1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
|
# ruff: noqa
"""
=======================================
Release Highlights for scikit-learn 1.1
=======================================
.. currentmodule:: sklearn
We are pleased to announce the release of scikit-learn 1.1! Many bug fixes
and improvements were added, as well as some new key features. We detail
below a few of the major features of this release. **For an exhaustive list of
all the changes**, please refer to the :ref:`release notes <release_notes_1_1>`.
To install the latest version (with pip)::
pip install --upgrade scikit-learn
or with conda::
conda install -c conda-forge scikit-learn
"""
# %%
# Quantile loss in :class:`ensemble.HistGradientBoostingRegressor`
# ----------------------------------------------------------------
# :class:`~ensemble.HistGradientBoostingRegressor` can model quantiles with
# `loss="quantile"` and the new parameter `quantile`.
from sklearn.ensemble import HistGradientBoostingRegressor
import numpy as np
import matplotlib.pyplot as plt
# Simple regression function for X * cos(X)
rng = np.random.RandomState(42)
X_1d = np.linspace(0, 10, num=2000)
X = X_1d.reshape(-1, 1)
y = X_1d * np.cos(X_1d) + rng.normal(scale=X_1d / 3)
quantiles = [0.95, 0.5, 0.05]
parameters = dict(loss="quantile", max_bins=32, max_iter=50)
hist_quantiles = {
f"quantile={quantile:.2f}": HistGradientBoostingRegressor(
**parameters, quantile=quantile
).fit(X, y)
for quantile in quantiles
}
fig, ax = plt.subplots()
ax.plot(X_1d, y, "o", alpha=0.5, markersize=1)
for quantile, hist in hist_quantiles.items():
ax.plot(X_1d, hist.predict(X), label=quantile)
_ = ax.legend(loc="lower left")
# %%
# `get_feature_names_out` Available in all Transformers
# -----------------------------------------------------
# :term:`get_feature_names_out` is now available in all Transformers. This enables
# :class:`~pipeline.Pipeline` to construct the output feature names for more complex
# pipelines:
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import OneHotEncoder, StandardScaler
from sklearn.pipeline import make_pipeline
from sklearn.impute import SimpleImputer
from sklearn.feature_selection import SelectKBest
from sklearn.datasets import fetch_openml
from sklearn.linear_model import LogisticRegression
X, y = fetch_openml(
"titanic", version=1, as_frame=True, return_X_y=True, parser="pandas"
)
numeric_features = ["age", "fare"]
numeric_transformer = make_pipeline(SimpleImputer(strategy="median"), StandardScaler())
categorical_features = ["embarked", "pclass"]
preprocessor = ColumnTransformer(
[
("num", numeric_transformer, numeric_features),
(
"cat",
OneHotEncoder(handle_unknown="ignore", sparse_output=False),
categorical_features,
),
],
verbose_feature_names_out=False,
)
log_reg = make_pipeline(preprocessor, SelectKBest(k=7), LogisticRegression())
log_reg.fit(X, y)
# %%
# Here we slice the pipeline to include all the steps but the last one. The output
# feature names of this pipeline slice are the features put into logistic
# regression. These names correspond directly to the coefficients in the logistic
# regression:
import pandas as pd
log_reg_input_features = log_reg[:-1].get_feature_names_out()
pd.Series(log_reg[-1].coef_.ravel(), index=log_reg_input_features).plot.bar()
plt.tight_layout()
# %%
# Grouping infrequent categories in :class:`~preprocessing.OneHotEncoder`
# -----------------------------------------------------------------------
# :class:`~preprocessing.OneHotEncoder` supports aggregating infrequent
# categories into a single output for each feature. The parameters to enable
# the gathering of infrequent categories are `min_frequency` and
# `max_categories`. See the :ref:`User Guide <encoder_infrequent_categories>`
# for more details.
from sklearn.preprocessing import OneHotEncoder
import numpy as np
X = np.array(
[["dog"] * 5 + ["cat"] * 20 + ["rabbit"] * 10 + ["snake"] * 3], dtype=object
).T
enc = OneHotEncoder(min_frequency=6, sparse_output=False).fit(X)
enc.infrequent_categories_
# %%
# Since dog and snake are infrequent categories, they are grouped together when
# transformed:
encoded = enc.transform(np.array([["dog"], ["snake"], ["cat"], ["rabbit"]]))
pd.DataFrame(encoded, columns=enc.get_feature_names_out())
# %%
# Performance improvements
# ------------------------
# Reductions on pairwise distances for dense float64 datasets has been refactored
# to better take advantage of non-blocking thread parallelism. For example,
# :meth:`neighbors.NearestNeighbors.kneighbors` and
# :meth:`neighbors.NearestNeighbors.radius_neighbors` can respectively be up to ×20 and
# ×5 faster than previously. In summary, the following functions and estimators
# now benefit from improved performance:
#
# - :func:`metrics.pairwise_distances_argmin`
# - :func:`metrics.pairwise_distances_argmin_min`
# - :class:`cluster.AffinityPropagation`
# - :class:`cluster.Birch`
# - :class:`cluster.MeanShift`
# - :class:`cluster.OPTICS`
# - :class:`cluster.SpectralClustering`
# - :func:`feature_selection.mutual_info_regression`
# - :class:`neighbors.KNeighborsClassifier`
# - :class:`neighbors.KNeighborsRegressor`
# - :class:`neighbors.RadiusNeighborsClassifier`
# - :class:`neighbors.RadiusNeighborsRegressor`
# - :class:`neighbors.LocalOutlierFactor`
# - :class:`neighbors.NearestNeighbors`
# - :class:`manifold.Isomap`
# - :class:`manifold.LocallyLinearEmbedding`
# - :class:`manifold.TSNE`
# - :func:`manifold.trustworthiness`
# - :class:`semi_supervised.LabelPropagation`
# - :class:`semi_supervised.LabelSpreading`
#
# To know more about the technical details of this work, you can read
# `this suite of blog posts <https://blog.scikit-learn.org/technical/performances/>`_.
#
# Moreover, the computation of loss functions has been refactored using
# Cython resulting in performance improvements for the following estimators:
#
# - :class:`linear_model.LogisticRegression`
# - :class:`linear_model.GammaRegressor`
# - :class:`linear_model.PoissonRegressor`
# - :class:`linear_model.TweedieRegressor`
# %%
# :class:`~decomposition.MiniBatchNMF`: an online version of NMF
# --------------------------------------------------------------
# The new class :class:`~decomposition.MiniBatchNMF` implements a faster but
# less accurate version of non-negative matrix factorization
# (:class:`~decomposition.NMF`). :class:`~decomposition.MiniBatchNMF` divides the
# data into mini-batches and optimizes the NMF model in an online manner by
# cycling over the mini-batches, making it better suited for large datasets. In
# particular, it implements `partial_fit`, which can be used for online
# learning when the data is not readily available from the start, or when the
# data does not fit into memory.
import numpy as np
from sklearn.decomposition import MiniBatchNMF
rng = np.random.RandomState(0)
n_samples, n_features, n_components = 10, 10, 5
true_W = rng.uniform(size=(n_samples, n_components))
true_H = rng.uniform(size=(n_components, n_features))
X = true_W @ true_H
nmf = MiniBatchNMF(n_components=n_components, random_state=0)
for _ in range(10):
nmf.partial_fit(X)
W = nmf.transform(X)
H = nmf.components_
X_reconstructed = W @ H
print(
f"relative reconstruction error: ",
f"{np.sum((X - X_reconstructed) ** 2) / np.sum(X**2):.5f}",
)
# %%
# :class:`~cluster.BisectingKMeans`: divide and cluster
# -----------------------------------------------------
# The new class :class:`~cluster.BisectingKMeans` is a variant of
# :class:`~cluster.KMeans`, using divisive hierarchical clustering. Instead of
# creating all centroids at once, centroids are picked progressively based on a
# previous clustering: a cluster is split into two new clusters repeatedly
# until the target number of clusters is reached, giving a hierarchical
# structure to the clustering.
from sklearn.datasets import make_blobs
from sklearn.cluster import KMeans, BisectingKMeans
import matplotlib.pyplot as plt
X, _ = make_blobs(n_samples=1000, centers=2, random_state=0)
km = KMeans(n_clusters=5, random_state=0, n_init="auto").fit(X)
bisect_km = BisectingKMeans(n_clusters=5, random_state=0).fit(X)
fig, ax = plt.subplots(1, 2, figsize=(10, 5))
ax[0].scatter(X[:, 0], X[:, 1], s=10, c=km.labels_)
ax[0].scatter(km.cluster_centers_[:, 0], km.cluster_centers_[:, 1], s=20, c="r")
ax[0].set_title("KMeans")
ax[1].scatter(X[:, 0], X[:, 1], s=10, c=bisect_km.labels_)
ax[1].scatter(
bisect_km.cluster_centers_[:, 0], bisect_km.cluster_centers_[:, 1], s=20, c="r"
)
_ = ax[1].set_title("BisectingKMeans")
|