File: plot_time_series_lagged_features.py

package info (click to toggle)
scikit-learn 1.4.2%2Bdfsg-8
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 25,036 kB
  • sloc: python: 201,105; cpp: 5,790; ansic: 854; makefile: 304; sh: 56; javascript: 20
file content (436 lines) | stat: -rw-r--r-- 16,513 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
"""
===========================================
Lagged features for time series forecasting
===========================================

This example demonstrates how pandas-engineered lagged features can be used
for time series forecasting with
:class:`~sklearn.ensemble.HistGradientBoostingRegressor` on the Bike Sharing
Demand dataset.

See the example on
:ref:`sphx_glr_auto_examples_applications_plot_cyclical_feature_engineering.py`
for some data exploration on this dataset and a demo on periodic feature
engineering.

"""

# %%
# Analyzing the Bike Sharing Demand dataset
# -----------------------------------------
#
# We start by loading the data from the OpenML repository.
import numpy as np
import pandas as pd

from sklearn.datasets import fetch_openml

bike_sharing = fetch_openml(
    "Bike_Sharing_Demand", version=2, as_frame=True, parser="pandas"
)
df = bike_sharing.frame

# %%
# Next, we take a look at the statistical summary of the dataset
# so that we can better understand the data that we are working with.
summary = pd.DataFrame(df.describe())
summary = (
    summary.style.background_gradient()
    .set_table_attributes("style = 'display: inline'")
    .set_caption("Statistics of the Dataset")
    .set_table_styles([{"selector": "caption", "props": [("font-size", "16px")]}])
)
summary

# %%
# Let us look at the count of the seasons `"fall"`, `"spring"`, `"summer"`
# and `"winter"` present in the dataset to confirm they are balanced.

import matplotlib.pyplot as plt

df["season"].value_counts()


# %%
# Generating pandas-engineered lagged features
# --------------------------------------------
# Let's consider the problem of predicting the demand at the
# next hour given past demands. Since the demand is a continuous
# variable, one could intuitively use any regression model. However, we do
# not have the usual `(X_train, y_train)` dataset. Instead, we just have
# the `y_train` demand data sequentially organized by time.
count = df["count"]
lagged_df = pd.concat(
    [
        count,
        count.shift(1).rename("lagged_count_1h"),
        count.shift(2).rename("lagged_count_2h"),
        count.shift(3).rename("lagged_count_3h"),
        count.shift(24).rename("lagged_count_1d"),
        count.shift(24 + 1).rename("lagged_count_1d_1h"),
        count.shift(7 * 24).rename("lagged_count_7d"),
        count.shift(7 * 24 + 1).rename("lagged_count_7d_1h"),
        count.shift(1).rolling(24).mean().rename("lagged_mean_24h"),
        count.shift(1).rolling(24).max().rename("lagged_max_24h"),
        count.shift(1).rolling(24).min().rename("lagged_min_24h"),
        count.shift(1).rolling(7 * 24).mean().rename("lagged_mean_7d"),
        count.shift(1).rolling(7 * 24).max().rename("lagged_max_7d"),
        count.shift(1).rolling(7 * 24).min().rename("lagged_min_7d"),
    ],
    axis="columns",
)
lagged_df.tail(10)

# %%
# Watch out however, the first lines have undefined values because their own
# past is unknown. This depends on how much lag we used:
lagged_df.head(10)

# %%
# We can now separate the lagged features in a matrix `X` and the target variable
# (the counts to predict) in an array of the same first dimension `y`.
lagged_df = lagged_df.dropna()
X = lagged_df.drop("count", axis="columns")
y = lagged_df["count"]
print("X shape: {}\ny shape: {}".format(X.shape, y.shape))

# %%
# Naive evaluation of the next hour bike demand regression
# --------------------------------------------------------
# Let's randomly split our tabularized dataset to train a gradient
# boosting regression tree (GBRT) model and evaluate it using Mean
# Absolute Percentage Error (MAPE). If our model is aimed at forecasting
# (i.e., predicting future data from past data), we should not use training
# data that are ulterior to the testing data. In time series machine learning
# the "i.i.d" (independent and identically distributed) assumption does not
# hold true as the data points are not independent and have a temporal
# relationship.
from sklearn.ensemble import HistGradientBoostingRegressor
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.2, random_state=42
)

model = HistGradientBoostingRegressor().fit(X_train, y_train)

# %%
# Taking a look at the performance of the model.
from sklearn.metrics import mean_absolute_percentage_error

y_pred = model.predict(X_test)
mean_absolute_percentage_error(y_test, y_pred)

# %%
# Proper next hour forecasting evaluation
# ---------------------------------------
# Let's use a proper evaluation splitting strategies that takes into account
# the temporal structure of the dataset to evaluate our model's ability to
# predict data points in the future (to avoid cheating by reading values from
# the lagged features in the training set).
from sklearn.model_selection import TimeSeriesSplit

ts_cv = TimeSeriesSplit(
    n_splits=3,  # to keep the notebook fast enough on common laptops
    gap=48,  # 2 days data gap between train and test
    max_train_size=10000,  # keep train sets of comparable sizes
    test_size=3000,  # for 2 or 3 digits of precision in scores
)
all_splits = list(ts_cv.split(X, y))

# %%
# Training the model and evaluating its performance based on MAPE.
train_idx, test_idx = all_splits[0]
X_train, X_test = X.iloc[train_idx], X.iloc[test_idx]
y_train, y_test = y.iloc[train_idx], y.iloc[test_idx]

model = HistGradientBoostingRegressor().fit(X_train, y_train)
y_pred = model.predict(X_test)
mean_absolute_percentage_error(y_test, y_pred)

# %%
# The generalization error measured via a shuffled trained test split
# is too optimistic. The generalization via a time-based split is likely to
# be more representative of the true performance of the regression model.
# Let's assess this variability of our error evaluation with proper
# cross-validation:
from sklearn.model_selection import cross_val_score

cv_mape_scores = -cross_val_score(
    model, X, y, cv=ts_cv, scoring="neg_mean_absolute_percentage_error"
)
cv_mape_scores

# %%
# The variability across splits is quite large! In a real life setting
# it would be advised to use more splits to better assess the variability.
# Let's report the mean CV scores and their standard deviation from now on.
print(f"CV MAPE: {cv_mape_scores.mean():.3f} ± {cv_mape_scores.std():.3f}")

# %%
# We can compute several combinations of evaluation metrics and loss functions,
# which are reported a bit below.
from collections import defaultdict

from sklearn.metrics import (
    make_scorer,
    mean_absolute_error,
    mean_pinball_loss,
    root_mean_squared_error,
)
from sklearn.model_selection import cross_validate


def consolidate_scores(cv_results, scores, metric):
    if metric == "MAPE":
        scores[metric].append(f"{value.mean():.2f} ± {value.std():.2f}")
    else:
        scores[metric].append(f"{value.mean():.1f} ± {value.std():.1f}")

    return scores


scoring = {
    "MAPE": make_scorer(mean_absolute_percentage_error),
    "RMSE": make_scorer(root_mean_squared_error),
    "MAE": make_scorer(mean_absolute_error),
    "pinball_loss_05": make_scorer(mean_pinball_loss, alpha=0.05),
    "pinball_loss_50": make_scorer(mean_pinball_loss, alpha=0.50),
    "pinball_loss_95": make_scorer(mean_pinball_loss, alpha=0.95),
}
loss_functions = ["squared_error", "poisson", "absolute_error"]
scores = defaultdict(list)
for loss_func in loss_functions:
    model = HistGradientBoostingRegressor(loss=loss_func)
    cv_results = cross_validate(
        model,
        X,
        y,
        cv=ts_cv,
        scoring=scoring,
        n_jobs=2,
    )
    time = cv_results["fit_time"]
    scores["loss"].append(loss_func)
    scores["fit_time"].append(f"{time.mean():.2f} ± {time.std():.2f} s")

    for key, value in cv_results.items():
        if key.startswith("test_"):
            metric = key.split("test_")[1]
            scores = consolidate_scores(cv_results, scores, metric)


# %%
# Modeling predictive uncertainty via quantile regression
# -------------------------------------------------------
# Instead of modeling the expected value of the distribution of
# :math:`Y|X` like the least squares and Poisson losses do, one could try to
# estimate quantiles of the conditional distribution.
#
# :math:`Y|X=x_i` is expected to be a random variable for a given data point
# :math:`x_i` because we expect that the number of rentals cannot be 100%
# accurately predicted from the features. It can be influenced by other
# variables not properly captured by the existing lagged features. For
# instance whether or not it will rain in the next hour cannot be fully
# anticipated from the past hours bike rental data. This is what we
# call aleatoric uncertainty.
#
# Quantile regression makes it possible to give a finer description of that
# distribution without making strong assumptions on its shape.
quantile_list = [0.05, 0.5, 0.95]

for quantile in quantile_list:
    model = HistGradientBoostingRegressor(loss="quantile", quantile=quantile)
    cv_results = cross_validate(
        model,
        X,
        y,
        cv=ts_cv,
        scoring=scoring,
        n_jobs=2,
    )
    time = cv_results["fit_time"]
    scores["fit_time"].append(f"{time.mean():.2f} ± {time.std():.2f} s")

    scores["loss"].append(f"quantile {int(quantile*100)}")
    for key, value in cv_results.items():
        if key.startswith("test_"):
            metric = key.split("test_")[1]
            scores = consolidate_scores(cv_results, scores, metric)

df = pd.DataFrame(scores)

styled_df_copy = df.copy()


def extract_numeric(value):
    parts = value.split("±")
    mean_value = float(parts[0])
    std_value = float(parts[1].split()[0])

    return mean_value, std_value


# Convert columns containing "±" to tuples of numerical values
cols_to_convert = df.columns[1:]  # Exclude the "loss" column
for col in cols_to_convert:
    df[col] = df[col].apply(extract_numeric)

min_values = df.min()

# Create a mask for highlighting minimum values
mask = pd.DataFrame("", index=df.index, columns=df.columns)
for col in cols_to_convert:
    mask[col] = df[col].apply(
        lambda x: "font-weight: bold" if x == min_values[col] else ""
    )

styled_df_copy = styled_df_copy.style.apply(lambda x: mask, axis=None)
styled_df_copy


# %%
# Even if the score distributions overlap due to the variance in the dataset, it
# is true that the average RMSE is lower when `loss="squared_error"`, whereas
# the average MAPE is lower when `loss="absolute_error"` as expected. That is
# also the case for the Mean Pinball Loss with the quantiles 5 and 95. The score
# corresponding to the 50 quantile loss is overlapping with the score obtained
# by minimizing other loss functions, which is also the case for the MAE.
#
# A qualitative look at the predictions
# -------------------------------------
# We can now visualize the performance of the model with regards
# to the 5th percentile, median and the 95th percentile:
all_splits = list(ts_cv.split(X, y))
train_idx, test_idx = all_splits[0]

X_train, X_test = X.iloc[train_idx], X.iloc[test_idx]
y_train, y_test = y.iloc[train_idx], y.iloc[test_idx]

max_iter = 50
gbrt_mean_poisson = HistGradientBoostingRegressor(loss="poisson", max_iter=max_iter)
gbrt_mean_poisson.fit(X_train, y_train)
mean_predictions = gbrt_mean_poisson.predict(X_test)

gbrt_median = HistGradientBoostingRegressor(
    loss="quantile", quantile=0.5, max_iter=max_iter
)
gbrt_median.fit(X_train, y_train)
median_predictions = gbrt_median.predict(X_test)

gbrt_percentile_5 = HistGradientBoostingRegressor(
    loss="quantile", quantile=0.05, max_iter=max_iter
)
gbrt_percentile_5.fit(X_train, y_train)
percentile_5_predictions = gbrt_percentile_5.predict(X_test)

gbrt_percentile_95 = HistGradientBoostingRegressor(
    loss="quantile", quantile=0.95, max_iter=max_iter
)
gbrt_percentile_95.fit(X_train, y_train)
percentile_95_predictions = gbrt_percentile_95.predict(X_test)

# %%
# We can now take a look at the predictions made by the regression models:
last_hours = slice(-96, None)
fig, ax = plt.subplots(figsize=(15, 7))
plt.title("Predictions by regression models")
ax.plot(
    y_test.values[last_hours],
    "x-",
    alpha=0.2,
    label="Actual demand",
    color="black",
)
ax.plot(
    median_predictions[last_hours],
    "^-",
    label="GBRT median",
)
ax.plot(
    mean_predictions[last_hours],
    "x-",
    label="GBRT mean (Poisson)",
)
ax.fill_between(
    np.arange(96),
    percentile_5_predictions[last_hours],
    percentile_95_predictions[last_hours],
    alpha=0.3,
    label="GBRT 90% interval",
)
_ = ax.legend()

# %%
# Here it's interesting to notice that the blue area between the 5% and 95%
# percentile estimators has a width that varies with the time of the day:
#
# - At night, the blue band is much narrower: the pair of models is quite
#   certain that there will be a small number of bike rentals. And furthermore
#   these seem correct in the sense that the actual demand stays in that blue
#   band.
# - During the day, the blue band is much wider: the uncertainty grows, probably
#   because of the variability of the weather that can have a very large impact,
#   especially on week-ends.
# - We can also see that during week-days, the commute pattern is still visible in
#   the 5% and 95% estimations.
# - Finally, it is expected that 10% of the time, the actual demand does not lie
#   between the 5% and 95% percentile estimates. On this test span, the actual
#   demand seems to be higher, especially during the rush hours. It might reveal that
#   our 95% percentile estimator underestimates the demand peaks. This could be be
#   quantitatively confirmed by computing empirical coverage numbers as done in
#   the :ref:`calibration of confidence intervals <calibration-section>`.
#
# Looking at the performance of non-linear regression models vs
# the best models:
from sklearn.metrics import PredictionErrorDisplay

fig, axes = plt.subplots(ncols=3, figsize=(15, 6), sharey=True)
fig.suptitle("Non-linear regression models")
predictions = [
    median_predictions,
    percentile_5_predictions,
    percentile_95_predictions,
]
labels = [
    "Median",
    "5th percentile",
    "95th percentile",
]
for ax, pred, label in zip(axes, predictions, labels):
    PredictionErrorDisplay.from_predictions(
        y_true=y_test.values,
        y_pred=pred,
        kind="residual_vs_predicted",
        scatter_kwargs={"alpha": 0.3},
        ax=ax,
    )
    ax.set(xlabel="Predicted demand", ylabel="True demand")
    ax.legend(["Best model", label])

plt.show()

# %%
# Conclusion
# ----------
# Through this example we explored time series forecasting using lagged
# features. We compared a naive regression (using the standardized
# :class:`~sklearn.model_selection.train_test_split`) with a proper time
# series evaluation strategy using
# :class:`~sklearn.model_selection.TimeSeriesSplit`. We observed that the
# model trained using :class:`~sklearn.model_selection.train_test_split`,
# having a default value of `shuffle` set to `True` produced an overly
# optimistic Mean Average Percentage Error (MAPE). The results
# produced from the time-based split better represent the performance
# of our time-series regression model. We also analyzed the predictive uncertainty
# of our model via Quantile Regression. Predictions based on the 5th and
# 95th percentile using `loss="quantile"` provide us with a quantitative estimate
# of the uncertainty of the forecasts made by our time series regression model.
# Uncertainty estimation can also be performed
# using `MAPIE <https://mapie.readthedocs.io/en/latest/index.html>`_,
# that provides an implementation based on recent work on conformal prediction
# methods and estimates both aleatoric and epistemic uncertainty at the same time.
# Furthermore, functionalities provided
# by `sktime <https://www.sktime.net/en/latest/users.html>`_
# can be used to extend scikit-learn estimators by making use of recursive time
# series forecasting, that enables dynamic predictions of future values.