1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
|
"""
================
Metadata Routing
================
.. currentmodule:: sklearn
This document shows how you can use the :ref:`metadata routing mechanism
<metadata_routing>` in scikit-learn to route metadata through meta-estimators
to the estimators consuming them. To better understand the rest of the
document, we need to introduce two concepts: routers and consumers. A router is
an object, in most cases a meta-estimator, which forwards given data and
metadata to other objects and estimators. A consumer, on the other hand, is an
object which accepts and uses a certain given metadata. For instance, an
estimator taking into account ``sample_weight`` in its :term:`fit` method is a
consumer of ``sample_weight``. It is possible for an object to be both a router
and a consumer. For instance, a meta-estimator may take into account
``sample_weight`` in certain calculations, but it may also route it to the
underlying estimator.
First a few imports and some random data for the rest of the script.
"""
# %%
import warnings
from pprint import pprint
import numpy as np
from sklearn import set_config
from sklearn.base import (
BaseEstimator,
ClassifierMixin,
MetaEstimatorMixin,
RegressorMixin,
TransformerMixin,
clone,
)
from sklearn.linear_model import LinearRegression
from sklearn.utils import metadata_routing
from sklearn.utils.metadata_routing import (
MetadataRouter,
MethodMapping,
get_routing_for_object,
process_routing,
)
from sklearn.utils.validation import check_is_fitted
n_samples, n_features = 100, 4
rng = np.random.RandomState(42)
X = rng.rand(n_samples, n_features)
y = rng.randint(0, 2, size=n_samples)
my_groups = rng.randint(0, 10, size=n_samples)
my_weights = rng.rand(n_samples)
my_other_weights = rng.rand(n_samples)
# %%
# This feature is only available if explicitly enabled:
set_config(enable_metadata_routing=True)
# %%
# This utility function is a dummy to check if a metadata is passed.
def check_metadata(obj, **kwargs):
for key, value in kwargs.items():
if value is not None:
print(
f"Received {key} of length = {len(value)} in {obj.__class__.__name__}."
)
else:
print(f"{key} is None in {obj.__class__.__name__}.")
# %%
# A utility function to nicely print the routing information of an object
def print_routing(obj):
pprint(obj.get_metadata_routing()._serialize())
# %%
# Estimators
# ----------
# Here we demonstrate how an estimator can expose the required API to support
# metadata routing as a consumer. Imagine a simple classifier accepting
# ``sample_weight`` as a metadata on its ``fit`` and ``groups`` in its
# ``predict`` method:
class ExampleClassifier(ClassifierMixin, BaseEstimator):
def fit(self, X, y, sample_weight=None):
check_metadata(self, sample_weight=sample_weight)
# all classifiers need to expose a classes_ attribute once they're fit.
self.classes_ = np.array([0, 1])
return self
def predict(self, X, groups=None):
check_metadata(self, groups=groups)
# return a constant value of 1, not a very smart classifier!
return np.ones(len(X))
# %%
# The above estimator now has all it needs to consume metadata. This is
# accomplished by some magic done in :class:`~base.BaseEstimator`. There are
# now three methods exposed by the above class: ``set_fit_request``,
# ``set_predict_request``, and ``get_metadata_routing``. There is also a
# ``set_score_request`` for ``sample_weight`` which is present since
# :class:`~base.ClassifierMixin` implements a ``score`` method accepting
# ``sample_weight``. The same applies to regressors which inherit from
# :class:`~base.RegressorMixin`.
#
# By default, no metadata is requested, which we can see as:
print_routing(ExampleClassifier())
# %%
# The above output means that ``sample_weight`` and ``groups`` are not
# requested, but if a router is given those metadata, it should raise an error,
# since the user has not explicitly set whether they are required or not. The
# same is true for ``sample_weight`` in the ``score`` method, which is
# inherited from :class:`~base.ClassifierMixin`. In order to explicitly set
# request values for those metadata, we can use these methods:
est = (
ExampleClassifier()
.set_fit_request(sample_weight=False)
.set_predict_request(groups=True)
.set_score_request(sample_weight=False)
)
print_routing(est)
# %%
# .. note ::
# Please note that as long as the above estimator is not used in another
# meta-estimator, the user does not need to set any requests for the
# metadata and the set values are ignored, since a consumer does not
# validate or route given metadata. A simple usage of the above estimator
# would work as expected.
est = ExampleClassifier()
est.fit(X, y, sample_weight=my_weights)
est.predict(X[:3, :], groups=my_groups)
# %%
# Now let's have a meta-estimator, which doesn't do much other than routing the
# metadata.
class MetaClassifier(MetaEstimatorMixin, ClassifierMixin, BaseEstimator):
def __init__(self, estimator):
self.estimator = estimator
def get_metadata_routing(self):
# This method defines the routing for this meta-estimator.
# In order to do so, a `MetadataRouter` instance is created, and the
# right routing is added to it. More explanations follow.
router = MetadataRouter(owner=self.__class__.__name__).add(
estimator=self.estimator, method_mapping="one-to-one"
)
return router
def fit(self, X, y, **fit_params):
# meta-estimators are responsible for validating the given metadata.
# `get_routing_for_object` is a safe way to construct a
# `MetadataRouter` or a `MetadataRequest` from the given object.
request_router = get_routing_for_object(self)
request_router.validate_metadata(params=fit_params, method="fit")
# we can use provided utility methods to map the given metadata to what
# is required by the underlying estimator. Here `method` refers to the
# parent's method, i.e. `fit` in this example.
routed_params = request_router.route_params(params=fit_params, caller="fit")
# the output has a key for each object's method which is used here,
# i.e. parent's `fit` method, containing the metadata which should be
# routed to them, based on the information provided in
# `get_metadata_routing`.
self.estimator_ = clone(self.estimator).fit(X, y, **routed_params.estimator.fit)
self.classes_ = self.estimator_.classes_
return self
def predict(self, X, **predict_params):
check_is_fitted(self)
# same as in `fit`, we validate the given metadata
request_router = get_routing_for_object(self)
request_router.validate_metadata(params=predict_params, method="predict")
# and then prepare the input to the underlying `predict` method.
routed_params = request_router.route_params(
params=predict_params, caller="predict"
)
return self.estimator_.predict(X, **routed_params.estimator.predict)
# %%
# Let's break down different parts of the above code.
#
# First, the :meth:`~utils.metadata_routing.get_routing_for_object` takes an
# estimator (``self``) and returns a
# :class:`~utils.metadata_routing.MetadataRouter` or a
# :class:`~utils.metadata_routing.MetadataRequest` based on the output of the
# estimator's ``get_metadata_routing`` method.
#
# Then in each method, we use the ``route_params`` method to construct a
# dictionary of the form ``{"object_name": {"method_name": {"metadata":
# value}}}`` to pass to the underlying estimator's method. The ``object_name``
# (``estimator`` in the above ``routed_params.estimator.fit`` example) is the
# same as the one added in the ``get_metadata_routing``. ``validate_metadata``
# makes sure all given metadata are requested to avoid silent bugs. Now, we
# illustrate the different behaviors and notably the type of errors raised:
est = MetaClassifier(estimator=ExampleClassifier().set_fit_request(sample_weight=True))
est.fit(X, y, sample_weight=my_weights)
# %%
# Note that the above example checks that ``sample_weight`` is correctly passed
# to ``ExampleClassifier``, or else it would print that ``sample_weight`` is
# ``None``:
est.fit(X, y)
# %%
# If we pass an unknown metadata, an error is raised:
try:
est.fit(X, y, test=my_weights)
except TypeError as e:
print(e)
# %%
# And if we pass a metadata which is not explicitly requested:
try:
est.fit(X, y, sample_weight=my_weights).predict(X, groups=my_groups)
except ValueError as e:
print(e)
# %%
# Also, if we explicitly set it as not requested, but it is provided:
est = MetaClassifier(
estimator=ExampleClassifier()
.set_fit_request(sample_weight=True)
.set_predict_request(groups=False)
)
try:
est.fit(X, y, sample_weight=my_weights).predict(X[:3, :], groups=my_groups)
except TypeError as e:
print(e)
# %%
# Another concept to introduce is **aliased metadata**. This is when an estimator
# requests a metadata with a different name than the default value. For
# instance, in a setting where there are two estimators in a pipeline, one
# could request ``sample_weight1`` and the other ``sample_weight2``. Note that
# this doesn't change what the estimator expects, it only tells the
# meta-estimator how to map the provided metadata to what's required. Here's an
# example, where we pass ``aliased_sample_weight`` to the meta-estimator, but
# the meta-estimator understands that ``aliased_sample_weight`` is an alias for
# ``sample_weight``, and passes it as ``sample_weight`` to the underlying
# estimator:
est = MetaClassifier(
estimator=ExampleClassifier().set_fit_request(sample_weight="aliased_sample_weight")
)
est.fit(X, y, aliased_sample_weight=my_weights)
# %%
# And passing ``sample_weight`` here will fail since it is requested with an
# alias and ``sample_weight`` with that name is not requested:
try:
est.fit(X, y, sample_weight=my_weights)
except TypeError as e:
print(e)
# %%
# This leads us to the ``get_metadata_routing``. The way routing works in
# scikit-learn is that consumers request what they need, and routers pass that
# along. Additionally, a router exposes what it requires itself so that it can
# be used inside another router, e.g. a pipeline inside a grid search object.
# The output of the ``get_metadata_routing`` which is a dictionary
# representation of a :class:`~utils.metadata_routing.MetadataRouter`, includes
# the complete tree of requested metadata by all nested objects and their
# corresponding method routings, i.e. which method of a sub-estimator is used
# in which method of a meta-estimator:
print_routing(est)
# %%
# As you can see, the only metadata requested for method ``fit`` is
# ``"sample_weight"`` with ``"aliased_sample_weight"`` as the alias. The
# ``~utils.metadata_routing.MetadataRouter`` class enables us to easily create
# the routing object which would create the output we need for our
# ``get_metadata_routing``. In the above implementation,
# ``mapping="one-to-one"`` means there is a one to one mapping between
# sub-estimator's methods and meta-estimator's ones, i.e. ``fit`` used in
# ``fit`` and so on. In order to understand how aliases work in
# meta-estimators, imagine our meta-estimator inside another one:
meta_est = MetaClassifier(estimator=est).fit(X, y, aliased_sample_weight=my_weights)
# %%
# In the above example, this is how each ``fit`` method will call the
# sub-estimator's ``fit``::
#
# meta_est.fit(X, y, aliased_sample_weight=my_weights):
# ... # this estimator (est), expects aliased_sample_weight as seen above
# self.estimator_.fit(X, y, aliased_sample_weight=aliased_sample_weight):
# ... # now est passes aliased_sample_weight's value as sample_weight,
# # which is expected by the sub-estimator
# self.estimator_.fit(X, y, sample_weight=aliased_sample_weight)
# ...
# %%
# Router and Consumer
# -------------------
# To show how a slightly more complex case would work, consider a case
# where a meta-estimator uses some metadata, but it also routes them to an
# underlying estimator. In this case, this meta-estimator is a consumer and a
# router at the same time. This is how we can implement one, and it is very
# similar to what we had before, with a few tweaks.
class RouterConsumerClassifier(MetaEstimatorMixin, ClassifierMixin, BaseEstimator):
def __init__(self, estimator):
self.estimator = estimator
def get_metadata_routing(self):
router = (
MetadataRouter(owner=self.__class__.__name__)
.add_self_request(self)
.add(estimator=self.estimator, method_mapping="one-to-one")
)
return router
def fit(self, X, y, sample_weight, **fit_params):
if self.estimator is None:
raise ValueError("estimator cannot be None!")
check_metadata(self, sample_weight=sample_weight)
if sample_weight is not None:
fit_params["sample_weight"] = sample_weight
# meta-estimators are responsible for validating the given metadata
request_router = get_routing_for_object(self)
request_router.validate_metadata(params=fit_params, method="fit")
# we can use provided utility methods to map the given metadata to what
# is required by the underlying estimator
params = request_router.route_params(params=fit_params, caller="fit")
self.estimator_ = clone(self.estimator).fit(X, y, **params.estimator.fit)
self.classes_ = self.estimator_.classes_
return self
def predict(self, X, **predict_params):
check_is_fitted(self)
# same as in ``fit``, we validate the given metadata
request_router = get_routing_for_object(self)
request_router.validate_metadata(params=predict_params, method="predict")
# and then prepare the input to the underlying ``predict`` method.
params = request_router.route_params(params=predict_params, caller="predict")
return self.estimator_.predict(X, **params.estimator.predict)
# %%
# The key parts where the above estimator differs from our previous
# meta-estimator is accepting ``sample_weight`` explicitly in ``fit`` and
# including it in ``fit_params``. Making ``sample_weight`` an explicit argument
# makes sure ``set_fit_request(sample_weight=...)`` is present for this class.
# In a sense, this means the estimator is both a consumer, as well as a router
# of ``sample_weight``.
#
# In ``get_metadata_routing``, we add ``self`` to the routing using
# ``add_self_request`` to indicate this estimator is consuming
# ``sample_weight`` as well as being a router; which also adds a
# ``$self_request`` key to the routing info as illustrated below. Now let's
# look at some examples:
# %%
# - No metadata requested
est = RouterConsumerClassifier(estimator=ExampleClassifier())
print_routing(est)
# %%
# - ``sample_weight`` requested by underlying estimator
est = RouterConsumerClassifier(
estimator=ExampleClassifier().set_fit_request(sample_weight=True)
)
print_routing(est)
# %%
# - ``sample_weight`` requested by meta-estimator
est = RouterConsumerClassifier(estimator=ExampleClassifier()).set_fit_request(
sample_weight=True
)
print_routing(est)
# %%
# Note the difference in the requested metadata representations above.
#
# - We can also alias the metadata to pass different values to them:
est = RouterConsumerClassifier(
estimator=ExampleClassifier().set_fit_request(sample_weight="clf_sample_weight"),
).set_fit_request(sample_weight="meta_clf_sample_weight")
print_routing(est)
# %%
# However, ``fit`` of the meta-estimator only needs the alias for the
# sub-estimator, since it doesn't validate and route its own required metadata:
est.fit(X, y, sample_weight=my_weights, clf_sample_weight=my_other_weights)
# %%
# - Alias only on the sub-estimator. This is useful if we don't want the
# meta-estimator to use the metadata, and we only want the metadata to be used
# by the sub-estimator.
est = RouterConsumerClassifier(
estimator=ExampleClassifier().set_fit_request(sample_weight="aliased_sample_weight")
).set_fit_request(sample_weight=True)
print_routing(est)
# %%
# Simple Pipeline
# ---------------
# A slightly more complicated use-case is a meta-estimator which does something
# similar to the :class:`~pipeline.Pipeline`. Here is a meta-estimator, which
# accepts a transformer and a classifier, and applies the transformer before
# running the classifier.
class SimplePipeline(ClassifierMixin, BaseEstimator):
_required_parameters = ["estimator"]
def __init__(self, transformer, classifier):
self.transformer = transformer
self.classifier = classifier
def get_metadata_routing(self):
router = (
MetadataRouter(owner=self.__class__.__name__)
.add(
transformer=self.transformer,
method_mapping=MethodMapping()
.add(callee="fit", caller="fit")
.add(callee="transform", caller="fit")
.add(callee="transform", caller="predict"),
)
.add(classifier=self.classifier, method_mapping="one-to-one")
)
return router
def fit(self, X, y, **fit_params):
params = process_routing(self, "fit", **fit_params)
self.transformer_ = clone(self.transformer).fit(X, y, **params.transformer.fit)
X_transformed = self.transformer_.transform(X, **params.transformer.transform)
self.classifier_ = clone(self.classifier).fit(
X_transformed, y, **params.classifier.fit
)
return self
def predict(self, X, **predict_params):
params = process_routing(self, "predict", **predict_params)
X_transformed = self.transformer_.transform(X, **params.transformer.transform)
return self.classifier_.predict(X_transformed, **params.classifier.predict)
# %%
# Note the usage of :class:`~utils.metadata_routing.MethodMapping` to declare
# which methods of the child estimator (callee) are used in which methods of
# the meta estimator (caller). As you can see, we use the transformer's
# ``transform`` and ``fit`` methods in ``fit``, and its ``transform`` method in
# ``predict``, and that's what you see implemented in the routing structure of
# the pipeline class.
#
# Another difference in the above example with the previous ones is the usage
# of :func:`~utils.metadata_routing.process_routing`, which processes the input
# parameters, does the required validation, and returns the `params` which we
# had created in previous examples. This reduces the boilerplate code a
# developer needs to write in each meta-estimator's method. Developers are
# strongly recommended to use this function unless there is a good reason
# against it.
#
# In order to test the above pipeline, let's add an example transformer.
class ExampleTransformer(TransformerMixin, BaseEstimator):
def fit(self, X, y, sample_weight=None):
check_metadata(self, sample_weight=sample_weight)
return self
def transform(self, X, groups=None):
check_metadata(self, groups=groups)
return X
def fit_transform(self, X, y, sample_weight=None, groups=None):
return self.fit(X, y, sample_weight).transform(X, groups)
# %%
# Note that in the above example, we have implemented ``fit_transform`` which
# calls ``fit`` and ``transform`` with the appropriate metadata. This is only
# required if ``transform`` accepts metadata, since the default ``fit_transform``
# implementation in :class:`~base.TransformerMixin` doesn't pass metadata to
# ``transform``.
#
# Now we can test our pipeline, and see if metadata is correctly passed around.
# This example uses our simple pipeline, and our transformer, and our
# consumer+router estimator which uses our simple classifier.
est = SimplePipeline(
transformer=ExampleTransformer()
# we transformer's fit to receive sample_weight
.set_fit_request(sample_weight=True)
# we want transformer's transform to receive groups
.set_transform_request(groups=True),
classifier=RouterConsumerClassifier(
estimator=ExampleClassifier()
# we want this sub-estimator to receive sample_weight in fit
.set_fit_request(sample_weight=True)
# but not groups in predict
.set_predict_request(groups=False),
).set_fit_request(
# and we want the meta-estimator to receive sample_weight as well
sample_weight=True
),
)
est.fit(X, y, sample_weight=my_weights, groups=my_groups).predict(
X[:3], groups=my_groups
)
# %%
# Deprecation / Default Value Change
# ----------------------------------
# In this section we show how one should handle the case where a router becomes
# also a consumer, especially when it consumes the same metadata as its
# sub-estimator, or a consumer starts consuming a metadata which it wasn't in
# an older release. In this case, a warning should be raised for a while, to
# let users know the behavior is changed from previous versions.
class MetaRegressor(MetaEstimatorMixin, RegressorMixin, BaseEstimator):
def __init__(self, estimator):
self.estimator = estimator
def fit(self, X, y, **fit_params):
params = process_routing(self, "fit", **fit_params)
self.estimator_ = clone(self.estimator).fit(X, y, **params.estimator.fit)
def get_metadata_routing(self):
router = MetadataRouter(owner=self.__class__.__name__).add(
estimator=self.estimator, method_mapping="one-to-one"
)
return router
# %%
# As explained above, this is now a valid usage:
reg = MetaRegressor(estimator=LinearRegression().set_fit_request(sample_weight=True))
reg.fit(X, y, sample_weight=my_weights)
# %%
# Now imagine we further develop ``MetaRegressor`` and it now also *consumes*
# ``sample_weight``:
class WeightedMetaRegressor(MetaEstimatorMixin, RegressorMixin, BaseEstimator):
__metadata_request__fit = {"sample_weight": metadata_routing.WARN}
def __init__(self, estimator):
self.estimator = estimator
def fit(self, X, y, sample_weight=None, **fit_params):
params = process_routing(self, "fit", sample_weight=sample_weight, **fit_params)
check_metadata(self, sample_weight=sample_weight)
self.estimator_ = clone(self.estimator).fit(X, y, **params.estimator.fit)
def get_metadata_routing(self):
router = (
MetadataRouter(owner=self.__class__.__name__)
.add_self_request(self)
.add(estimator=self.estimator, method_mapping="one-to-one")
)
return router
# %%
# The above implementation is almost no different than ``MetaRegressor``, and
# because of the default request value defined in ``__metadata_request__fit``
# there is a warning raised.
with warnings.catch_warnings(record=True) as record:
WeightedMetaRegressor(
estimator=LinearRegression().set_fit_request(sample_weight=False)
).fit(X, y, sample_weight=my_weights)
for w in record:
print(w.message)
# %%
# When an estimator supports a metadata which wasn't supported before, the
# following pattern can be used to warn the users about it.
class ExampleRegressor(RegressorMixin, BaseEstimator):
__metadata_request__fit = {"sample_weight": metadata_routing.WARN}
def fit(self, X, y, sample_weight=None):
check_metadata(self, sample_weight=sample_weight)
return self
def predict(self, X):
return np.zeros(shape=(len(X)))
with warnings.catch_warnings(record=True) as record:
MetaRegressor(estimator=ExampleRegressor()).fit(X, y, sample_weight=my_weights)
for w in record:
print(w.message)
# %%
# Third Party Development and scikit-learn Dependency
# ---------------------------------------------------
#
# As seen above, information is communicated between classes using
# :class:`~utils.metadata_routing.MetadataRequest` and
# :class:`~utils.metadata_routing.MetadataRouter`. It is strongly not advised,
# but possible to vendor the tools related to metadata-routing if you strictly
# want to have a scikit-learn compatible estimator, without depending on the
# scikit-learn package. If the following conditions are met, you do NOT need to
# modify your code at all:
#
# - your estimator inherits from :class:`~base.BaseEstimator`
# - the parameters consumed by your estimator's methods, e.g. ``fit``, are
# explicitly defined in the method's signature, as opposed to being
# ``*args`` or ``*kwargs``.
# - you do not route any metadata to the underlying objects, i.e. you're not a
# *router*.
|