1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
|
# ruff: noqa
"""
========================================
Release Highlights for scikit-learn 0.23
========================================
.. currentmodule:: sklearn
We are pleased to announce the release of scikit-learn 0.23! Many bug fixes
and improvements were added, as well as some new key features. We detail
below a few of the major features of this release. **For an exhaustive list of
all the changes**, please refer to the :ref:`release notes <release_notes_0_23>`.
To install the latest version (with pip)::
pip install --upgrade scikit-learn
or with conda::
conda install -c conda-forge scikit-learn
"""
##############################################################################
# Generalized Linear Models, and Poisson loss for gradient boosting
# -----------------------------------------------------------------
# Long-awaited Generalized Linear Models with non-normal loss functions are now
# available. In particular, three new regressors were implemented:
# :class:`~sklearn.linear_model.PoissonRegressor`,
# :class:`~sklearn.linear_model.GammaRegressor`, and
# :class:`~sklearn.linear_model.TweedieRegressor`. The Poisson regressor can be
# used to model positive integer counts, or relative frequencies. Read more in
# the :ref:`User Guide <Generalized_linear_regression>`. Additionally,
# :class:`~sklearn.ensemble.HistGradientBoostingRegressor` supports a new
# 'poisson' loss as well.
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import PoissonRegressor
from sklearn.ensemble import HistGradientBoostingRegressor
n_samples, n_features = 1000, 20
rng = np.random.RandomState(0)
X = rng.randn(n_samples, n_features)
# positive integer target correlated with X[:, 5] with many zeros:
y = rng.poisson(lam=np.exp(X[:, 5]) / 2)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=rng)
glm = PoissonRegressor()
gbdt = HistGradientBoostingRegressor(loss="poisson", learning_rate=0.01)
glm.fit(X_train, y_train)
gbdt.fit(X_train, y_train)
print(glm.score(X_test, y_test))
print(gbdt.score(X_test, y_test))
##############################################################################
# Rich visual representation of estimators
# -----------------------------------------
# Estimators can now be visualized in notebooks by enabling the
# `display='diagram'` option. This is particularly useful to summarise the
# structure of pipelines and other composite estimators, with interactivity to
# provide detail. Click on the example image below to expand Pipeline
# elements. See :ref:`visualizing_composite_estimators` for how you can use
# this feature.
from sklearn import set_config
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import OneHotEncoder, StandardScaler
from sklearn.impute import SimpleImputer
from sklearn.compose import make_column_transformer
from sklearn.linear_model import LogisticRegression
set_config(display="diagram")
num_proc = make_pipeline(SimpleImputer(strategy="median"), StandardScaler())
cat_proc = make_pipeline(
SimpleImputer(strategy="constant", fill_value="missing"),
OneHotEncoder(handle_unknown="ignore"),
)
preprocessor = make_column_transformer(
(num_proc, ("feat1", "feat3")), (cat_proc, ("feat0", "feat2"))
)
clf = make_pipeline(preprocessor, LogisticRegression())
clf
##############################################################################
# Scalability and stability improvements to KMeans
# ------------------------------------------------
# The :class:`~sklearn.cluster.KMeans` estimator was entirely re-worked, and it
# is now significantly faster and more stable. In addition, the Elkan algorithm
# is now compatible with sparse matrices. The estimator uses OpenMP based
# parallelism instead of relying on joblib, so the `n_jobs` parameter has no
# effect anymore. For more details on how to control the number of threads,
# please refer to our :ref:`parallelism` notes.
import scipy
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.cluster import KMeans
from sklearn.datasets import make_blobs
from sklearn.metrics import completeness_score
rng = np.random.RandomState(0)
X, y = make_blobs(random_state=rng)
X = scipy.sparse.csr_matrix(X)
X_train, X_test, _, y_test = train_test_split(X, y, random_state=rng)
kmeans = KMeans(n_init="auto").fit(X_train)
print(completeness_score(kmeans.predict(X_test), y_test))
##############################################################################
# Improvements to the histogram-based Gradient Boosting estimators
# ----------------------------------------------------------------
# Various improvements were made to
# :class:`~sklearn.ensemble.HistGradientBoostingClassifier` and
# :class:`~sklearn.ensemble.HistGradientBoostingRegressor`. On top of the
# Poisson loss mentioned above, these estimators now support :ref:`sample
# weights <sw_hgbdt>`. Also, an automatic early-stopping criterion was added:
# early-stopping is enabled by default when the number of samples exceeds 10k.
# Finally, users can now define :ref:`monotonic constraints
# <monotonic_cst_gbdt>` to constrain the predictions based on the variations of
# specific features. In the following example, we construct a target that is
# generally positively correlated with the first feature, with some noise.
# Applying monotoinc constraints allows the prediction to capture the global
# effect of the first feature, instead of fitting the noise.
import numpy as np
from matplotlib import pyplot as plt
from sklearn.model_selection import train_test_split
# from sklearn.inspection import plot_partial_dependence
from sklearn.inspection import PartialDependenceDisplay
from sklearn.ensemble import HistGradientBoostingRegressor
n_samples = 500
rng = np.random.RandomState(0)
X = rng.randn(n_samples, 2)
noise = rng.normal(loc=0.0, scale=0.01, size=n_samples)
y = 5 * X[:, 0] + np.sin(10 * np.pi * X[:, 0]) - noise
gbdt_no_cst = HistGradientBoostingRegressor().fit(X, y)
gbdt_cst = HistGradientBoostingRegressor(monotonic_cst=[1, 0]).fit(X, y)
# plot_partial_dependence has been removed in version 1.2. From 1.2, use
# PartialDependenceDisplay instead.
# disp = plot_partial_dependence(
disp = PartialDependenceDisplay.from_estimator(
gbdt_no_cst,
X,
features=[0],
feature_names=["feature 0"],
line_kw={"linewidth": 4, "label": "unconstrained", "color": "tab:blue"},
)
# plot_partial_dependence(
PartialDependenceDisplay.from_estimator(
gbdt_cst,
X,
features=[0],
line_kw={"linewidth": 4, "label": "constrained", "color": "tab:orange"},
ax=disp.axes_,
)
disp.axes_[0, 0].plot(
X[:, 0], y, "o", alpha=0.5, zorder=-1, label="samples", color="tab:green"
)
disp.axes_[0, 0].set_ylim(-3, 3)
disp.axes_[0, 0].set_xlim(-1, 1)
plt.legend()
plt.show()
##############################################################################
# Sample-weight support for Lasso and ElasticNet
# ----------------------------------------------
# The two linear regressors :class:`~sklearn.linear_model.Lasso` and
# :class:`~sklearn.linear_model.ElasticNet` now support sample weights.
from sklearn.model_selection import train_test_split
from sklearn.datasets import make_regression
from sklearn.linear_model import Lasso
import numpy as np
n_samples, n_features = 1000, 20
rng = np.random.RandomState(0)
X, y = make_regression(n_samples, n_features, random_state=rng)
sample_weight = rng.rand(n_samples)
X_train, X_test, y_train, y_test, sw_train, sw_test = train_test_split(
X, y, sample_weight, random_state=rng
)
reg = Lasso()
reg.fit(X_train, y_train, sample_weight=sw_train)
print(reg.score(X_test, y_test, sw_test))
|