1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
|
"""
=================================================================
Selecting dimensionality reduction with Pipeline and GridSearchCV
=================================================================
This example constructs a pipeline that does dimensionality
reduction followed by prediction with a support vector
classifier. It demonstrates the use of ``GridSearchCV`` and
``Pipeline`` to optimize over different classes of estimators in a
single CV run -- unsupervised ``PCA`` and ``NMF`` dimensionality
reductions are compared to univariate feature selection during
the grid search.
Additionally, ``Pipeline`` can be instantiated with the ``memory``
argument to memoize the transformers within the pipeline, avoiding to fit
again the same transformers over and over.
Note that the use of ``memory`` to enable caching becomes interesting when the
fitting of a transformer is costly.
"""
# Authors: Robert McGibbon
# Joel Nothman
# Guillaume Lemaitre
# %%
# Illustration of ``Pipeline`` and ``GridSearchCV``
###############################################################################
import matplotlib.pyplot as plt
import numpy as np
from sklearn.datasets import load_digits
from sklearn.decomposition import NMF, PCA
from sklearn.feature_selection import SelectKBest, mutual_info_classif
from sklearn.model_selection import GridSearchCV
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import MinMaxScaler
from sklearn.svm import LinearSVC
X, y = load_digits(return_X_y=True)
pipe = Pipeline(
[
("scaling", MinMaxScaler()),
# the reduce_dim stage is populated by the param_grid
("reduce_dim", "passthrough"),
("classify", LinearSVC(dual=False, max_iter=10000)),
]
)
N_FEATURES_OPTIONS = [2, 4, 8]
C_OPTIONS = [1, 10, 100, 1000]
param_grid = [
{
"reduce_dim": [PCA(iterated_power=7), NMF(max_iter=1_000)],
"reduce_dim__n_components": N_FEATURES_OPTIONS,
"classify__C": C_OPTIONS,
},
{
"reduce_dim": [SelectKBest(mutual_info_classif)],
"reduce_dim__k": N_FEATURES_OPTIONS,
"classify__C": C_OPTIONS,
},
]
reducer_labels = ["PCA", "NMF", "KBest(mutual_info_classif)"]
grid = GridSearchCV(pipe, n_jobs=1, param_grid=param_grid)
grid.fit(X, y)
# %%
import pandas as pd
mean_scores = np.array(grid.cv_results_["mean_test_score"])
# scores are in the order of param_grid iteration, which is alphabetical
mean_scores = mean_scores.reshape(len(C_OPTIONS), -1, len(N_FEATURES_OPTIONS))
# select score for best C
mean_scores = mean_scores.max(axis=0)
# create a dataframe to ease plotting
mean_scores = pd.DataFrame(
mean_scores.T, index=N_FEATURES_OPTIONS, columns=reducer_labels
)
ax = mean_scores.plot.bar()
ax.set_title("Comparing feature reduction techniques")
ax.set_xlabel("Reduced number of features")
ax.set_ylabel("Digit classification accuracy")
ax.set_ylim((0, 1))
ax.legend(loc="upper left")
plt.show()
# %%
# Caching transformers within a ``Pipeline``
###############################################################################
# It is sometimes worthwhile storing the state of a specific transformer
# since it could be used again. Using a pipeline in ``GridSearchCV`` triggers
# such situations. Therefore, we use the argument ``memory`` to enable caching.
#
# .. warning::
# Note that this example is, however, only an illustration since for this
# specific case fitting PCA is not necessarily slower than loading the
# cache. Hence, use the ``memory`` constructor parameter when the fitting
# of a transformer is costly.
from shutil import rmtree
from joblib import Memory
# Create a temporary folder to store the transformers of the pipeline
location = "cachedir"
memory = Memory(location=location, verbose=10)
cached_pipe = Pipeline(
[("reduce_dim", PCA()), ("classify", LinearSVC(dual=False, max_iter=10000))],
memory=memory,
)
# This time, a cached pipeline will be used within the grid search
# Delete the temporary cache before exiting
memory.clear(warn=False)
rmtree(location)
# %%
# The ``PCA`` fitting is only computed at the evaluation of the first
# configuration of the ``C`` parameter of the ``LinearSVC`` classifier. The
# other configurations of ``C`` will trigger the loading of the cached ``PCA``
# estimator data, leading to save processing time. Therefore, the use of
# caching the pipeline using ``memory`` is highly beneficial when fitting
# a transformer is costly.
|