1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
|
"""
=========================================================================
Ability of Gaussian process regression (GPR) to estimate data noise-level
=========================================================================
This example shows the ability of the
:class:`~sklearn.gaussian_process.kernels.WhiteKernel` to estimate the noise
level in the data. Moreover, we show the importance of kernel hyperparameters
initialization.
"""
# Authors: Jan Hendrik Metzen <jhm@informatik.uni-bremen.de>
# Guillaume Lemaitre <guillaume.lemaitre@inria.fr>
# License: BSD 3 clause
# %%
# Data generation
# ---------------
#
# We will work in a setting where `X` will contain a single feature. We create a
# function that will generate the target to be predicted. We will add an
# option to add some noise to the generated target.
import numpy as np
def target_generator(X, add_noise=False):
target = 0.5 + np.sin(3 * X)
if add_noise:
rng = np.random.RandomState(1)
target += rng.normal(0, 0.3, size=target.shape)
return target.squeeze()
# %%
# Let's have a look to the target generator where we will not add any noise to
# observe the signal that we would like to predict.
X = np.linspace(0, 5, num=30).reshape(-1, 1)
y = target_generator(X, add_noise=False)
# %%
import matplotlib.pyplot as plt
plt.plot(X, y, label="Expected signal")
plt.legend()
plt.xlabel("X")
_ = plt.ylabel("y")
# %%
# The target is transforming the input `X` using a sine function. Now, we will
# generate few noisy training samples. To illustrate the noise level, we will
# plot the true signal together with the noisy training samples.
rng = np.random.RandomState(0)
X_train = rng.uniform(0, 5, size=20).reshape(-1, 1)
y_train = target_generator(X_train, add_noise=True)
# %%
plt.plot(X, y, label="Expected signal")
plt.scatter(
x=X_train[:, 0],
y=y_train,
color="black",
alpha=0.4,
label="Observations",
)
plt.legend()
plt.xlabel("X")
_ = plt.ylabel("y")
# %%
# Optimisation of kernel hyperparameters in GPR
# ---------------------------------------------
#
# Now, we will create a
# :class:`~sklearn.gaussian_process.GaussianProcessRegressor`
# using an additive kernel adding a
# :class:`~sklearn.gaussian_process.kernels.RBF` and
# :class:`~sklearn.gaussian_process.kernels.WhiteKernel` kernels.
# The :class:`~sklearn.gaussian_process.kernels.WhiteKernel` is a kernel that
# will able to estimate the amount of noise present in the data while the
# :class:`~sklearn.gaussian_process.kernels.RBF` will serve at fitting the
# non-linearity between the data and the target.
#
# However, we will show that the hyperparameter space contains several local
# minima. It will highlights the importance of initial hyperparameter values.
#
# We will create a model using a kernel with a high noise level and a large
# length scale, which will explain all variations in the data by noise.
from sklearn.gaussian_process import GaussianProcessRegressor
from sklearn.gaussian_process.kernels import RBF, WhiteKernel
kernel = 1.0 * RBF(length_scale=1e1, length_scale_bounds=(1e-2, 1e3)) + WhiteKernel(
noise_level=1, noise_level_bounds=(1e-5, 1e1)
)
gpr = GaussianProcessRegressor(kernel=kernel, alpha=0.0)
gpr.fit(X_train, y_train)
y_mean, y_std = gpr.predict(X, return_std=True)
# %%
plt.plot(X, y, label="Expected signal")
plt.scatter(x=X_train[:, 0], y=y_train, color="black", alpha=0.4, label="Observations")
plt.errorbar(X, y_mean, y_std)
plt.legend()
plt.xlabel("X")
plt.ylabel("y")
_ = plt.title(
(
f"Initial: {kernel}\nOptimum: {gpr.kernel_}\nLog-Marginal-Likelihood: "
f"{gpr.log_marginal_likelihood(gpr.kernel_.theta)}"
),
fontsize=8,
)
# %%
# We see that the optimum kernel found still have a high noise level and
# an even larger length scale. Furthermore, we observe that the
# model does not provide faithful predictions.
#
# Now, we will initialize the
# :class:`~sklearn.gaussian_process.kernels.RBF` with a
# larger `length_scale` and the
# :class:`~sklearn.gaussian_process.kernels.WhiteKernel`
# with a smaller noise level lower bound.
kernel = 1.0 * RBF(length_scale=1e-1, length_scale_bounds=(1e-2, 1e3)) + WhiteKernel(
noise_level=1e-2, noise_level_bounds=(1e-10, 1e1)
)
gpr = GaussianProcessRegressor(kernel=kernel, alpha=0.0)
gpr.fit(X_train, y_train)
y_mean, y_std = gpr.predict(X, return_std=True)
# %%
plt.plot(X, y, label="Expected signal")
plt.scatter(x=X_train[:, 0], y=y_train, color="black", alpha=0.4, label="Observations")
plt.errorbar(X, y_mean, y_std)
plt.legend()
plt.xlabel("X")
plt.ylabel("y")
_ = plt.title(
(
f"Initial: {kernel}\nOptimum: {gpr.kernel_}\nLog-Marginal-Likelihood: "
f"{gpr.log_marginal_likelihood(gpr.kernel_.theta)}"
),
fontsize=8,
)
# %%
# First, we see that the model's predictions are more precise than the
# previous model's: this new model is able to estimate the noise-free
# functional relationship.
#
# Looking at the kernel hyperparameters, we see that the best combination found
# has a smaller noise level and shorter length scale than the first model.
#
# We can inspect the Log-Marginal-Likelihood (LML) of
# :class:`~sklearn.gaussian_process.GaussianProcessRegressor`
# for different hyperparameters to get a sense of the local minima.
from matplotlib.colors import LogNorm
length_scale = np.logspace(-2, 4, num=50)
noise_level = np.logspace(-2, 1, num=50)
length_scale_grid, noise_level_grid = np.meshgrid(length_scale, noise_level)
log_marginal_likelihood = [
gpr.log_marginal_likelihood(theta=np.log([0.36, scale, noise]))
for scale, noise in zip(length_scale_grid.ravel(), noise_level_grid.ravel())
]
log_marginal_likelihood = np.reshape(
log_marginal_likelihood, newshape=noise_level_grid.shape
)
# %%
vmin, vmax = (-log_marginal_likelihood).min(), 50
level = np.around(np.logspace(np.log10(vmin), np.log10(vmax), num=50), decimals=1)
plt.contour(
length_scale_grid,
noise_level_grid,
-log_marginal_likelihood,
levels=level,
norm=LogNorm(vmin=vmin, vmax=vmax),
)
plt.colorbar()
plt.xscale("log")
plt.yscale("log")
plt.xlabel("Length-scale")
plt.ylabel("Noise-level")
plt.title("Log-marginal-likelihood")
plt.show()
# %%
# We see that there are two local minima that correspond to the combination
# of hyperparameters previously found. Depending on the initial values for the
# hyperparameters, the gradient-based optimization might converge whether or
# not to the best model. It is thus important to repeat the optimization
# several times for different initializations.
|