1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
|
# ruff: noqa
"""
=======================================
Release Highlights for scikit-learn 1.2
=======================================
.. currentmodule:: sklearn
We are pleased to announce the release of scikit-learn 1.2! Many bug fixes
and improvements were added, as well as some new key features. We detail
below a few of the major features of this release. **For an exhaustive list of
all the changes**, please refer to the :ref:`release notes <release_notes_1_2>`.
To install the latest version (with pip)::
pip install --upgrade scikit-learn
or with conda::
conda install -c conda-forge scikit-learn
"""
# %%
# Pandas output with `set_output` API
# -----------------------------------
# scikit-learn's transformers now support pandas output with the `set_output` API.
# To learn more about the `set_output` API see the example:
# :ref:`sphx_glr_auto_examples_miscellaneous_plot_set_output.py` and
# # this `video, pandas DataFrame output for scikit-learn transformers
# (some examples) <https://youtu.be/5bCg8VfX2x8>`__.
import numpy as np
from sklearn.datasets import load_iris
from sklearn.preprocessing import StandardScaler, KBinsDiscretizer
from sklearn.compose import ColumnTransformer
X, y = load_iris(as_frame=True, return_X_y=True)
sepal_cols = ["sepal length (cm)", "sepal width (cm)"]
petal_cols = ["petal length (cm)", "petal width (cm)"]
preprocessor = ColumnTransformer(
[
("scaler", StandardScaler(), sepal_cols),
("kbin", KBinsDiscretizer(encode="ordinal"), petal_cols),
],
verbose_feature_names_out=False,
).set_output(transform="pandas")
X_out = preprocessor.fit_transform(X)
X_out.sample(n=5, random_state=0)
# %%
# Interaction constraints in Histogram-based Gradient Boosting Trees
# ------------------------------------------------------------------
# :class:`~ensemble.HistGradientBoostingRegressor` and
# :class:`~ensemble.HistGradientBoostingClassifier` now supports interaction constraints
# with the `interaction_cst` parameter. For details, see the
# :ref:`User Guide <interaction_cst_hgbt>`. In the following example, features are not
# allowed to interact.
from sklearn.datasets import load_diabetes
from sklearn.ensemble import HistGradientBoostingRegressor
X, y = load_diabetes(return_X_y=True, as_frame=True)
hist_no_interact = HistGradientBoostingRegressor(
interaction_cst=[[i] for i in range(X.shape[1])], random_state=0
)
hist_no_interact.fit(X, y)
# %%
# New and enhanced displays
# -------------------------
# :class:`~metrics.PredictionErrorDisplay` provides a way to analyze regression
# models in a qualitative manner.
import matplotlib.pyplot as plt
from sklearn.metrics import PredictionErrorDisplay
fig, axs = plt.subplots(nrows=1, ncols=2, figsize=(12, 5))
_ = PredictionErrorDisplay.from_estimator(
hist_no_interact, X, y, kind="actual_vs_predicted", ax=axs[0]
)
_ = PredictionErrorDisplay.from_estimator(
hist_no_interact, X, y, kind="residual_vs_predicted", ax=axs[1]
)
# %%
# :class:`~model_selection.LearningCurveDisplay` is now available to plot
# results from :func:`~model_selection.learning_curve`.
from sklearn.model_selection import LearningCurveDisplay
_ = LearningCurveDisplay.from_estimator(
hist_no_interact, X, y, cv=5, n_jobs=2, train_sizes=np.linspace(0.1, 1, 5)
)
# %%
# :class:`~inspection.PartialDependenceDisplay` exposes a new parameter
# `categorical_features` to display partial dependence for categorical features
# using bar plots and heatmaps.
from sklearn.datasets import fetch_openml
X, y = fetch_openml(
"titanic", version=1, as_frame=True, return_X_y=True, parser="pandas"
)
X = X.select_dtypes(["number", "category"]).drop(columns=["body"])
# %%
from sklearn.preprocessing import OrdinalEncoder
from sklearn.pipeline import make_pipeline
categorical_features = ["pclass", "sex", "embarked"]
model = make_pipeline(
ColumnTransformer(
transformers=[("cat", OrdinalEncoder(), categorical_features)],
remainder="passthrough",
),
HistGradientBoostingRegressor(random_state=0),
).fit(X, y)
# %%
from sklearn.inspection import PartialDependenceDisplay
fig, ax = plt.subplots(figsize=(14, 4), constrained_layout=True)
_ = PartialDependenceDisplay.from_estimator(
model,
X,
features=["age", "sex", ("pclass", "sex")],
categorical_features=categorical_features,
ax=ax,
)
# %%
# Faster parser in :func:`~datasets.fetch_openml`
# -----------------------------------------------
# :func:`~datasets.fetch_openml` now supports a new `"pandas"` parser that is
# more memory and CPU efficient. In v1.4, the default will change to
# `parser="auto"` which will automatically use the `"pandas"` parser for dense
# data and `"liac-arff"` for sparse data.
X, y = fetch_openml(
"titanic", version=1, as_frame=True, return_X_y=True, parser="pandas"
)
X.head()
# %%
# Experimental Array API support in :class:`~discriminant_analysis.LinearDiscriminantAnalysis`
# --------------------------------------------------------------------------------------------
# Experimental support for the `Array API <https://data-apis.org/array-api/latest/>`_
# specification was added to :class:`~discriminant_analysis.LinearDiscriminantAnalysis`.
# The estimator can now run on any Array API compliant libraries such as
# `CuPy <https://docs.cupy.dev/en/stable/overview.html>`__, a GPU-accelerated array
# library. For details, see the :ref:`User Guide <array_api>`.
# %%
# Improved efficiency of many estimators
# --------------------------------------
# In version 1.1 the efficiency of many estimators relying on the computation of
# pairwise distances (essentially estimators related to clustering, manifold
# learning and neighbors search algorithms) was greatly improved for float64
# dense input. Efficiency improvement especially were a reduced memory footprint
# and a much better scalability on multi-core machines.
# In version 1.2, the efficiency of these estimators was further improved for all
# combinations of dense and sparse inputs on float32 and float64 datasets, except
# the sparse-dense and dense-sparse combinations for the Euclidean and Squared
# Euclidean Distance metrics.
# A detailed list of the impacted estimators can be found in the
# :ref:`changelog <release_notes_1_2>`.
|