1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
|
"""
======================================
Tweedie regression on insurance claims
======================================
This example illustrates the use of Poisson, Gamma and Tweedie regression on
the `French Motor Third-Party Liability Claims dataset
<https://www.openml.org/d/41214>`_, and is inspired by an R tutorial [1]_.
In this dataset, each sample corresponds to an insurance policy, i.e. a
contract within an insurance company and an individual (policyholder).
Available features include driver age, vehicle age, vehicle power, etc.
A few definitions: a *claim* is the request made by a policyholder to the
insurer to compensate for a loss covered by the insurance. The *claim amount*
is the amount of money that the insurer must pay. The *exposure* is the
duration of the insurance coverage of a given policy, in years.
Here our goal is to predict the expected
value, i.e. the mean, of the total claim amount per exposure unit also
referred to as the pure premium.
There are several possibilities to do that, two of which are:
1. Model the number of claims with a Poisson distribution, and the average
claim amount per claim, also known as severity, as a Gamma distribution
and multiply the predictions of both in order to get the total claim
amount.
2. Model the total claim amount per exposure directly, typically with a Tweedie
distribution of Tweedie power :math:`p \\in (1, 2)`.
In this example we will illustrate both approaches. We start by defining a few
helper functions for loading the data and visualizing results.
.. [1] A. Noll, R. Salzmann and M.V. Wuthrich, Case Study: French Motor
Third-Party Liability Claims (November 8, 2018). `doi:10.2139/ssrn.3164764
<https://doi.org/10.2139/ssrn.3164764>`_
"""
# Authors: Christian Lorentzen <lorentzen.ch@gmail.com>
# Roman Yurchak <rth.yurchak@gmail.com>
# Olivier Grisel <olivier.grisel@ensta.org>
# License: BSD 3 clause
# %%
from functools import partial
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sklearn.datasets import fetch_openml
from sklearn.metrics import (
mean_absolute_error,
mean_squared_error,
mean_tweedie_deviance,
)
def load_mtpl2(n_samples=None):
"""Fetch the French Motor Third-Party Liability Claims dataset.
Parameters
----------
n_samples: int, default=None
number of samples to select (for faster run time). Full dataset has
678013 samples.
"""
# freMTPL2freq dataset from https://www.openml.org/d/41214
df_freq = fetch_openml(data_id=41214, as_frame=True).data
df_freq["IDpol"] = df_freq["IDpol"].astype(int)
df_freq.set_index("IDpol", inplace=True)
# freMTPL2sev dataset from https://www.openml.org/d/41215
df_sev = fetch_openml(data_id=41215, as_frame=True).data
# sum ClaimAmount over identical IDs
df_sev = df_sev.groupby("IDpol").sum()
df = df_freq.join(df_sev, how="left")
df["ClaimAmount"] = df["ClaimAmount"].fillna(0)
# unquote string fields
for column_name in df.columns[df.dtypes.values == object]:
df[column_name] = df[column_name].str.strip("'")
return df.iloc[:n_samples]
def plot_obs_pred(
df,
feature,
weight,
observed,
predicted,
y_label=None,
title=None,
ax=None,
fill_legend=False,
):
"""Plot observed and predicted - aggregated per feature level.
Parameters
----------
df : DataFrame
input data
feature: str
a column name of df for the feature to be plotted
weight : str
column name of df with the values of weights or exposure
observed : str
a column name of df with the observed target
predicted : DataFrame
a dataframe, with the same index as df, with the predicted target
fill_legend : bool, default=False
whether to show fill_between legend
"""
# aggregate observed and predicted variables by feature level
df_ = df.loc[:, [feature, weight]].copy()
df_["observed"] = df[observed] * df[weight]
df_["predicted"] = predicted * df[weight]
df_ = (
df_.groupby([feature])[[weight, "observed", "predicted"]]
.sum()
.assign(observed=lambda x: x["observed"] / x[weight])
.assign(predicted=lambda x: x["predicted"] / x[weight])
)
ax = df_.loc[:, ["observed", "predicted"]].plot(style=".", ax=ax)
y_max = df_.loc[:, ["observed", "predicted"]].values.max() * 0.8
p2 = ax.fill_between(
df_.index,
0,
y_max * df_[weight] / df_[weight].values.max(),
color="g",
alpha=0.1,
)
if fill_legend:
ax.legend([p2], ["{} distribution".format(feature)])
ax.set(
ylabel=y_label if y_label is not None else None,
title=title if title is not None else "Train: Observed vs Predicted",
)
def score_estimator(
estimator,
X_train,
X_test,
df_train,
df_test,
target,
weights,
tweedie_powers=None,
):
"""Evaluate an estimator on train and test sets with different metrics"""
metrics = [
("D² explained", None), # Use default scorer if it exists
("mean abs. error", mean_absolute_error),
("mean squared error", mean_squared_error),
]
if tweedie_powers:
metrics += [
(
"mean Tweedie dev p={:.4f}".format(power),
partial(mean_tweedie_deviance, power=power),
)
for power in tweedie_powers
]
res = []
for subset_label, X, df in [
("train", X_train, df_train),
("test", X_test, df_test),
]:
y, _weights = df[target], df[weights]
for score_label, metric in metrics:
if isinstance(estimator, tuple) and len(estimator) == 2:
# Score the model consisting of the product of frequency and
# severity models.
est_freq, est_sev = estimator
y_pred = est_freq.predict(X) * est_sev.predict(X)
else:
y_pred = estimator.predict(X)
if metric is None:
if not hasattr(estimator, "score"):
continue
score = estimator.score(X, y, sample_weight=_weights)
else:
score = metric(y, y_pred, sample_weight=_weights)
res.append({"subset": subset_label, "metric": score_label, "score": score})
res = (
pd.DataFrame(res)
.set_index(["metric", "subset"])
.score.unstack(-1)
.round(4)
.loc[:, ["train", "test"]]
)
return res
# %%
# Loading datasets, basic feature extraction and target definitions
# -----------------------------------------------------------------
#
# We construct the freMTPL2 dataset by joining the freMTPL2freq table,
# containing the number of claims (``ClaimNb``), with the freMTPL2sev table,
# containing the claim amount (``ClaimAmount``) for the same policy ids
# (``IDpol``).
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import (
FunctionTransformer,
KBinsDiscretizer,
OneHotEncoder,
StandardScaler,
)
df = load_mtpl2()
# Correct for unreasonable observations (that might be data error)
# and a few exceptionally large claim amounts
df["ClaimNb"] = df["ClaimNb"].clip(upper=4)
df["Exposure"] = df["Exposure"].clip(upper=1)
df["ClaimAmount"] = df["ClaimAmount"].clip(upper=200000)
# If the claim amount is 0, then we do not count it as a claim. The loss function
# used by the severity model needs strictly positive claim amounts. This way
# frequency and severity are more consistent with each other.
df.loc[(df["ClaimAmount"] == 0) & (df["ClaimNb"] >= 1), "ClaimNb"] = 0
log_scale_transformer = make_pipeline(
FunctionTransformer(func=np.log), StandardScaler()
)
column_trans = ColumnTransformer(
[
(
"binned_numeric",
KBinsDiscretizer(n_bins=10, subsample=int(2e5), random_state=0),
["VehAge", "DrivAge"],
),
(
"onehot_categorical",
OneHotEncoder(),
["VehBrand", "VehPower", "VehGas", "Region", "Area"],
),
("passthrough_numeric", "passthrough", ["BonusMalus"]),
("log_scaled_numeric", log_scale_transformer, ["Density"]),
],
remainder="drop",
)
X = column_trans.fit_transform(df)
# Insurances companies are interested in modeling the Pure Premium, that is
# the expected total claim amount per unit of exposure for each policyholder
# in their portfolio:
df["PurePremium"] = df["ClaimAmount"] / df["Exposure"]
# This can be indirectly approximated by a 2-step modeling: the product of the
# Frequency times the average claim amount per claim:
df["Frequency"] = df["ClaimNb"] / df["Exposure"]
df["AvgClaimAmount"] = df["ClaimAmount"] / np.fmax(df["ClaimNb"], 1)
with pd.option_context("display.max_columns", 15):
print(df[df.ClaimAmount > 0].head())
# %%
#
# Frequency model -- Poisson distribution
# ---------------------------------------
#
# The number of claims (``ClaimNb``) is a positive integer (0 included).
# Thus, this target can be modelled by a Poisson distribution.
# It is then assumed to be the number of discrete events occurring with a
# constant rate in a given time interval (``Exposure``, in units of years).
# Here we model the frequency ``y = ClaimNb / Exposure``, which is still a
# (scaled) Poisson distribution, and use ``Exposure`` as `sample_weight`.
from sklearn.linear_model import PoissonRegressor
from sklearn.model_selection import train_test_split
df_train, df_test, X_train, X_test = train_test_split(df, X, random_state=0)
# %%
#
# Let us keep in mind that despite the seemingly large number of data points in
# this dataset, the number of evaluation points where the claim amount is
# non-zero is quite small:
len(df_test)
# %%
len(df_test[df_test["ClaimAmount"] > 0])
# %%
#
# As a consequence, we expect a significant variability in our
# evaluation upon random resampling of the train test split.
#
# The parameters of the model are estimated by minimizing the Poisson deviance
# on the training set via a Newton solver. Some of the features are collinear
# (e.g. because we did not drop any categorical level in the `OneHotEncoder`),
# we use a weak L2 penalization to avoid numerical issues.
glm_freq = PoissonRegressor(alpha=1e-4, solver="newton-cholesky")
glm_freq.fit(X_train, df_train["Frequency"], sample_weight=df_train["Exposure"])
scores = score_estimator(
glm_freq,
X_train,
X_test,
df_train,
df_test,
target="Frequency",
weights="Exposure",
)
print("Evaluation of PoissonRegressor on target Frequency")
print(scores)
# %%
#
# Note that the score measured on the test set is surprisingly better than on
# the training set. This might be specific to this random train-test split.
# Proper cross-validation could help us to assess the sampling variability of
# these results.
#
# We can visually compare observed and predicted values, aggregated by the
# drivers age (``DrivAge``), vehicle age (``VehAge``) and the insurance
# bonus/malus (``BonusMalus``).
fig, ax = plt.subplots(ncols=2, nrows=2, figsize=(16, 8))
fig.subplots_adjust(hspace=0.3, wspace=0.2)
plot_obs_pred(
df=df_train,
feature="DrivAge",
weight="Exposure",
observed="Frequency",
predicted=glm_freq.predict(X_train),
y_label="Claim Frequency",
title="train data",
ax=ax[0, 0],
)
plot_obs_pred(
df=df_test,
feature="DrivAge",
weight="Exposure",
observed="Frequency",
predicted=glm_freq.predict(X_test),
y_label="Claim Frequency",
title="test data",
ax=ax[0, 1],
fill_legend=True,
)
plot_obs_pred(
df=df_test,
feature="VehAge",
weight="Exposure",
observed="Frequency",
predicted=glm_freq.predict(X_test),
y_label="Claim Frequency",
title="test data",
ax=ax[1, 0],
fill_legend=True,
)
plot_obs_pred(
df=df_test,
feature="BonusMalus",
weight="Exposure",
observed="Frequency",
predicted=glm_freq.predict(X_test),
y_label="Claim Frequency",
title="test data",
ax=ax[1, 1],
fill_legend=True,
)
# %%
# According to the observed data, the frequency of accidents is higher for
# drivers younger than 30 years old, and is positively correlated with the
# `BonusMalus` variable. Our model is able to mostly correctly model this
# behaviour.
#
# Severity Model - Gamma distribution
# ------------------------------------
# The mean claim amount or severity (`AvgClaimAmount`) can be empirically
# shown to follow approximately a Gamma distribution. We fit a GLM model for
# the severity with the same features as the frequency model.
#
# Note:
#
# - We filter out ``ClaimAmount == 0`` as the Gamma distribution has support
# on :math:`(0, \infty)`, not :math:`[0, \infty)`.
# - We use ``ClaimNb`` as `sample_weight` to account for policies that contain
# more than one claim.
from sklearn.linear_model import GammaRegressor
mask_train = df_train["ClaimAmount"] > 0
mask_test = df_test["ClaimAmount"] > 0
glm_sev = GammaRegressor(alpha=10.0, solver="newton-cholesky")
glm_sev.fit(
X_train[mask_train.values],
df_train.loc[mask_train, "AvgClaimAmount"],
sample_weight=df_train.loc[mask_train, "ClaimNb"],
)
scores = score_estimator(
glm_sev,
X_train[mask_train.values],
X_test[mask_test.values],
df_train[mask_train],
df_test[mask_test],
target="AvgClaimAmount",
weights="ClaimNb",
)
print("Evaluation of GammaRegressor on target AvgClaimAmount")
print(scores)
# %%
#
# Those values of the metrics are not necessarily easy to interpret. It can be
# insightful to compare them with a model that does not use any input
# features and always predicts a constant value, i.e. the average claim
# amount, in the same setting:
from sklearn.dummy import DummyRegressor
dummy_sev = DummyRegressor(strategy="mean")
dummy_sev.fit(
X_train[mask_train.values],
df_train.loc[mask_train, "AvgClaimAmount"],
sample_weight=df_train.loc[mask_train, "ClaimNb"],
)
scores = score_estimator(
dummy_sev,
X_train[mask_train.values],
X_test[mask_test.values],
df_train[mask_train],
df_test[mask_test],
target="AvgClaimAmount",
weights="ClaimNb",
)
print("Evaluation of a mean predictor on target AvgClaimAmount")
print(scores)
# %%
#
# We conclude that the claim amount is very challenging to predict. Still, the
# :class:`~sklearn.linear_model.GammaRegressor` is able to leverage some
# information from the input features to slightly improve upon the mean
# baseline in terms of D².
#
# Note that the resulting model is the average claim amount per claim. As such,
# it is conditional on having at least one claim, and cannot be used to predict
# the average claim amount per policy. For this, it needs to be combined with
# a claims frequency model.
print(
"Mean AvgClaim Amount per policy: %.2f "
% df_train["AvgClaimAmount"].mean()
)
print(
"Mean AvgClaim Amount | NbClaim > 0: %.2f"
% df_train["AvgClaimAmount"][df_train["AvgClaimAmount"] > 0].mean()
)
print(
"Predicted Mean AvgClaim Amount | NbClaim > 0: %.2f"
% glm_sev.predict(X_train).mean()
)
print(
"Predicted Mean AvgClaim Amount (dummy) | NbClaim > 0: %.2f"
% dummy_sev.predict(X_train).mean()
)
# %%
# We can visually compare observed and predicted values, aggregated for
# the drivers age (``DrivAge``).
fig, ax = plt.subplots(ncols=1, nrows=2, figsize=(16, 6))
plot_obs_pred(
df=df_train.loc[mask_train],
feature="DrivAge",
weight="Exposure",
observed="AvgClaimAmount",
predicted=glm_sev.predict(X_train[mask_train.values]),
y_label="Average Claim Severity",
title="train data",
ax=ax[0],
)
plot_obs_pred(
df=df_test.loc[mask_test],
feature="DrivAge",
weight="Exposure",
observed="AvgClaimAmount",
predicted=glm_sev.predict(X_test[mask_test.values]),
y_label="Average Claim Severity",
title="test data",
ax=ax[1],
fill_legend=True,
)
plt.tight_layout()
# %%
# Overall, the drivers age (``DrivAge``) has a weak impact on the claim
# severity, both in observed and predicted data.
#
# Pure Premium Modeling via a Product Model vs single TweedieRegressor
# --------------------------------------------------------------------
# As mentioned in the introduction, the total claim amount per unit of
# exposure can be modeled as the product of the prediction of the
# frequency model by the prediction of the severity model.
#
# Alternatively, one can directly model the total loss with a unique
# Compound Poisson Gamma generalized linear model (with a log link function).
# This model is a special case of the Tweedie GLM with a "power" parameter
# :math:`p \in (1, 2)`. Here, we fix apriori the `power` parameter of the
# Tweedie model to some arbitrary value (1.9) in the valid range. Ideally one
# would select this value via grid-search by minimizing the negative
# log-likelihood of the Tweedie model, but unfortunately the current
# implementation does not allow for this (yet).
#
# We will compare the performance of both approaches.
# To quantify the performance of both models, one can compute
# the mean deviance of the train and test data assuming a Compound
# Poisson-Gamma distribution of the total claim amount. This is equivalent to
# a Tweedie distribution with a `power` parameter between 1 and 2.
#
# The :func:`sklearn.metrics.mean_tweedie_deviance` depends on a `power`
# parameter. As we do not know the true value of the `power` parameter, we here
# compute the mean deviances for a grid of possible values, and compare the
# models side by side, i.e. we compare them at identical values of `power`.
# Ideally, we hope that one model will be consistently better than the other,
# regardless of `power`.
from sklearn.linear_model import TweedieRegressor
glm_pure_premium = TweedieRegressor(power=1.9, alpha=0.1, solver="newton-cholesky")
glm_pure_premium.fit(
X_train, df_train["PurePremium"], sample_weight=df_train["Exposure"]
)
tweedie_powers = [1.5, 1.7, 1.8, 1.9, 1.99, 1.999, 1.9999]
scores_product_model = score_estimator(
(glm_freq, glm_sev),
X_train,
X_test,
df_train,
df_test,
target="PurePremium",
weights="Exposure",
tweedie_powers=tweedie_powers,
)
scores_glm_pure_premium = score_estimator(
glm_pure_premium,
X_train,
X_test,
df_train,
df_test,
target="PurePremium",
weights="Exposure",
tweedie_powers=tweedie_powers,
)
scores = pd.concat(
[scores_product_model, scores_glm_pure_premium],
axis=1,
sort=True,
keys=("Product Model", "TweedieRegressor"),
)
print("Evaluation of the Product Model and the Tweedie Regressor on target PurePremium")
with pd.option_context("display.expand_frame_repr", False):
print(scores)
# %%
# In this example, both modeling approaches yield comparable performance
# metrics. For implementation reasons, the percentage of explained variance
# :math:`D^2` is not available for the product model.
#
# We can additionally validate these models by comparing observed and
# predicted total claim amount over the test and train subsets. We see that,
# on average, both model tend to underestimate the total claim (but this
# behavior depends on the amount of regularization).
res = []
for subset_label, X, df in [
("train", X_train, df_train),
("test", X_test, df_test),
]:
exposure = df["Exposure"].values
res.append(
{
"subset": subset_label,
"observed": df["ClaimAmount"].values.sum(),
"predicted, frequency*severity model": np.sum(
exposure * glm_freq.predict(X) * glm_sev.predict(X)
),
"predicted, tweedie, power=%.2f"
% glm_pure_premium.power: np.sum(exposure * glm_pure_premium.predict(X)),
}
)
print(pd.DataFrame(res).set_index("subset").T)
# %%
#
# Finally, we can compare the two models using a plot of cumulated claims: for
# each model, the policyholders are ranked from safest to riskiest based on the
# model predictions and the fraction of observed total cumulated claims is
# plotted on the y axis. This plot is often called the ordered Lorenz curve of
# the model.
#
# The Gini coefficient (based on the area between the curve and the diagonal)
# can be used as a model selection metric to quantify the ability of the model
# to rank policyholders. Note that this metric does not reflect the ability of
# the models to make accurate predictions in terms of absolute value of total
# claim amounts but only in terms of relative amounts as a ranking metric. The
# Gini coefficient is upper bounded by 1.0 but even an oracle model that ranks
# the policyholders by the observed claim amounts cannot reach a score of 1.0.
#
# We observe that both models are able to rank policyholders by risky-ness
# significantly better than chance although they are also both far from the
# oracle model due to the natural difficulty of the prediction problem from a
# few features: most accidents are not predictable and can be caused by
# environmental circumstances that are not described at all by the input
# features of the models.
#
# Note that the Gini index only characterizes the ranking performance of the
# model but not its calibration: any monotonic transformation of the predictions
# leaves the Gini index of the model unchanged.
#
# Finally one should highlight that the Compound Poisson Gamma model that is
# directly fit on the pure premium is operationally simpler to develop and
# maintain as it consists of a single scikit-learn estimator instead of a pair
# of models, each with its own set of hyperparameters.
from sklearn.metrics import auc
def lorenz_curve(y_true, y_pred, exposure):
y_true, y_pred = np.asarray(y_true), np.asarray(y_pred)
exposure = np.asarray(exposure)
# order samples by increasing predicted risk:
ranking = np.argsort(y_pred)
ranked_exposure = exposure[ranking]
ranked_pure_premium = y_true[ranking]
cumulated_claim_amount = np.cumsum(ranked_pure_premium * ranked_exposure)
cumulated_claim_amount /= cumulated_claim_amount[-1]
cumulated_samples = np.linspace(0, 1, len(cumulated_claim_amount))
return cumulated_samples, cumulated_claim_amount
fig, ax = plt.subplots(figsize=(8, 8))
y_pred_product = glm_freq.predict(X_test) * glm_sev.predict(X_test)
y_pred_total = glm_pure_premium.predict(X_test)
for label, y_pred in [
("Frequency * Severity model", y_pred_product),
("Compound Poisson Gamma", y_pred_total),
]:
ordered_samples, cum_claims = lorenz_curve(
df_test["PurePremium"], y_pred, df_test["Exposure"]
)
gini = 1 - 2 * auc(ordered_samples, cum_claims)
label += " (Gini index: {:.3f})".format(gini)
ax.plot(ordered_samples, cum_claims, linestyle="-", label=label)
# Oracle model: y_pred == y_test
ordered_samples, cum_claims = lorenz_curve(
df_test["PurePremium"], df_test["PurePremium"], df_test["Exposure"]
)
gini = 1 - 2 * auc(ordered_samples, cum_claims)
label = "Oracle (Gini index: {:.3f})".format(gini)
ax.plot(ordered_samples, cum_claims, linestyle="-.", color="gray", label=label)
# Random baseline
ax.plot([0, 1], [0, 1], linestyle="--", color="black", label="Random baseline")
ax.set(
title="Lorenz Curves",
xlabel="Fraction of policyholders\n(ordered by model from safest to riskiest)",
ylabel="Fraction of total claim amount",
)
ax.legend(loc="upper left")
plt.plot()
|