File: plot_dict_face_patches.py

package info (click to toggle)
scikit-learn 1.4.2%2Bdfsg-8
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 25,036 kB
  • sloc: python: 201,105; cpp: 5,790; ansic: 854; makefile: 304; sh: 56; javascript: 20
file content (91 lines) | stat: -rw-r--r-- 2,644 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
"""
Online learning of a dictionary of parts of faces
=================================================

This example uses a large dataset of faces to learn a set of 20 x 20
images patches that constitute faces.

From the programming standpoint, it is interesting because it shows how
to use the online API of the scikit-learn to process a very large
dataset by chunks. The way we proceed is that we load an image at a time
and extract randomly 50 patches from this image. Once we have accumulated
500 of these patches (using 10 images), we run the
:func:`~sklearn.cluster.MiniBatchKMeans.partial_fit` method
of the online KMeans object, MiniBatchKMeans.

The verbose setting on the MiniBatchKMeans enables us to see that some
clusters are reassigned during the successive calls to
partial-fit. This is because the number of patches that they represent
has become too low, and it is better to choose a random new
cluster.

"""

# %%
# Load the data
# -------------

from sklearn import datasets

faces = datasets.fetch_olivetti_faces()

# %%
# Learn the dictionary of images
# ------------------------------

import time

import numpy as np

from sklearn.cluster import MiniBatchKMeans
from sklearn.feature_extraction.image import extract_patches_2d

print("Learning the dictionary... ")
rng = np.random.RandomState(0)
kmeans = MiniBatchKMeans(n_clusters=81, random_state=rng, verbose=True, n_init=3)
patch_size = (20, 20)

buffer = []
t0 = time.time()

# The online learning part: cycle over the whole dataset 6 times
index = 0
for _ in range(6):
    for img in faces.images:
        data = extract_patches_2d(img, patch_size, max_patches=50, random_state=rng)
        data = np.reshape(data, (len(data), -1))
        buffer.append(data)
        index += 1
        if index % 10 == 0:
            data = np.concatenate(buffer, axis=0)
            data -= np.mean(data, axis=0)
            data /= np.std(data, axis=0)
            kmeans.partial_fit(data)
            buffer = []
        if index % 100 == 0:
            print("Partial fit of %4i out of %i" % (index, 6 * len(faces.images)))

dt = time.time() - t0
print("done in %.2fs." % dt)

# %%
# Plot the results
# ----------------

import matplotlib.pyplot as plt

plt.figure(figsize=(4.2, 4))
for i, patch in enumerate(kmeans.cluster_centers_):
    plt.subplot(9, 9, i + 1)
    plt.imshow(patch.reshape(patch_size), cmap=plt.cm.gray, interpolation="nearest")
    plt.xticks(())
    plt.yticks(())


plt.suptitle(
    "Patches of faces\nTrain time %.1fs on %d patches" % (dt, 8 * len(faces.images)),
    fontsize=16,
)
plt.subplots_adjust(0.08, 0.02, 0.92, 0.85, 0.08, 0.23)

plt.show()