1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
|
"""
===========================================
Lagged features for time series forecasting
===========================================
This example demonstrates how pandas-engineered lagged features can be used
for time series forecasting with
:class:`~sklearn.ensemble.HistGradientBoostingRegressor` on the Bike Sharing
Demand dataset.
See the example on
:ref:`sphx_glr_auto_examples_applications_plot_cyclical_feature_engineering.py`
for some data exploration on this dataset and a demo on periodic feature
engineering.
"""
# %%
# Analyzing the Bike Sharing Demand dataset
# -----------------------------------------
#
# We start by loading the data from the OpenML repository.
import numpy as np
import pandas as pd
from sklearn.datasets import fetch_openml
bike_sharing = fetch_openml(
"Bike_Sharing_Demand", version=2, as_frame=True, parser="pandas"
)
df = bike_sharing.frame
# %%
# Next, we take a look at the statistical summary of the dataset
# so that we can better understand the data that we are working with.
summary = pd.DataFrame(df.describe())
summary = (
summary.style.background_gradient()
.set_table_attributes("style = 'display: inline'")
.set_caption("Statistics of the Dataset")
.set_table_styles([{"selector": "caption", "props": [("font-size", "16px")]}])
)
summary
# %%
# Let us look at the count of the seasons `"fall"`, `"spring"`, `"summer"`
# and `"winter"` present in the dataset to confirm they are balanced.
import matplotlib.pyplot as plt
df["season"].value_counts()
# %%
# Generating pandas-engineered lagged features
# --------------------------------------------
# Let's consider the problem of predicting the demand at the
# next hour given past demands. Since the demand is a continuous
# variable, one could intuitively use any regression model. However, we do
# not have the usual `(X_train, y_train)` dataset. Instead, we just have
# the `y_train` demand data sequentially organized by time.
count = df["count"]
lagged_df = pd.concat(
[
count,
count.shift(1).rename("lagged_count_1h"),
count.shift(2).rename("lagged_count_2h"),
count.shift(3).rename("lagged_count_3h"),
count.shift(24).rename("lagged_count_1d"),
count.shift(24 + 1).rename("lagged_count_1d_1h"),
count.shift(7 * 24).rename("lagged_count_7d"),
count.shift(7 * 24 + 1).rename("lagged_count_7d_1h"),
count.shift(1).rolling(24).mean().rename("lagged_mean_24h"),
count.shift(1).rolling(24).max().rename("lagged_max_24h"),
count.shift(1).rolling(24).min().rename("lagged_min_24h"),
count.shift(1).rolling(7 * 24).mean().rename("lagged_mean_7d"),
count.shift(1).rolling(7 * 24).max().rename("lagged_max_7d"),
count.shift(1).rolling(7 * 24).min().rename("lagged_min_7d"),
],
axis="columns",
)
lagged_df.tail(10)
# %%
# Watch out however, the first lines have undefined values because their own
# past is unknown. This depends on how much lag we used:
lagged_df.head(10)
# %%
# We can now separate the lagged features in a matrix `X` and the target variable
# (the counts to predict) in an array of the same first dimension `y`.
lagged_df = lagged_df.dropna()
X = lagged_df.drop("count", axis="columns")
y = lagged_df["count"]
print("X shape: {}\ny shape: {}".format(X.shape, y.shape))
# %%
# Naive evaluation of the next hour bike demand regression
# --------------------------------------------------------
# Let's randomly split our tabularized dataset to train a gradient
# boosting regression tree (GBRT) model and evaluate it using Mean
# Absolute Percentage Error (MAPE). If our model is aimed at forecasting
# (i.e., predicting future data from past data), we should not use training
# data that are ulterior to the testing data. In time series machine learning
# the "i.i.d" (independent and identically distributed) assumption does not
# hold true as the data points are not independent and have a temporal
# relationship.
from sklearn.ensemble import HistGradientBoostingRegressor
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, random_state=42
)
model = HistGradientBoostingRegressor().fit(X_train, y_train)
# %%
# Taking a look at the performance of the model.
from sklearn.metrics import mean_absolute_percentage_error
y_pred = model.predict(X_test)
mean_absolute_percentage_error(y_test, y_pred)
# %%
# Proper next hour forecasting evaluation
# ---------------------------------------
# Let's use a proper evaluation splitting strategies that takes into account
# the temporal structure of the dataset to evaluate our model's ability to
# predict data points in the future (to avoid cheating by reading values from
# the lagged features in the training set).
from sklearn.model_selection import TimeSeriesSplit
ts_cv = TimeSeriesSplit(
n_splits=3, # to keep the notebook fast enough on common laptops
gap=48, # 2 days data gap between train and test
max_train_size=10000, # keep train sets of comparable sizes
test_size=3000, # for 2 or 3 digits of precision in scores
)
all_splits = list(ts_cv.split(X, y))
# %%
# Training the model and evaluating its performance based on MAPE.
train_idx, test_idx = all_splits[0]
X_train, X_test = X.iloc[train_idx], X.iloc[test_idx]
y_train, y_test = y.iloc[train_idx], y.iloc[test_idx]
model = HistGradientBoostingRegressor().fit(X_train, y_train)
y_pred = model.predict(X_test)
mean_absolute_percentage_error(y_test, y_pred)
# %%
# The generalization error measured via a shuffled trained test split
# is too optimistic. The generalization via a time-based split is likely to
# be more representative of the true performance of the regression model.
# Let's assess this variability of our error evaluation with proper
# cross-validation:
from sklearn.model_selection import cross_val_score
cv_mape_scores = -cross_val_score(
model, X, y, cv=ts_cv, scoring="neg_mean_absolute_percentage_error"
)
cv_mape_scores
# %%
# The variability across splits is quite large! In a real life setting
# it would be advised to use more splits to better assess the variability.
# Let's report the mean CV scores and their standard deviation from now on.
print(f"CV MAPE: {cv_mape_scores.mean():.3f} ± {cv_mape_scores.std():.3f}")
# %%
# We can compute several combinations of evaluation metrics and loss functions,
# which are reported a bit below.
from collections import defaultdict
from sklearn.metrics import (
make_scorer,
mean_absolute_error,
mean_pinball_loss,
root_mean_squared_error,
)
from sklearn.model_selection import cross_validate
def consolidate_scores(cv_results, scores, metric):
if metric == "MAPE":
scores[metric].append(f"{value.mean():.2f} ± {value.std():.2f}")
else:
scores[metric].append(f"{value.mean():.1f} ± {value.std():.1f}")
return scores
scoring = {
"MAPE": make_scorer(mean_absolute_percentage_error),
"RMSE": make_scorer(root_mean_squared_error),
"MAE": make_scorer(mean_absolute_error),
"pinball_loss_05": make_scorer(mean_pinball_loss, alpha=0.05),
"pinball_loss_50": make_scorer(mean_pinball_loss, alpha=0.50),
"pinball_loss_95": make_scorer(mean_pinball_loss, alpha=0.95),
}
loss_functions = ["squared_error", "poisson", "absolute_error"]
scores = defaultdict(list)
for loss_func in loss_functions:
model = HistGradientBoostingRegressor(loss=loss_func)
cv_results = cross_validate(
model,
X,
y,
cv=ts_cv,
scoring=scoring,
n_jobs=2,
)
time = cv_results["fit_time"]
scores["loss"].append(loss_func)
scores["fit_time"].append(f"{time.mean():.2f} ± {time.std():.2f} s")
for key, value in cv_results.items():
if key.startswith("test_"):
metric = key.split("test_")[1]
scores = consolidate_scores(cv_results, scores, metric)
# %%
# Modeling predictive uncertainty via quantile regression
# -------------------------------------------------------
# Instead of modeling the expected value of the distribution of
# :math:`Y|X` like the least squares and Poisson losses do, one could try to
# estimate quantiles of the conditional distribution.
#
# :math:`Y|X=x_i` is expected to be a random variable for a given data point
# :math:`x_i` because we expect that the number of rentals cannot be 100%
# accurately predicted from the features. It can be influenced by other
# variables not properly captured by the existing lagged features. For
# instance whether or not it will rain in the next hour cannot be fully
# anticipated from the past hours bike rental data. This is what we
# call aleatoric uncertainty.
#
# Quantile regression makes it possible to give a finer description of that
# distribution without making strong assumptions on its shape.
quantile_list = [0.05, 0.5, 0.95]
for quantile in quantile_list:
model = HistGradientBoostingRegressor(loss="quantile", quantile=quantile)
cv_results = cross_validate(
model,
X,
y,
cv=ts_cv,
scoring=scoring,
n_jobs=2,
)
time = cv_results["fit_time"]
scores["fit_time"].append(f"{time.mean():.2f} ± {time.std():.2f} s")
scores["loss"].append(f"quantile {int(quantile*100)}")
for key, value in cv_results.items():
if key.startswith("test_"):
metric = key.split("test_")[1]
scores = consolidate_scores(cv_results, scores, metric)
df = pd.DataFrame(scores)
styled_df_copy = df.copy()
def extract_numeric(value):
parts = value.split("±")
mean_value = float(parts[0])
std_value = float(parts[1].split()[0])
return mean_value, std_value
# Convert columns containing "±" to tuples of numerical values
cols_to_convert = df.columns[1:] # Exclude the "loss" column
for col in cols_to_convert:
df[col] = df[col].apply(extract_numeric)
min_values = df.min()
# Create a mask for highlighting minimum values
mask = pd.DataFrame("", index=df.index, columns=df.columns)
for col in cols_to_convert:
mask[col] = df[col].apply(
lambda x: "font-weight: bold" if x == min_values[col] else ""
)
styled_df_copy = styled_df_copy.style.apply(lambda x: mask, axis=None)
styled_df_copy
# %%
# Even if the score distributions overlap due to the variance in the dataset, it
# is true that the average RMSE is lower when `loss="squared_error"`, whereas
# the average MAPE is lower when `loss="absolute_error"` as expected. That is
# also the case for the Mean Pinball Loss with the quantiles 5 and 95. The score
# corresponding to the 50 quantile loss is overlapping with the score obtained
# by minimizing other loss functions, which is also the case for the MAE.
#
# A qualitative look at the predictions
# -------------------------------------
# We can now visualize the performance of the model with regards
# to the 5th percentile, median and the 95th percentile:
all_splits = list(ts_cv.split(X, y))
train_idx, test_idx = all_splits[0]
X_train, X_test = X.iloc[train_idx], X.iloc[test_idx]
y_train, y_test = y.iloc[train_idx], y.iloc[test_idx]
max_iter = 50
gbrt_mean_poisson = HistGradientBoostingRegressor(loss="poisson", max_iter=max_iter)
gbrt_mean_poisson.fit(X_train, y_train)
mean_predictions = gbrt_mean_poisson.predict(X_test)
gbrt_median = HistGradientBoostingRegressor(
loss="quantile", quantile=0.5, max_iter=max_iter
)
gbrt_median.fit(X_train, y_train)
median_predictions = gbrt_median.predict(X_test)
gbrt_percentile_5 = HistGradientBoostingRegressor(
loss="quantile", quantile=0.05, max_iter=max_iter
)
gbrt_percentile_5.fit(X_train, y_train)
percentile_5_predictions = gbrt_percentile_5.predict(X_test)
gbrt_percentile_95 = HistGradientBoostingRegressor(
loss="quantile", quantile=0.95, max_iter=max_iter
)
gbrt_percentile_95.fit(X_train, y_train)
percentile_95_predictions = gbrt_percentile_95.predict(X_test)
# %%
# We can now take a look at the predictions made by the regression models:
last_hours = slice(-96, None)
fig, ax = plt.subplots(figsize=(15, 7))
plt.title("Predictions by regression models")
ax.plot(
y_test.values[last_hours],
"x-",
alpha=0.2,
label="Actual demand",
color="black",
)
ax.plot(
median_predictions[last_hours],
"^-",
label="GBRT median",
)
ax.plot(
mean_predictions[last_hours],
"x-",
label="GBRT mean (Poisson)",
)
ax.fill_between(
np.arange(96),
percentile_5_predictions[last_hours],
percentile_95_predictions[last_hours],
alpha=0.3,
label="GBRT 90% interval",
)
_ = ax.legend()
# %%
# Here it's interesting to notice that the blue area between the 5% and 95%
# percentile estimators has a width that varies with the time of the day:
#
# - At night, the blue band is much narrower: the pair of models is quite
# certain that there will be a small number of bike rentals. And furthermore
# these seem correct in the sense that the actual demand stays in that blue
# band.
# - During the day, the blue band is much wider: the uncertainty grows, probably
# because of the variability of the weather that can have a very large impact,
# especially on week-ends.
# - We can also see that during week-days, the commute pattern is still visible in
# the 5% and 95% estimations.
# - Finally, it is expected that 10% of the time, the actual demand does not lie
# between the 5% and 95% percentile estimates. On this test span, the actual
# demand seems to be higher, especially during the rush hours. It might reveal that
# our 95% percentile estimator underestimates the demand peaks. This could be be
# quantitatively confirmed by computing empirical coverage numbers as done in
# the :ref:`calibration of confidence intervals <calibration-section>`.
#
# Looking at the performance of non-linear regression models vs
# the best models:
from sklearn.metrics import PredictionErrorDisplay
fig, axes = plt.subplots(ncols=3, figsize=(15, 6), sharey=True)
fig.suptitle("Non-linear regression models")
predictions = [
median_predictions,
percentile_5_predictions,
percentile_95_predictions,
]
labels = [
"Median",
"5th percentile",
"95th percentile",
]
for ax, pred, label in zip(axes, predictions, labels):
PredictionErrorDisplay.from_predictions(
y_true=y_test.values,
y_pred=pred,
kind="residual_vs_predicted",
scatter_kwargs={"alpha": 0.3},
ax=ax,
)
ax.set(xlabel="Predicted demand", ylabel="True demand")
ax.legend(["Best model", label])
plt.show()
# %%
# Conclusion
# ----------
# Through this example we explored time series forecasting using lagged
# features. We compared a naive regression (using the standardized
# :class:`~sklearn.model_selection.train_test_split`) with a proper time
# series evaluation strategy using
# :class:`~sklearn.model_selection.TimeSeriesSplit`. We observed that the
# model trained using :class:`~sklearn.model_selection.train_test_split`,
# having a default value of `shuffle` set to `True` produced an overly
# optimistic Mean Average Percentage Error (MAPE). The results
# produced from the time-based split better represent the performance
# of our time-series regression model. We also analyzed the predictive uncertainty
# of our model via Quantile Regression. Predictions based on the 5th and
# 95th percentile using `loss="quantile"` provide us with a quantitative estimate
# of the uncertainty of the forecasts made by our time series regression model.
# Uncertainty estimation can also be performed
# using `MAPIE <https://mapie.readthedocs.io/en/latest/index.html>`_,
# that provides an implementation based on recent work on conformal prediction
# methods and estimates both aleatoric and epistemic uncertainty at the same time.
# Furthermore, functionalities provided
# by `sktime <https://www.sktime.net/en/latest/users.html>`_
# can be used to extend scikit-learn estimators by making use of recursive time
# series forecasting, that enables dynamic predictions of future values.
|