1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
|
r"""
=====================================================================
The Johnson-Lindenstrauss bound for embedding with random projections
=====================================================================
The `Johnson-Lindenstrauss lemma`_ states that any high dimensional
dataset can be randomly projected into a lower dimensional Euclidean
space while controlling the distortion in the pairwise distances.
.. _`Johnson-Lindenstrauss lemma`: https://en.wikipedia.org/wiki/\
Johnson%E2%80%93Lindenstrauss_lemma
"""
import sys
from time import time
import matplotlib.pyplot as plt
import numpy as np
from sklearn.datasets import fetch_20newsgroups_vectorized, load_digits
from sklearn.metrics.pairwise import euclidean_distances
from sklearn.random_projection import (
SparseRandomProjection,
johnson_lindenstrauss_min_dim,
)
# %%
# Theoretical bounds
# ==================
# The distortion introduced by a random projection `p` is asserted by
# the fact that `p` is defining an eps-embedding with good probability
# as defined by:
#
# .. math::
# (1 - eps) \|u - v\|^2 < \|p(u) - p(v)\|^2 < (1 + eps) \|u - v\|^2
#
# Where `u` and `v` are any rows taken from a dataset of shape `(n_samples,
# n_features)` and `p` is a projection by a random Gaussian `N(0, 1)` matrix
# of shape `(n_components, n_features)` (or a sparse Achlioptas matrix).
#
# The minimum number of components to guarantees the eps-embedding is
# given by:
#
# .. math::
# n\_components \geq 4 log(n\_samples) / (eps^2 / 2 - eps^3 / 3)
#
#
# The first plot shows that with an increasing number of samples ``n_samples``,
# the minimal number of dimensions ``n_components`` increased logarithmically
# in order to guarantee an ``eps``-embedding.
# range of admissible distortions
eps_range = np.linspace(0.1, 0.99, 5)
colors = plt.cm.Blues(np.linspace(0.3, 1.0, len(eps_range)))
# range of number of samples (observation) to embed
n_samples_range = np.logspace(1, 9, 9)
plt.figure()
for eps, color in zip(eps_range, colors):
min_n_components = johnson_lindenstrauss_min_dim(n_samples_range, eps=eps)
plt.loglog(n_samples_range, min_n_components, color=color)
plt.legend([f"eps = {eps:0.1f}" for eps in eps_range], loc="lower right")
plt.xlabel("Number of observations to eps-embed")
plt.ylabel("Minimum number of dimensions")
plt.title("Johnson-Lindenstrauss bounds:\nn_samples vs n_components")
plt.show()
# %%
# The second plot shows that an increase of the admissible
# distortion ``eps`` allows to reduce drastically the minimal number of
# dimensions ``n_components`` for a given number of samples ``n_samples``
# range of admissible distortions
eps_range = np.linspace(0.01, 0.99, 100)
# range of number of samples (observation) to embed
n_samples_range = np.logspace(2, 6, 5)
colors = plt.cm.Blues(np.linspace(0.3, 1.0, len(n_samples_range)))
plt.figure()
for n_samples, color in zip(n_samples_range, colors):
min_n_components = johnson_lindenstrauss_min_dim(n_samples, eps=eps_range)
plt.semilogy(eps_range, min_n_components, color=color)
plt.legend([f"n_samples = {n}" for n in n_samples_range], loc="upper right")
plt.xlabel("Distortion eps")
plt.ylabel("Minimum number of dimensions")
plt.title("Johnson-Lindenstrauss bounds:\nn_components vs eps")
plt.show()
# %%
# Empirical validation
# ====================
#
# We validate the above bounds on the 20 newsgroups text document
# (TF-IDF word frequencies) dataset or on the digits dataset:
#
# - for the 20 newsgroups dataset some 300 documents with 100k
# features in total are projected using a sparse random matrix to smaller
# euclidean spaces with various values for the target number of dimensions
# ``n_components``.
#
# - for the digits dataset, some 8x8 gray level pixels data for 300
# handwritten digits pictures are randomly projected to spaces for various
# larger number of dimensions ``n_components``.
#
# The default dataset is the 20 newsgroups dataset. To run the example on the
# digits dataset, pass the ``--use-digits-dataset`` command line argument to
# this script.
if "--use-digits-dataset" in sys.argv:
data = load_digits().data[:300]
else:
data = fetch_20newsgroups_vectorized().data[:300]
# %%
# For each value of ``n_components``, we plot:
#
# - 2D distribution of sample pairs with pairwise distances in original
# and projected spaces as x- and y-axis respectively.
#
# - 1D histogram of the ratio of those distances (projected / original).
n_samples, n_features = data.shape
print(
f"Embedding {n_samples} samples with dim {n_features} using various "
"random projections"
)
n_components_range = np.array([300, 1_000, 10_000])
dists = euclidean_distances(data, squared=True).ravel()
# select only non-identical samples pairs
nonzero = dists != 0
dists = dists[nonzero]
for n_components in n_components_range:
t0 = time()
rp = SparseRandomProjection(n_components=n_components)
projected_data = rp.fit_transform(data)
print(
f"Projected {n_samples} samples from {n_features} to {n_components} in "
f"{time() - t0:0.3f}s"
)
if hasattr(rp, "components_"):
n_bytes = rp.components_.data.nbytes
n_bytes += rp.components_.indices.nbytes
print(f"Random matrix with size: {n_bytes / 1e6:0.3f} MB")
projected_dists = euclidean_distances(projected_data, squared=True).ravel()[nonzero]
plt.figure()
min_dist = min(projected_dists.min(), dists.min())
max_dist = max(projected_dists.max(), dists.max())
plt.hexbin(
dists,
projected_dists,
gridsize=100,
cmap=plt.cm.PuBu,
extent=[min_dist, max_dist, min_dist, max_dist],
)
plt.xlabel("Pairwise squared distances in original space")
plt.ylabel("Pairwise squared distances in projected space")
plt.title("Pairwise distances distribution for n_components=%d" % n_components)
cb = plt.colorbar()
cb.set_label("Sample pairs counts")
rates = projected_dists / dists
print(f"Mean distances rate: {np.mean(rates):.2f} ({np.std(rates):.2f})")
plt.figure()
plt.hist(rates, bins=50, range=(0.0, 2.0), edgecolor="k", density=True)
plt.xlabel("Squared distances rate: projected / original")
plt.ylabel("Distribution of samples pairs")
plt.title("Histogram of pairwise distance rates for n_components=%d" % n_components)
# TODO: compute the expected value of eps and add them to the previous plot
# as vertical lines / region
plt.show()
# %%
# We can see that for low values of ``n_components`` the distribution is wide
# with many distorted pairs and a skewed distribution (due to the hard
# limit of zero ratio on the left as distances are always positives)
# while for larger values of `n_components` the distortion is controlled
# and the distances are well preserved by the random projection.
#
# Remarks
# =======
#
# According to the JL lemma, projecting 300 samples without too much distortion
# will require at least several thousands dimensions, irrespective of the
# number of features of the original dataset.
#
# Hence using random projections on the digits dataset which only has 64
# features in the input space does not make sense: it does not allow
# for dimensionality reduction in this case.
#
# On the twenty newsgroups on the other hand the dimensionality can be
# decreased from 56,436 down to 10,000 while reasonably preserving
# pairwise distances.
|