1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
|
"""
==========================================
Evaluation of outlier detection estimators
==========================================
This example compares two outlier detection algorithms, namely
:ref:`local_outlier_factor` (LOF) and :ref:`isolation_forest` (IForest), on
real-world datasets available in :class:`sklearn.datasets`. The goal is to show
that different algorithms perform well on different datasets.
The algorithms are trained in an outlier detection context:
1. The ROC curves are computed using knowledge of the ground-truth labels
and displayed using :class:`~sklearn.metrics.RocCurveDisplay`.
2. The performance is assessed in terms of the ROC-AUC.
"""
# Author: Pharuj Rajborirug <pharuj.ra@kmitl.ac.th>
# Arturo Amor <david-arturo.amor-quiroz@inria.fr>
# License: BSD 3 clause
# %%
# Dataset preprocessing and model training
# ========================================
#
# Different outlier detection models require different preprocessing. In the
# presence of categorical variables,
# :class:`~sklearn.preprocessing.OrdinalEncoder` is often a good strategy for
# tree-based models such as :class:`~sklearn.ensemble.IsolationForest`, whereas
# neighbors-based models such as :class:`~sklearn.neighbors.LocalOutlierFactor`
# would be impacted by the ordering induced by ordinal encoding. To avoid
# inducing an ordering, on should rather use
# :class:`~sklearn.preprocessing.OneHotEncoder`.
#
# Neighbors-based models may also require scaling of the numerical features (see
# for instance :ref:`neighbors_scaling`). In the presence of outliers, a good
# option is to use a :class:`~sklearn.preprocessing.RobustScaler`.
from sklearn.compose import ColumnTransformer
from sklearn.ensemble import IsolationForest
from sklearn.neighbors import LocalOutlierFactor
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import (
OneHotEncoder,
OrdinalEncoder,
RobustScaler,
)
def make_estimator(name, categorical_columns=None, iforest_kw=None, lof_kw=None):
"""Create an outlier detection estimator based on its name."""
if name == "LOF":
outlier_detector = LocalOutlierFactor(**(lof_kw or {}))
if categorical_columns is None:
preprocessor = RobustScaler()
else:
preprocessor = ColumnTransformer(
transformers=[("categorical", OneHotEncoder(), categorical_columns)],
remainder=RobustScaler(),
)
else: # name == "IForest"
outlier_detector = IsolationForest(**(iforest_kw or {}))
if categorical_columns is None:
preprocessor = None
else:
ordinal_encoder = OrdinalEncoder(
handle_unknown="use_encoded_value", unknown_value=-1
)
preprocessor = ColumnTransformer(
transformers=[
("categorical", ordinal_encoder, categorical_columns),
],
remainder="passthrough",
)
return make_pipeline(preprocessor, outlier_detector)
# %%
# The following `fit_predict` function returns the average outlier score of X.
from time import perf_counter
def fit_predict(estimator, X):
tic = perf_counter()
if estimator[-1].__class__.__name__ == "LocalOutlierFactor":
estimator.fit(X)
y_pred = estimator[-1].negative_outlier_factor_
else: # "IsolationForest"
y_pred = estimator.fit(X).decision_function(X)
toc = perf_counter()
print(f"Duration for {model_name}: {toc - tic:.2f} s")
return y_pred
# %%
# On the rest of the example we process one dataset per section. After loading
# the data, the targets are modified to consist of two classes: 0 representing
# inliers and 1 representing outliers. Due to computational constraints of the
# scikit-learn documentation, the sample size of some datasets is reduced using
# a stratified :class:`~sklearn.model_selection.train_test_split`.
#
# Furthermore, we set `n_neighbors` to match the expected number of anomalies
# `expected_n_anomalies = n_samples * expected_anomaly_fraction`. This is a good
# heuristic as long as the proportion of outliers is not very low, the reason
# being that `n_neighbors` should be at least greater than the number of samples
# in the less populated cluster (see
# :ref:`sphx_glr_auto_examples_neighbors_plot_lof_outlier_detection.py`).
#
# KDDCup99 - SA dataset
# ---------------------
#
# The :ref:`kddcup99_dataset` was generated using a closed network and
# hand-injected attacks. The SA dataset is a subset of it obtained by simply
# selecting all the normal data and an anomaly proportion of around 3%.
# %%
import numpy as np
from sklearn.datasets import fetch_kddcup99
from sklearn.model_selection import train_test_split
X, y = fetch_kddcup99(
subset="SA", percent10=True, random_state=42, return_X_y=True, as_frame=True
)
y = (y != b"normal.").astype(np.int32)
X, _, y, _ = train_test_split(X, y, train_size=0.1, stratify=y, random_state=42)
n_samples, anomaly_frac = X.shape[0], y.mean()
print(f"{n_samples} datapoints with {y.sum()} anomalies ({anomaly_frac:.02%})")
# %%
# The SA dataset contains 41 features out of which 3 are categorical:
# "protocol_type", "service" and "flag".
# %%
y_true = {}
y_pred = {"LOF": {}, "IForest": {}}
model_names = ["LOF", "IForest"]
cat_columns = ["protocol_type", "service", "flag"]
y_true["KDDCup99 - SA"] = y
for model_name in model_names:
model = make_estimator(
name=model_name,
categorical_columns=cat_columns,
lof_kw={"n_neighbors": int(n_samples * anomaly_frac)},
iforest_kw={"random_state": 42},
)
y_pred[model_name]["KDDCup99 - SA"] = fit_predict(model, X)
# %%
# Forest covertypes dataset
# -------------------------
#
# The :ref:`covtype_dataset` is a multiclass dataset where the target is the
# dominant species of tree in a given patch of forest. It contains 54 features,
# some of which ("Wilderness_Area" and "Soil_Type") are already binary encoded.
# Though originally meant as a classification task, one can regard inliers as
# samples encoded with label 2 and outliers as those with label 4.
# %%
from sklearn.datasets import fetch_covtype
X, y = fetch_covtype(return_X_y=True, as_frame=True)
s = (y == 2) + (y == 4)
X = X.loc[s]
y = y.loc[s]
y = (y != 2).astype(np.int32)
X, _, y, _ = train_test_split(X, y, train_size=0.05, stratify=y, random_state=42)
X_forestcover = X # save X for later use
n_samples, anomaly_frac = X.shape[0], y.mean()
print(f"{n_samples} datapoints with {y.sum()} anomalies ({anomaly_frac:.02%})")
# %%
y_true["forestcover"] = y
for model_name in model_names:
model = make_estimator(
name=model_name,
lof_kw={"n_neighbors": int(n_samples * anomaly_frac)},
iforest_kw={"random_state": 42},
)
y_pred[model_name]["forestcover"] = fit_predict(model, X)
# %%
# Ames Housing dataset
# --------------------
#
# The `Ames housing dataset <http://www.openml.org/d/43926>`_ is originally a
# regression dataset where the target are sales prices of houses in Ames, Iowa.
# Here we convert it into an outlier detection problem by regarding houses with
# price over 70 USD/sqft. To make the problem easier, we drop intermediate
# prices between 40 and 70 USD/sqft.
# %%
import matplotlib.pyplot as plt
from sklearn.datasets import fetch_openml
X, y = fetch_openml(name="ames_housing", version=1, return_X_y=True, as_frame=True)
y = y.div(X["Lot_Area"])
# None values in pandas 1.5.1 were mapped to np.nan in pandas 2.0.1
X["Misc_Feature"] = X["Misc_Feature"].cat.add_categories("NoInfo").fillna("NoInfo")
X["Mas_Vnr_Type"] = X["Mas_Vnr_Type"].cat.add_categories("NoInfo").fillna("NoInfo")
X.drop(columns="Lot_Area", inplace=True)
mask = (y < 40) | (y > 70)
X = X.loc[mask]
y = y.loc[mask]
y.hist(bins=20, edgecolor="black")
plt.xlabel("House price in USD/sqft")
_ = plt.title("Distribution of house prices in Ames")
# %%
y = (y > 70).astype(np.int32)
n_samples, anomaly_frac = X.shape[0], y.mean()
print(f"{n_samples} datapoints with {y.sum()} anomalies ({anomaly_frac:.02%})")
# %%
# The dataset contains 46 categorical features. In this case it is easier use a
# :class:`~sklearn.compose.make_column_selector` to find them instead of passing
# a list made by hand.
# %%
from sklearn.compose import make_column_selector as selector
categorical_columns_selector = selector(dtype_include="category")
cat_columns = categorical_columns_selector(X)
y_true["ames_housing"] = y
for model_name in model_names:
model = make_estimator(
name=model_name,
categorical_columns=cat_columns,
lof_kw={"n_neighbors": int(n_samples * anomaly_frac)},
iforest_kw={"random_state": 42},
)
y_pred[model_name]["ames_housing"] = fit_predict(model, X)
# %%
# Cardiotocography dataset
# ------------------------
#
# The `Cardiotocography dataset <http://www.openml.org/d/1466>`_ is a multiclass
# dataset of fetal cardiotocograms, the classes being the fetal heart rate (FHR)
# pattern encoded with labels from 1 to 10. Here we set class 3 (the minority
# class) to represent the outliers. It contains 30 numerical features, some of
# which are binary encoded and some are continuous.
# %%
X, y = fetch_openml(name="cardiotocography", version=1, return_X_y=True, as_frame=False)
X_cardiotocography = X # save X for later use
s = y == "3"
y = s.astype(np.int32)
n_samples, anomaly_frac = X.shape[0], y.mean()
print(f"{n_samples} datapoints with {y.sum()} anomalies ({anomaly_frac:.02%})")
# %%
y_true["cardiotocography"] = y
for model_name in model_names:
model = make_estimator(
name=model_name,
lof_kw={"n_neighbors": int(n_samples * anomaly_frac)},
iforest_kw={"random_state": 42},
)
y_pred[model_name]["cardiotocography"] = fit_predict(model, X)
# %%
# Plot and interpret results
# ==========================
#
# The algorithm performance relates to how good the true positive rate (TPR) is
# at low value of the false positive rate (FPR). The best algorithms have the
# curve on the top-left of the plot and the area under curve (AUC) close to 1.
# The diagonal dashed line represents a random classification of outliers and
# inliers.
# %%
import math
from sklearn.metrics import RocCurveDisplay
cols = 2
pos_label = 0 # mean 0 belongs to positive class
datasets_names = y_true.keys()
rows = math.ceil(len(datasets_names) / cols)
fig, axs = plt.subplots(nrows=rows, ncols=cols, squeeze=False, figsize=(10, rows * 4))
for ax, dataset_name in zip(axs.ravel(), datasets_names):
for model_idx, model_name in enumerate(model_names):
display = RocCurveDisplay.from_predictions(
y_true[dataset_name],
y_pred[model_name][dataset_name],
pos_label=pos_label,
name=model_name,
ax=ax,
plot_chance_level=(model_idx == len(model_names) - 1),
chance_level_kw={"linestyle": ":"},
)
ax.set_title(dataset_name)
_ = plt.tight_layout(pad=2.0) # spacing between subplots
# %%
# We observe that once the number of neighbors is tuned, LOF and IForest perform
# similarly in terms of ROC AUC for the forestcover and cardiotocography
# datasets. The score for IForest is slightly better for the SA dataset and LOF
# performs considerably better on the Ames housing dataset than IForest.
#
# Ablation study
# ==============
#
# In this section we explore the impact of the hyperparameter `n_neighbors` and
# the choice of scaling the numerical variables on the LOF model. Here we use
# the :ref:`covtype_dataset` dataset as the binary encoded categories introduce
# a natural scale of euclidean distances between 0 and 1. We then want a scaling
# method to avoid granting a privilege to non-binary features and that is robust
# enough to outliers so that the task of finding them does not become too
# difficult.
# %%
X = X_forestcover
y = y_true["forestcover"]
n_samples = X.shape[0]
n_neighbors_list = (n_samples * np.array([0.2, 0.02, 0.01, 0.001])).astype(np.int32)
model = make_pipeline(RobustScaler(), LocalOutlierFactor())
linestyles = ["solid", "dashed", "dashdot", ":", (5, (10, 3))]
fig, ax = plt.subplots()
for model_idx, (linestyle, n_neighbors) in enumerate(zip(linestyles, n_neighbors_list)):
model.set_params(localoutlierfactor__n_neighbors=n_neighbors)
model.fit(X)
y_pred = model[-1].negative_outlier_factor_
display = RocCurveDisplay.from_predictions(
y,
y_pred,
pos_label=pos_label,
name=f"n_neighbors = {n_neighbors}",
ax=ax,
plot_chance_level=(model_idx == len(n_neighbors_list) - 1),
chance_level_kw={"linestyle": (0, (1, 10))},
linestyle=linestyle,
linewidth=2,
)
_ = ax.set_title("RobustScaler with varying n_neighbors\non forestcover dataset")
# %%
# We observe that the number of neighbors has a big impact on the performance of
# the model. If one has access to (at least some) ground truth labels, it is
# then important to tune `n_neighbors` accordingly. A convenient way to do so is
# to explore values for `n_neighbors` of the order of magnitud of the expected
# contamination.
# %%
from sklearn.preprocessing import MinMaxScaler, SplineTransformer, StandardScaler
preprocessor_list = [
None,
RobustScaler(),
StandardScaler(),
MinMaxScaler(),
SplineTransformer(),
]
expected_anomaly_fraction = 0.02
lof = LocalOutlierFactor(n_neighbors=int(n_samples * expected_anomaly_fraction))
fig, ax = plt.subplots()
for model_idx, (linestyle, preprocessor) in enumerate(
zip(linestyles, preprocessor_list)
):
model = make_pipeline(preprocessor, lof)
model.fit(X)
y_pred = model[-1].negative_outlier_factor_
display = RocCurveDisplay.from_predictions(
y,
y_pred,
pos_label=pos_label,
name=str(preprocessor).split("(")[0],
ax=ax,
plot_chance_level=(model_idx == len(preprocessor_list) - 1),
chance_level_kw={"linestyle": (0, (1, 10))},
linestyle=linestyle,
linewidth=2,
)
_ = ax.set_title("Fixed n_neighbors with varying preprocessing\non forestcover dataset")
# %%
# On the one hand, :class:`~sklearn.preprocessing.RobustScaler` scales each
# feature independently by using the interquartile range (IQR) by default, which
# is the range between the 25th and 75th percentiles of the data. It centers the
# data by subtracting the median and then scale it by dividing by the IQR. The
# IQR is robust to outliers: the median and interquartile range are less
# affected by extreme values than the range, the mean and the standard
# deviation. Furthermore, :class:`~sklearn.preprocessing.RobustScaler` does not
# squash marginal outlier values, contrary to
# :class:`~sklearn.preprocessing.StandardScaler`.
#
# On the other hand, :class:`~sklearn.preprocessing.MinMaxScaler` scales each
# feature individually such that its range maps into the range between zero and
# one. If there are outliers in the data, they can skew it towards either the
# minimum or maximum values, leading to a completely different distribution of
# data with large marginal outliers: all non-outlier values can be collapsed
# almost together as a result.
#
# We also evaluated no preprocessing at all (by passing `None` to the pipeline),
# :class:`~sklearn.preprocessing.StandardScaler` and
# :class:`~sklearn.preprocessing.SplineTransformer`. Please refer to their
# respective documentation for more details.
#
# Note that the optimal preprocessing depends on the dataset, as shown below:
# %%
X = X_cardiotocography
y = y_true["cardiotocography"]
n_samples, expected_anomaly_fraction = X.shape[0], 0.025
lof = LocalOutlierFactor(n_neighbors=int(n_samples * expected_anomaly_fraction))
fig, ax = plt.subplots()
for model_idx, (linestyle, preprocessor) in enumerate(
zip(linestyles, preprocessor_list)
):
model = make_pipeline(preprocessor, lof)
model.fit(X)
y_pred = model[-1].negative_outlier_factor_
display = RocCurveDisplay.from_predictions(
y,
y_pred,
pos_label=pos_label,
name=str(preprocessor).split("(")[0],
ax=ax,
plot_chance_level=(model_idx == len(preprocessor_list) - 1),
chance_level_kw={"linestyle": (0, (1, 10))},
linestyle=linestyle,
linewidth=2,
)
ax.set_title(
"Fixed n_neighbors with varying preprocessing\non cardiotocography dataset"
)
plt.show()
|