semi_supervised.LabelPropagation`
  - :class:`sklearn.semi_supervised.LabelSpreading`

  A typical example of this performance improvement happens when passing a sparse
  CSR matrix to the `predict` or `transform` method of estimators that rely on
  a dense NumPy representation to store their fitted parameters (or the reverse).

  For instance, :meth:`sklearn.neighbors.NearestNeighbors.kneighbors` is now up
  to 2 times faster for this case on commonly available laptops.

  :pr:`25044` by :user:`Julien Jerphanion <jjerphan>`.

- |Enhancement| All estimators that internally rely on OpenMP multi-threading
  (via Cython) now use a number of threads equal to the number of physical
  (instead of logical) cores by default. In the past, we observed that using as
  many threads as logical cores on SMT hosts could sometimes cause severe
  performance problems depending on the algorithms and the shape of the data.
  Note that it is still possible to manually adjust the number of threads used
  by OpenMP as documented in :ref:`parallelism`.

  :pr:`26082` by :user:`Jérémie du Boisberranger <jeremiedbb>` and
  :user:`Olivier Grisel <ogrisel>`.

Experimental / Under Development
--------------------------------

- |MajorFeature| :ref:`Metadata routing <metadata_routing>`'s related base
  methods are included in this release. This feature is only available via the
  `enable_metadata_routing` feature flag which can be enabled using
  :func:`sklearn.set_config` and :func:`sklearn.config_context`. For now this
  feature is mostly useful for third party developers to prepare their code
  base for metadata routing, and we strongly recommend that they also hide it
  behind the same feature flag, rather than having it enabled by default.
  :pr:`24027` by `Adrin Jalali`_, :user:`Benjamin Bossan <BenjaminBossan>`, and
  :user:`Omar Salman <OmarManzoor>`.

Changelog
---------

..
    Entries should be grouped by module (in alphabetic order) and prefixed with
    one of the labels: |MajorFeature|, |Feature|, |Efficiency|, |Enhancement|,
    |Fix| or |API| (see whats_new.rst for descriptions).
    Entries should be ordered by those labels (e.g. |Fix| after |Efficiency|).
    Changes not specific to a module should be listed under *Multiple Modules*
    or *Miscellaneous*.
    Entries should end with:
    :pr:`123456` by :user:`Joe Bloggs <joeongithub>`.
    where 123456 is the *pull request* number, not the issue number.

`sklearn`
.........

- |Feature| Added a new option `skip_parameter_validation`, to the function
  :func:`sklearn.set_config` and context manager :func:`sklearn.config_context`, that
  allows to skip the validation of the parameters passed to the estimators and public
  functions. This can be useful to speed up the code but should be used with care
  because it can lead to unexpected behaviors or raise obscure error messages when
  setting invalid parameters.
  :pr:`25815` by :user:`Jérémie du Boisberranger <jeremiedbb>`.

:mod:`sklearn.base`
...................

- |Feature| A `__sklearn_clone__` protocol is now available to override the
  default behavior of :func:`base.clone`. :pr:`24568` by `Thomas Fan`_.

- |Fix| :class:`base.TransformerMixin` now currently keeps a namedtuple's class
  if `transform` returns a namedtuple. :pr:`26121` by `Thomas Fan`_.

:mod:`sklearn.calibration`
..........................

- |Fix| :class:`calibration.CalibratedClassifierCV` now does not enforce sample
  alignment on `fit_params`. :pr:`25805` by `Adrin Jalali`_.

:mod:`sklearn.cluster`
......................

- |MajorFeature| Added :class:`cluster.HDBSCAN`, a modern hierarchical density-based
  clustering algorithm. Similarly to :class:`cluster.OPTICS`, it can be seen as a
  generalization of :class:`cluster.DBSCAN` by allowing for hierarchical instead of flat
  clustering, however it varies in its approach from :class:`cluster.OPTICS`. This
  algorithm is very robust with respect to its hyperparameters' values and can
  be used on a wide variety of data without much, if any, tuning.

  This implementation is an adaptation from the original implementation of HDBSCAN in
  `scikit-learn-contrib/hdbscan <https://github.com/scikit-learn-contrib/hdbscan>`_,
  by :user:`Leland McInnes <lmcinnes>` et al.

  :pr:`26385` by :user:`Meekail Zain <micky774>`

- |Enhancement| The `sample_weight` parameter now will be used in centroids
  initialization for :class:`cluster.KMeans`, :class:`cluster.BisectingKMeans`
  and :class:`cluster.MiniBatchKMeans`.
  This change will break backward compatibility, since numbers generated
  from same random seeds will be different.
  :pr:`25752` by :user:`Gleb Levitski <glevv>`,
  :user:`Jérémie du Boisberranger <jeremiedbb>`,
  :user:`Guillaume Lemaitre <glemaitre>`.

- |Fix| :class:`cluster.KMeans`, :class:`cluster.MiniBatchKMeans` and
  :func:`cluster.k_means` now correctly handle the combination of `n_init="auto"`
  and `init` being an array-like, running one initialization in that case.
  :pr:`26657` by :user:`Binesh Bannerjee <bnsh>`.

- |API| The `sample_weight` parameter in `predict` for
  :meth:`cluster.KMeans.predict` and :meth:`cluster.MiniBatchKMeans.predict`
  is now deprecated and will be removed in v1.5.
  :pr:`25251` by :user:`Gleb Levitski <glevv>`.

- |API| The `Xred` argument in :func:`cluster.FeatureAgglomeration.inverse_transform`
  is renamed to `Xt` and will be removed in v1.5. :pr:`26503` by `Adrin Jalali`_.

:mod:`sklearn.compose`
......................

- |Fix| :class:`compose.ColumnTransformer` raises an informative error when the individual
  transformers of `ColumnTransformer` output pandas dataframes with indexes that are
  not consistent with each other and the output is configured to be pandas.
  :pr:`26286` by `Thomas Fan`_.

- |Fix| :class:`compose.ColumnTransformer` correctly sets the output of the
  remainder when `set_output` is called. :pr:`26323` by `Thomas Fan`_.

:mod:`sklearn.covariance`
.........................

- |Fix| Allows `alpha=0` in :class:`covariance.GraphicalLasso` to be
  consistent with :func:`covariance.graphical_lasso`.
  :pr:`26033` by :user:`Genesis Valencia <genvalen>`.

- |Fix| :func:`covariance.empirical_covariance` now gives an informative
  error message when input is not appropriate.
  :pr:`26108` by :user:`Quentin Barthélemy <qbarthelemy>`.

- |API| Deprecates `cov_init` in :func:`covariance.graphical_lasso` in 1.3 since
  the parameter has no effect. It will be removed in 1.5.
  :pr:`26033` by :user:`Genesis Valencia <genvalen>`.

- |API| Adds `costs_` fitted attribute in :class:`covariance.GraphicalLasso` and
  :class:`covariance.GraphicalLassoCV`.
  :pr:`26033` by :user:`Genesis Valencia <genvalen>`.

- |API| Adds `covariance` parameter in :class:`covariance.GraphicalLasso`.
  :pr:`26033` by :user:`Genesis Valencia <genvalen>`.

- |API| Adds `eps` parameter in :class:`covariance.GraphicalLasso`,
  :func:`covariance.graphical_lasso`, and :class:`covariance.GraphicalLassoCV`.
  :pr:`26033` by :user:`Genesis Valencia <genvalen>`.

:mod:`sklearn.datasets`
.......................

- |Enhancement| Allows to overwrite the parameters used to open the ARFF file using
  the parameter `read_csv_kwargs` in :func:`datasets.fetch_openml` when using the
  pandas parser.
  :pr:`26433` by :user:`Guillaume Lemaitre <glemaitre>`.

- |Fix| :func:`datasets.fetch_openml` returns improved data types when
  `as_frame=True` and `parser="liac-arff"`. :pr:`26386` by `Thomas Fan`_.

- |Fix| Following the ARFF specs, only the marker `"?"` is now considered as a missing
  values when opening ARFF files fetched using :func:`datasets.fetch_openml` when using
  the pandas parser. The parameter `read_csv_kwargs` allows to overwrite this behaviour.
  :pr:`26551` by :user:`Guillaume Lemaitre <glemaitre>`.

- |Fix| :func:`datasets.fetch_openml` will consistently use `np.nan` as missing marker
  with both parsers `"pandas"` and `"liac-arff"`.
  :pr:`26579` by :user:`Guillaume Lemaitre <glemaitre>`.

- |API| The `data_transposed` argument of :func:`datasets.make_sparse_coded_signal`
  is deprecated and will be removed in v1.5.
  :pr:`25784` by :user:`Jérémie du Boisberranger`.

:mod:`sklearn.decomposition`
............................

- |Efficiency| :class:`decomposition.MiniBatchDictionaryLearning` and
  :class:`decomposition.MiniBatchSparsePCA` are now faster for small batch sizes by
  avoiding duplicate validations.
  :pr:`25490` by :user:`Jérémie du Boisberranger <jeremiedbb>`.

- |Enhancement| :class:`decomposition.DictionaryLearning` now accepts the parameter
  `callback` for consistency with the function :func:`decomposition.dict_learning`.
  :pr:`24871` by :user:`Omar Salman <OmarManzoor>`.

- |Fix| Treat more consistently small values in the `W` and `H` matrices during the
  `fit` and `transform` steps of :class:`decomposition.NMF` and
  :class:`decomposition.MiniBatchNMF` which can produce different results than previous
  versions. :pr:`25438` by :user:`Yotam Avidar-Constantini <yotamcons>`.

- |API| The `W` argument in :func:`decomposition.NMF.inverse_transform` and
  :class:`decomposition.MiniBatchNMF.inverse_transform` is renamed to `Xt` and
  will be removed in v1.5. :pr:`26503` by `Adrin Jalali`_.

:mod:`sklearn.discriminant_analysis`
....................................

- |Enhancement| :class:`discriminant_analysis.LinearDiscriminantAnalysis` now
  supports the `PyTorch <https://pytorch.org/>`__. See
  :ref:`array_api` for more details. :pr:`25956` by `Thomas Fan`_.

:mod:`sklearn.ensemble`
.......................

- |Feature| :class:`ensemble.HistGradientBoostingRegressor` now supports
  the Gamma deviance loss via `loss="gamma"`.
  Using the Gamma deviance as loss function comes in handy for modelling skewed
  distributed, strictly positive valued targets.
  :pr:`22409` by :user:`Christian Lorentzen <lorentzenchr>`.

- |Feature| Compute a custom out-of-bag score by passing a callable to
  :class:`ensemble.RandomForestClassifier`, :class:`ensemble.RandomForestRegressor`,
  :class:`ensemble.ExtraTreesClassifier` and :class:`ensemble.ExtraTreesRegressor`.
  :pr:`25177` by `Tim Head`_.

- |Feature| :class:`ensemble.GradientBoostingClassifier` now exposes
  out-of-bag scores via the `oob_scores_` or `oob_score_` attributes.
  :pr:`24882` by :user:`Ashwin Mathur <awinml>`.

- |Efficiency| :class:`ensemble.IsolationForest` predict time is now faster
  (typically by a factor of 8 or more). Internally, the estimator now precomputes
  decision path lengths per tree at `fit` time. It is therefore not possible
  to load an estimator trained with scikit-learn 1.2 to make it predict with
  scikit-learn 1.3: retraining with scikit-learn 1.3 is required.
  :pr:`25186` by :user:`Felipe Breve Siola <fsiola>`.

- |Efficiency| :class:`ensemble.RandomForestClassifier` and
  :class:`ensemble.RandomForestRegressor` with `warm_start=True` now only
  recomputes out-of-bag scores when there are actually more `n_estimators`
  in subsequent `fit` calls.
  :pr:`26318` by :user:`Joshua Choo Yun Keat <choo8>`.

- |Enhancement| :class:`ensemble.BaggingClassifier` and
  :class:`ensemble.BaggingRegressor` expose the `allow_nan` tag from the
  underlying estimator. :pr:`25506` by `Thomas Fan`_.

- |Fix| :meth:`ensemble.RandomForestClassifier.fit` sets `max_samples = 1`
  when `max_samples` is a float and `round(n_samples * max_samples) < 1`.
  :pr:`25601` by :user:`Jan Fidor <JanFidor>`.

- |Fix| :meth:`ensemble.IsolationForest.fit` no longer warns about missing
  feature names when called with `contamination` not `"auto"` on a pandas
  dataframe.
  :pr:`25931` by :user:`Yao Xiao <Charlie-XIAO>`.

- |Fix| :class:`ensemble.HistGradientBoostingRegressor` and
  :class:`ensemble.HistGradientBoostingClassifier` treats negative values for
  categorical features consistently as missing values, following LightGBM's and
  pandas' conventions.
  :pr:`25629` by `Thomas Fan`_.

- |Fix| Fix deprecation of `base_estimator` in :class:`ensemble.AdaBoostClassifier`
  and :class:`ensemble.AdaBoostRegressor` that was introduced in :pr:`23819`.
  :pr:`26242` by :user:`Marko Toplak <markotoplak>`.

:mod:`sklearn.exceptions`
.........................

- |Feature| Added :class:`exceptions.InconsistentVersionWarning` which is raised
  when a scikit-learn estimator is unpickled with a scikit-learn version that is
  inconsistent with the sckit-learn version the estimator was pickled with.
  :pr:`25297` by `Thomas Fan`_.

:mod:`sklearn.feature_extraction`
.................................

- |API| :class:`feature_extraction.image.PatchExtractor` now follows the
  transformer API of scikit-learn. This class is defined as a stateless transformer
  meaning that it is note required to call `fit` before calling `transform`.
  Parameter validation only happens at `fit` time.
  :pr:`24230` by :user:`Guillaume Lemaitre <glemaitre>`.

:mod:`sklearn.feature_selection`
................................

- |Enhancement| All selectors in :mod:`sklearn.feature_selection` will preserve
  a DataFrame's dtype when transformed. :pr:`25102` by `Thomas Fan`_.

- |Fix| :class:`feature_selection.SequentialFeatureSelector`'s `cv` parameter
  now supports generators. :pr:`25973` by `Yao Xiao <Charlie-XIAO>`.

:mod:`sklearn.impute`
.....................

- |Enhancement| Added the parameter `fill_value` to :class:`impute.IterativeImputer`.
  :pr:`25232` by :user:`Thijs van Weezel <ValueInvestorThijs>`.

- |Fix| :class:`impute.IterativeImputer` now correctly preserves the Pandas
  Index when the `set_config(transform_output="pandas")`. :pr:`26454` by `Thomas Fan`_.

:mod:`sklearn.inspection`
.........................

- |Enhancement| Added support for `sample_weight` in
  :func:`inspection.partial_dependence` and
  :meth:`inspection.PartialDependenceDisplay.from_estimator`. This allows for
  weighted averaging when aggregating for each value of the grid we are making the
  inspection on. The option is only available when `method` is set to `brute`.
  :pr:`25209` and :pr:`26644` by :user:`Carlo Lemos <vitaliset>`.

- |API| :func:`inspection.partial_dependence` returns a :class:`utils.Bunch` with
  new key: `grid_values`. The `values` key is deprecated in favor of `grid_values`
  and the `values` key will be removed in 1.5.
  :pr:`21809` and :pr:`25732` by `Thomas Fan`_.

:mod:`sklearn.kernel_approximation`
...................................

- |Fix| :class:`kernel_approximation.AdditiveChi2Sampler` is now stateless.
  The `sample_interval_` attribute is deprecated and will be removed in 1.5.
  :pr:`25190` by :user:`Vincent Maladière <Vincent-Maladiere>`.

:mod:`sklearn.linear_model`
...........................

- |Efficiency| Avoid data scaling when `sample_weight=None` and other
  unnecessary data copies and unexpected dense to sparse data conversion in
  :class:`linear_model.LinearRegression`.
  :pr:`26207` by :user:`Olivier Grisel <ogrisel>`.

- |Enhancement| :class:`linear_model.SGDClassifier`,
  :class:`linear_model.SGDRegressor` and :class:`linear_model.SGDOneClassSVM`
  now preserve dtype for `numpy.float32`.
  :pr:`25587` by :user:`Omar Salman <OmarManzoor>`.

- |Enhancement| The `n_iter_` attribute has been included in
  :class:`linear_model.ARDRegression` to expose the actual number of iterations
  required to reach the stopping criterion.
  :pr:`25697` by :user:`John Pangas <jpangas>`.

- |Fix| Use a more robust criterion to detect convergence of
  :class:`linear_model.LogisticRegression` with `penalty="l1"` and `solver="liblinear"`
  on linearly separable problems.
  :pr:`25214` by `Tom Dupre la Tour`_.

- |Fix| Fix a crash when calling `fit` on
  :class:`linear_model.LogisticRegression` with `solver="newton-cholesky"` and
  `max_iter=0` which failed to inspect the state of the model prior to the
  first parameter update.
  :pr:`26653` by :user:`Olivier Grisel <ogrisel>`.

- |API| Deprecates `n_iter` in favor of `max_iter` in
  :class:`linear_model.BayesianRidge` and :class:`linear_model.ARDRegression`.
  `n_iter` will be removed in scikit-learn 1.5. This change makes those
  estimators consistent with the rest of estimators.
  :pr:`25697` by :user:`John Pangas <jpangas>`.

:mod:`sklearn.manifold`
.......................

- |Fix| :class:`manifold.Isomap` now correctly preserves the Pandas
  Index when the `set_config(transform_output="pandas")`. :pr:`26454` by `Thomas Fan`_.

:mod:`sklearn.metrics`
......................

- |Feature| Adds `zero_division=np.nan` to multiple classification metrics:
  :func:`metrics.precision_score`, :func:`metrics.recall_score`,
  :func:`metrics.f1_score`, :func:`metrics.fbeta_score`,
  :func:`metrics.precision_recall_fscore_support`,
  :func:`metrics.classification_report`. When `zero_division=np.nan` and there is a
  zero division, the metric is undefined and is excluded from averaging. When not used
  for averages, the value returned is `np.nan`.
  :pr:`25531` by :user:`Marc Torrellas Socastro <marctorsoc>`.

- |Feature| :func:`metrics.average_precision_score` now supports the
  multiclass case.
  :pr:`17388` by :user:`Geoffrey Bolmier <gbolmier>` and
  :pr:`24769` by :user:`Ashwin Mathur <awinml>`.

- |Efficiency| The computation of the expected mutual information in
  :func:`metrics.adjusted_mutual_info_score` is now faster when the number of
  unique labels is large and its memory usage is reduced in general.
  :pr:`25713` by :user:`Kshitij Mathur <Kshitij68>`,
  :user:`Guillaume Lemaitre <glemaitre>`, :user:`Omar Salman <OmarManzoor>` and
  :user:`Jérémie du Boisberranger <jeremiedbb>`.

- |Enhancement| :class:`metrics.silhouette_samples` nows accepts a sparse
  matrix of pairwise distances between samples, or a feature array.
  :pr:`18723` by :user:`Sahil Gupta <sahilgupta2105>` and
  :pr:`24677` by :user:`Ashwin Mathur <awinml>`.

- |Enhancement| A new parameter `drop_intermediate` was added to
  :func:`metrics.precision_recall_curve`,
  :func:`metrics.PrecisionRecallDisplay.from_estimator`,
  :func:`metrics.PrecisionRecallDisplay.from_predictions`,
  which drops some suboptimal thresholds to create lighter precision-recall
  curves.
  :pr:`24668` by :user:`dberenbaum`.

- |Enhancement| :meth:`metrics.RocCurveDisplay.from_estimator` and
  :meth:`metrics.RocCurveDisplay.from_predictions` now accept two new keywords,
  `plot_chance_level` and `chance_level_kw` to plot the baseline chance
  level. This line is exposed in the `chance_level_` attribute.
  :pr:`25987` by :user:`Yao Xiao <Charlie-XIAO>`.

- |Enhancement| :meth:`metrics.PrecisionRecallDisplay.from_estimator` and
  :meth:`metrics.PrecisionRecallDisplay.from_predictions` now accept two new
  keywords, `plot_chance_level` and `chance_level_kw` to plot the baseline
  chance level. This line is exposed in the `chance_level_` attribute.
  :pr:`26019` by :user:`Yao Xiao <Charlie-XIAO>`.

- |Fix| :func:`metrics.pairwise.manhattan_distances` now supports readonly sparse datasets.
  :pr:`25432` by :user:`Julien Jerphanion <jjerphan>`.

- |Fix| Fixed :func:`metrics.classification_report` so that empty input will return
  `np.nan`. Previously, "macro avg" and `weighted avg` would return
  e.g. `f1-score=np.nan` and `f1-score=0.0`, being inconsistent. Now, they
  both return `np.nan`.
  :pr:`25531` by :user:`Marc Torrellas Socastro <marctorsoc>`.

- |Fix| :func:`metrics.ndcg_score` now gives a meaningful error message for input of
  length 1.
  :pr:`25672` by :user:`Lene Preuss <lene>` and :user:`Wei-Chun Chu <wcchu>`.

- |Fix| :func:`metrics.log_loss` raises a warning if the values of the parameter
  `y_pred` are not normalized, instead of actually normalizing them in the metric.
  Starting from 1.5 this will raise an error.
  :pr:`25299` by :user:`Omar Salman <OmarManzoor`.

- |Fix| In :func:`metrics.roc_curve`, use the threshold value `np.inf` instead of
  arbitrary `max(y_score) + 1`. This threshold is associated with the ROC curve point
  `tpr=0` and `fpr=0`.
  :pr:`26194` by :user:`Guillaume Lemaitre <glemaitre>`.

- |Fix| The `'matching'` metric has been removed when using SciPy>=1.9
  to be consistent with `scipy.spatial.distance` which does not support
  `'matching'` anymore.
  :pr:`26264` by :user:`Barata T. Onggo <magnusbarata>`

- |API| The `eps` parameter of the :func:`metrics.log_loss` has been deprecated and
  will be removed in 1.5. :pr:`25299` by :user:`Omar Salman <OmarManzoor>`.

:mod:`sklearn.gaussian_process`
...............................

- |Fix| :class:`gaussian_process.GaussianProcessRegressor` has a new argument
  `n_targets`, which is used to decide the number of outputs when sampling
  from the prior distributions. :pr:`23099` by :user:`Zhehao Liu <MaxwellLZH>`.

:mod:`sklearn.mixture`
......................

- |Efficiency| :class:`mixture.GaussianMixture` is more efficient now and will bypass
  unnecessary initialization if the weights, means, and precisions are
  given by users.
  :pr:`26021` by :user:`Jiawei Zhang <jiawei-zhang-a>`.

:mod:`sklearn.model_selection`
..............................

- |MajorFeature| Added the class :class:`model_selection.ValidationCurveDisplay`
  that allows easy plotting of validation curves obtained by the function
  :func:`model_selection.validation_curve`.
  :pr:`25120` by :user:`Guillaume Lemaitre <glemaitre>`.

- |API| The parameter `log_scale` in the class
  :class:`model_selection.LearningCurveDisplay` has been deprecated in 1.3 and
  will be removed in 1.5. The default scale can be overridden by setting it
  directly on the `ax` object and will be set automatically from the spacing
  of the data points otherwise.
  :pr:`25120` by :user:`Guillaume Lemaitre <glemaitre>`.

- |Enhancement| :func:`model_selection.cross_validate` accepts a new parameter
  `return_indices` to return the train-test indices of each cv split.
  :pr:`25659` by :user:`Guillaume Lemaitre <glemaitre>`.

:mod:`sklearn.multioutput`
..........................

- |Fix| :func:`getattr` on :meth:`multioutput.MultiOutputRegressor.partial_fit`
  and :meth:`multioutput.MultiOutputClassifier.partial_fit` now correctly raise
  an `AttributeError` if done before calling `fit`. :pr:`26333` by `Adrin
  Jalali`_.

:mod:`sklearn.naive_bayes`
..........................

- |Fix| :class:`naive_bayes.GaussianNB` does not raise anymore a `ZeroDivisionError`
  when the provided `sample_weight` reduces the problem to a single class in `fit`.
  :pr:`24140` by :user:`Jonathan Ohayon <Johayon>` and :user:`Chiara Marmo <cmarmo>`.

:mod:`sklearn.neighbors`
........................

- |Enhancement| The performance of :meth:`neighbors.KNeighborsClassifier.predict`
  and of :meth:`neighbors.KNeighborsClassifier.predict_proba` has been improved
  when `n_neighbors` is large and `algorithm="brute"` with non Euclidean metrics.
  :pr:`24076` by :user:`Meekail Zain <micky774>`, :user:`Julien Jerphanion <jjerphan>`.

- |Fix| Remove support for `KulsinskiDistance` in :class:`neighbors.BallTree`. This
  dissimilarity is not a metric and cannot be supported by the BallTree.
  :pr:`25417` by :user:`Guillaume Lemaitre <glemaitre>`.

- |API| The support for metrics other than `euclidean` and `manhattan` and for
  callables in :class:`neighbors.NearestNeighbors` is deprecated and will be removed in
  version 1.5. :pr:`24083` by :user:`Valentin Laurent <Valentin-Laurent>`.

:mod:`sklearn.neural_network`
.............................

- |Fix| :class:`neural_network.MLPRegressor` and :class:`neural_network.MLPClassifier`
  reports the right `n_iter_` when `warm_start=True`. It corresponds to the number
  of iterations performed on the current call to `fit` instead of the total number
  of iterations performed since the initialization of the estimator.
  :pr:`25443` by :user:`Marvin Krawutschke <Marvvxi>`.

:mod:`sklearn.pipeline`
.......................

- |Feature| :class:`pipeline.FeatureUnion` can now use indexing notation (e.g.
  `feature_union["scalar"]`) to access transformers by name. :pr:`25093` by
  `Thomas Fan`_.

- |Feature| :class:`pipeline.FeatureUnion` can now access the
  `feature_names_in_` attribute if the `X` value seen during `.fit` has a
  `columns` attribute and all columns are strings. e.g. when `X` is a
  `pandas.DataFrame`
  :pr:`25220` by :user:`Ian Thompson <it176131>`.

- |Fix| :meth:`pipeline.Pipeline.fit_transform` now raises an `AttributeError`
  if the last step of the pipeline does not support `fit_transform`.
  :pr:`26325` by `Adrin Jalali`_.

:mod:`sklearn.preprocessing`
............................

- |MajorFeature| Introduces :class:`preprocessing.TargetEncoder` which is a
  categorical encoding based on target mean conditioned on the value of the
  category. :pr:`25334` by `Thomas Fan`_.

- |Feature| :class:`preprocessing.OrdinalEncoder` now supports grouping
  infrequent categories into a single feature. Grouping infrequent categories
  is enabled by specifying how to select infrequent categories with
  `min_frequency` or `max_categories`. :pr:`25677` by `Thomas Fan`_.

- |Enhancement| :class:`preprocessing.PolynomialFeatures` now calculates the
  number of expanded terms a-priori when dealing with sparse `csr` matrices
  in order to optimize the choice of `dtype` for `indices` and `indptr`. It
  can now output `csr` matrices with `np.int32` `indices/indptr` components
  when there are few enough elements, and will automatically use `np.int64`
  for sufficiently large matrices.
  :pr:`20524` by :user:`niuk-a <niuk-a>` and
  :pr:`23731` by :user:`Meekail Zain <micky774>`

- |Enhancement| A new parameter `sparse_output` was added to
  :class:`preprocessing.SplineTransformer`, available as of SciPy 1.8. If
  `sparse_output=True`, :class:`preprocessing.SplineTransformer` returns a sparse
  CSR matrix. :pr:`24145` by :user:`Christian Lorentzen <lorentzenchr>`.

- |Enhancement| Adds a `feature_name_combiner` parameter to
  :class:`preprocessing.OneHotEncoder`. This specifies a custom callable to
  create feature names to be returned by
  :meth:`preprocessing.OneHotEncoder.get_feature_names_out`. The callable
  combines input arguments `(input_feature, category)` to a string.
  :pr:`22506` by :user:`Mario Kostelac <mariokostelac>`.

- |Enhancement| Added support for `sample_weight` in
  :class:`preprocessing.KBinsDiscretizer`. This allows specifying the parameter
  `sample_weight` for each sample to be used while fitting. The option is only
  available when `strategy` is set to `quantile` and `kmeans`.
  :pr:`24935` by :user:`Seladus <seladus>`, :user:`Guillaume Lemaitre <glemaitre>`, and
  :user:`Dea María Léon <deamarialeon>`, :pr:`25257` by :user:`Gleb Levitski <glevv>`.

- |Enhancement| Subsampling through the `subsample` parameter can now be used in
  :class:`preprocessing.KBinsDiscretizer` regardless of the strategy used.
  :pr:`26424` by :user:`Jérémie du Boisberranger <jeremiedbb>`.

- |Fix| :class:`preprocessing.PowerTransformer` now correctly preserves the Pandas
  Index when the `set_config(transform_output="pandas")`. :pr:`26454` by `Thomas Fan`_.

- |Fix| :class:`preprocessing.PowerTransformer` now correctly raises error when
  using `method="box-cox"` on data with a constant `np.nan` column.
  :pr:`26400` by :user:`Yao Xiao <Charlie-XIAO>`.

- |Fix| :class:`preprocessing.PowerTransformer` with `method="yeo-johnson"` now leaves
  constant features unchanged instead of transforming with an arbitrary value for
  the `lambdas_` fitted parameter.
  :pr:`26566` by :user:`Jérémie du Boisberranger <jeremiedbb>`.

- |API| The default value of the `subsample` parameter of
  :class:`preprocessing.KBinsDiscretizer` will change from `None` to `200_000` in
  version 1.5 when `strategy="kmeans"` or `strategy="uniform"`.
  :pr:`26424` by :user:`Jérémie du Boisberranger <jeremiedbb>`.

:mod:`sklearn.svm`
..................

- |API| `dual` parameter now accepts `auto` option for
  :class:`svm.LinearSVC` and :class:`svm.LinearSVR`.
  :pr:`26093` by :user:`Gleb Levitski <glevv>`.

:mod:`sklearn.tree`
...................

- |MajorFeature| :class:`tree.DecisionTreeRegressor` and
  :class:`tree.DecisionTreeClassifier` support missing values when
  `splitter='best'` and criterion is `gini`, `entropy`, or `log_loss`,
  for classification or `squared_error`, `friedman_mse`, or `poisson`
  for regression. :pr:`23595`, :pr:`26376` by `Thomas Fan`_.

- |Enhancement| Adds a `class_names` parameter to
  :func:`tree.export_text`. This allows specifying the parameter `class_names`
  for each target class in ascending numerical order.
  :pr:`25387` by :user:`William M <Akbeeh>` and :user:`crispinlogan <crispinlogan>`.

- |Fix| :func:`tree.export_graphviz` and :func:`tree.export_text` now accepts
  `feature_names` and `class_names` as array-like rather than lists.
  :pr:`26289` by :user:`Yao Xiao <Charlie-XIAO>`

:mod:`sklearn.utils`
....................

- |FIX| Fixes :func:`utils.check_array` to properly convert pandas
  extension arrays. :pr:`25813` and :pr:`26106` by `Thomas Fan`_.

- |Fix| :func:`utils.check_array` now supports pandas DataFrames with
  extension arrays and object dtypes by return an ndarray with object dtype.
  :pr:`25814` by `Thomas Fan`_.

- |API| `utils.estimator_checks.check_transformers_unfitted_stateless` has been
  introduced to ensure stateless transformers don't raise `NotFittedError`
  during `transform` with no prior call to `fit` or `fit_transform`.
  :pr:`25190` by :user:`Vincent Maladière <Vincent-Maladiere>`.

- |API| A `FutureWarning` is now raised when instantiating a class which inherits from
  a deprecated base class (i.e. decorated by :class:`utils.deprecated`) and which
  overrides the `__init__` method.
  :pr:`25733` by :user:`Brigitta Sipőcz <bsipocz>` and
  :user:`Jérémie du Boisberranger <jeremiedbb>`.

:mod:`sklearn.semi_supervised`
..............................

- |Enhancement| :meth:`semi_supervised.LabelSpreading.fit` and
  :meth:`semi_supervised.LabelPropagation.fit` now accepts sparse metrics.
  :pr:`19664` by :user:`Kaushik Amar Das <cozek>`.

Miscellaneous
.............

- |Enhancement| Replace obsolete exceptions `EnvironmentError`, `IOError` and
  `WindowsError`.
  :pr:`26466` by :user:`Dimitri Papadopoulos ORfanos <DimitriPapadopoulos>`.

.. rubric:: Code and documentation contributors

Thanks to everyone who has contributed to the maintenance and improvement of
the project since version 1.2, including:

2357juan, Abhishek Singh Kushwah, Adam Handke, Adam Kania, Adam Li, adienes,
Admir Demiraj, adoublet, Adrin Jalali, A.H.Mansouri, Ahmedbgh, Ala-Na, Alex
Buzenet, AlexL, Ali H. El-Kassas, amay, András Simon, André Pedersen, Andrew
Wang, Ankur Singh, annegnx, Ansam Zedan, Anthony22-dev, Artur Hermano, Arturo
Amor, as-90, ashah002, Ashish Dutt, Ashwin Mathur, AymericBasset, Azaria
Gebremichael, Barata Tripramudya Onggo, Benedek Harsanyi, Benjamin Bossan,
Bharat Raghunathan, Binesh Bannerjee, Boris Feld, Brendan Lu, Brevin Kunde,
cache-missing, Camille Troillard, Carla J, carlo, Carlo Lemos, c-git, Changyao
Chen, Chiara Marmo, Christian Lorentzen, Christian Veenhuis, Christine P. Chai,
crispinlogan, Da-Lan, DanGonite57, Dave Berenbaum, davidblnc, david-cortes,
Dayne, Dea María Léon, Denis, Dimitri Papadopoulos Orfanos, Dimitris
Litsidis, Dmitry Nesterov, Dominic Fox, Dominik Prodinger, Edern, Ekaterina
Butyugina, Elabonga Atuo, Emir, farhan khan, Felipe Siola, futurewarning, Gael
Varoquaux, genvalen, Gleb Levitski, Guillaume Lemaitre, gunesbayir, Haesun
Park, hujiahong726, i-aki-y, Ian Thompson, Ido M, Ily, Irene, Jack McIvor,
jakirkham, James Dean, JanFidor, Jarrod Millman, JB Mountford, Jérémie du
Boisberranger, Jessicakk0711, Jiawei Zhang, Joey Ortiz, JohnathanPi, John
Pangas, Joshua Choo Yun Keat, Joshua Hedlund, JuliaSchoepp, Julien Jerphanion,
jygerardy, ka00ri, Kaushik Amar Das, Kento Nozawa, Kian Eliasi, Kilian Kluge,
Lene Preuss, Linus, Logan Thomas, Loic Esteve, Louis Fouquet, Lucy Liu, Madhura
Jayaratne, Marc Torrellas Socastro, Maren Westermann, Mario Kostelac, Mark
Harfouche, Marko Toplak, Marvin Krawutschke, Masanori Kanazu, mathurinm, Matt
Haberland, Max Halford, maximeSaur, Maxwell Liu, m. bou, mdarii, Meekail Zain,
Mikhail Iljin, murezzda, Nawazish Alam, Nicola Fanelli, Nightwalkx, Nikolay
Petrov, Nishu Choudhary, NNLNR, npache, Olivier Grisel, Omar Salman, ouss1508,
PAB, Pandata, partev, Peter Piontek, Phil, pnucci, Pooja M, Pooja Subramaniam,
precondition, Quentin Barthélemy, Rafal Wojdyla, Raghuveer Bhat, Rahil Parikh,
Ralf Gommers, ram vikram singh, Rushil Desai, Sadra Barikbin, SANJAI_3, Sashka
Warner, Scott Gigante, Scott Gustafson, searchforpassion, Seoeun
Hong, Shady el Gewily, Shiva chauhan, Shogo Hida, Shreesha Kumar Bhat, sonnivs,
Sortofamudkip, Stanislav (Stanley) Modrak, Stefanie Senger, Steven Van
Vaerenbergh, Tabea Kossen, Théophile Baranger, Thijs van Weezel, Thomas A
Caswell, Thomas Germer, Thomas J. Fan, Tim Head, Tim P, Tom Dupré la Tour,
tomiock, tspeng, Valentin Laurent, Veghit, VIGNESH D, Vijeth Moudgalya, Vinayak
Mehta, Vincent M, Vincent-violet, Vyom Pathak, William M, windiana42, Xiao
Yuan, Yao Xiao, Yaroslav Halchenko, Yotam Avidar-Constantini, Yuchen Zhou,
Yusuf Raji, zeeshan lone