File: plot_species_distribution_modeling.py

package info (click to toggle)
scikit-learn 1.4.2%2Bdfsg-8
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 25,036 kB
  • sloc: python: 201,105; cpp: 5,790; ansic: 854; makefile: 304; sh: 56; javascript: 20
file content (248 lines) | stat: -rw-r--r-- 7,853 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
"""
=============================
Species distribution modeling
=============================

Modeling species' geographic distributions is an important
problem in conservation biology. In this example, we
model the geographic distribution of two South American
mammals given past observations and 14 environmental
variables. Since we have only positive examples (there are
no unsuccessful observations), we cast this problem as a
density estimation problem and use the :class:`~sklearn.svm.OneClassSVM`
as our modeling tool. The dataset is provided by Phillips et. al. (2006).
If available, the example uses
`basemap <https://matplotlib.org/basemap/>`_
to plot the coast lines and national boundaries of South America.

The two species are:

 - `"Bradypus variegatus"
   <http://www.iucnredlist.org/details/3038/0>`_ ,
   the Brown-throated Sloth.

 - `"Microryzomys minutus"
   <http://www.iucnredlist.org/details/13408/0>`_ ,
   also known as the Forest Small Rice Rat, a rodent that lives in Peru,
   Colombia, Ecuador, Peru, and Venezuela.

References
----------

 * `"Maximum entropy modeling of species geographic distributions"
   <http://rob.schapire.net/papers/ecolmod.pdf>`_
   S. J. Phillips, R. P. Anderson, R. E. Schapire - Ecological Modelling,
   190:231-259, 2006.

"""

# Authors: Peter Prettenhofer <peter.prettenhofer@gmail.com>
#          Jake Vanderplas <vanderplas@astro.washington.edu>
#
# License: BSD 3 clause

from time import time

import matplotlib.pyplot as plt
import numpy as np

from sklearn import metrics, svm
from sklearn.datasets import fetch_species_distributions
from sklearn.utils import Bunch

# if basemap is available, we'll use it.
# otherwise, we'll improvise later...
try:
    from mpl_toolkits.basemap import Basemap

    basemap = True
except ImportError:
    basemap = False


def construct_grids(batch):
    """Construct the map grid from the batch object

    Parameters
    ----------
    batch : Batch object
        The object returned by :func:`fetch_species_distributions`

    Returns
    -------
    (xgrid, ygrid) : 1-D arrays
        The grid corresponding to the values in batch.coverages
    """
    # x,y coordinates for corner cells
    xmin = batch.x_left_lower_corner + batch.grid_size
    xmax = xmin + (batch.Nx * batch.grid_size)
    ymin = batch.y_left_lower_corner + batch.grid_size
    ymax = ymin + (batch.Ny * batch.grid_size)

    # x coordinates of the grid cells
    xgrid = np.arange(xmin, xmax, batch.grid_size)
    # y coordinates of the grid cells
    ygrid = np.arange(ymin, ymax, batch.grid_size)

    return (xgrid, ygrid)


def create_species_bunch(species_name, train, test, coverages, xgrid, ygrid):
    """Create a bunch with information about a particular organism

    This will use the test/train record arrays to extract the
    data specific to the given species name.
    """
    bunch = Bunch(name=" ".join(species_name.split("_")[:2]))
    species_name = species_name.encode("ascii")
    points = dict(test=test, train=train)

    for label, pts in points.items():
        # choose points associated with the desired species
        pts = pts[pts["species"] == species_name]
        bunch["pts_%s" % label] = pts

        # determine coverage values for each of the training & testing points
        ix = np.searchsorted(xgrid, pts["dd long"])
        iy = np.searchsorted(ygrid, pts["dd lat"])
        bunch["cov_%s" % label] = coverages[:, -iy, ix].T

    return bunch


def plot_species_distribution(
    species=("bradypus_variegatus_0", "microryzomys_minutus_0")
):
    """
    Plot the species distribution.
    """
    if len(species) > 2:
        print(
            "Note: when more than two species are provided,"
            " only the first two will be used"
        )

    t0 = time()

    # Load the compressed data
    data = fetch_species_distributions()

    # Set up the data grid
    xgrid, ygrid = construct_grids(data)

    # The grid in x,y coordinates
    X, Y = np.meshgrid(xgrid, ygrid[::-1])

    # create a bunch for each species
    BV_bunch = create_species_bunch(
        species[0], data.train, data.test, data.coverages, xgrid, ygrid
    )
    MM_bunch = create_species_bunch(
        species[1], data.train, data.test, data.coverages, xgrid, ygrid
    )

    # background points (grid coordinates) for evaluation
    np.random.seed(13)
    background_points = np.c_[
        np.random.randint(low=0, high=data.Ny, size=10000),
        np.random.randint(low=0, high=data.Nx, size=10000),
    ].T

    # We'll make use of the fact that coverages[6] has measurements at all
    # land points.  This will help us decide between land and water.
    land_reference = data.coverages[6]

    # Fit, predict, and plot for each species.
    for i, species in enumerate([BV_bunch, MM_bunch]):
        print("_" * 80)
        print("Modeling distribution of species '%s'" % species.name)

        # Standardize features
        mean = species.cov_train.mean(axis=0)
        std = species.cov_train.std(axis=0)
        train_cover_std = (species.cov_train - mean) / std

        # Fit OneClassSVM
        print(" - fit OneClassSVM ... ", end="")
        clf = svm.OneClassSVM(nu=0.1, kernel="rbf", gamma=0.5)
        clf.fit(train_cover_std)
        print("done.")

        # Plot map of South America
        plt.subplot(1, 2, i + 1)
        if basemap:
            print(" - plot coastlines using basemap")
            m = Basemap(
                projection="cyl",
                llcrnrlat=Y.min(),
                urcrnrlat=Y.max(),
                llcrnrlon=X.min(),
                urcrnrlon=X.max(),
                resolution="c",
            )
            m.drawcoastlines()
            m.drawcountries()
        else:
            print(" - plot coastlines from coverage")
            plt.contour(
                X, Y, land_reference, levels=[-9998], colors="k", linestyles="solid"
            )
            plt.xticks([])
            plt.yticks([])

        print(" - predict species distribution")

        # Predict species distribution using the training data
        Z = np.ones((data.Ny, data.Nx), dtype=np.float64)

        # We'll predict only for the land points.
        idx = np.where(land_reference > -9999)
        coverages_land = data.coverages[:, idx[0], idx[1]].T

        pred = clf.decision_function((coverages_land - mean) / std)
        Z *= pred.min()
        Z[idx[0], idx[1]] = pred

        levels = np.linspace(Z.min(), Z.max(), 25)
        Z[land_reference == -9999] = -9999

        # plot contours of the prediction
        plt.contourf(X, Y, Z, levels=levels, cmap=plt.cm.Reds)
        plt.colorbar(format="%.2f")

        # scatter training/testing points
        plt.scatter(
            species.pts_train["dd long"],
            species.pts_train["dd lat"],
            s=2**2,
            c="black",
            marker="^",
            label="train",
        )
        plt.scatter(
            species.pts_test["dd long"],
            species.pts_test["dd lat"],
            s=2**2,
            c="black",
            marker="x",
            label="test",
        )
        plt.legend()
        plt.title(species.name)
        plt.axis("equal")

        # Compute AUC with regards to background points
        pred_background = Z[background_points[0], background_points[1]]
        pred_test = clf.decision_function((species.cov_test - mean) / std)
        scores = np.r_[pred_test, pred_background]
        y = np.r_[np.ones(pred_test.shape), np.zeros(pred_background.shape)]
        fpr, tpr, thresholds = metrics.roc_curve(y, scores)
        roc_auc = metrics.auc(fpr, tpr)
        plt.text(-35, -70, "AUC: %.3f" % roc_auc, ha="right")
        print("\n Area under the ROC curve : %f" % roc_auc)

    print("\ntime elapsed: %.2fs" % (time() - t0))


plot_species_distribution()
plt.show()