File: plot_regression.py

package info (click to toggle)
scikit-learn 1.4.2%2Bdfsg-8
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 25,036 kB
  • sloc: python: 201,105; cpp: 5,790; ansic: 854; makefile: 304; sh: 56; javascript: 20
file content (51 lines) | stat: -rw-r--r-- 1,259 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
"""
============================
Nearest Neighbors regression
============================

Demonstrate the resolution of a regression problem
using a k-Nearest Neighbor and the interpolation of the
target using both barycenter and constant weights.

"""

# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
#         Fabian Pedregosa <fabian.pedregosa@inria.fr>
#
# License: BSD 3 clause (C) INRIA


# %%
# Generate sample data
# --------------------
import matplotlib.pyplot as plt
import numpy as np

from sklearn import neighbors

np.random.seed(0)
X = np.sort(5 * np.random.rand(40, 1), axis=0)
T = np.linspace(0, 5, 500)[:, np.newaxis]
y = np.sin(X).ravel()

# Add noise to targets
y[::5] += 1 * (0.5 - np.random.rand(8))

# %%
# Fit regression model
# --------------------
n_neighbors = 5

for i, weights in enumerate(["uniform", "distance"]):
    knn = neighbors.KNeighborsRegressor(n_neighbors, weights=weights)
    y_ = knn.fit(X, y).predict(T)

    plt.subplot(2, 1, i + 1)
    plt.scatter(X, y, color="darkorange", label="data")
    plt.plot(T, y_, color="navy", label="prediction")
    plt.axis("tight")
    plt.legend()
    plt.title("KNeighborsRegressor (k = %i, weights = '%s')" % (n_neighbors, weights))

plt.tight_layout()
plt.show()