1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
|
#! /usr/bin/env python
#
# Copyright (C) 2007-2009 Cournapeau David <cournape@gmail.com>
# 2010 Fabian Pedregosa <fabian.pedregosa@inria.fr>
# License: 3-clause BSD
import importlib
import os
import platform
import shutil
import sys
import traceback
from os.path import join
from setuptools import Command, Extension, setup
from setuptools.command.build_ext import build_ext
try:
import builtins
except ImportError:
# Python 2 compat: just to be able to declare that Python >=3.8 is needed.
import __builtin__ as builtins
# This is a bit (!) hackish: we are setting a global variable so that the main
# sklearn __init__ can detect if it is being loaded by the setup routine, to
# avoid attempting to load components that aren't built yet.
# TODO: can this be simplified or removed since the switch to setuptools
# away from numpy.distutils?
builtins.__SKLEARN_SETUP__ = True
DISTNAME = "scikit-learn"
DESCRIPTION = "A set of python modules for machine learning and data mining"
with open("README.rst") as f:
LONG_DESCRIPTION = f.read()
MAINTAINER = "Andreas Mueller"
MAINTAINER_EMAIL = "amueller@ais.uni-bonn.de"
URL = "https://scikit-learn.org"
DOWNLOAD_URL = "https://pypi.org/project/scikit-learn/#files"
LICENSE = "new BSD"
PROJECT_URLS = {
"Bug Tracker": "https://github.com/scikit-learn/scikit-learn/issues",
"Documentation": "https://scikit-learn.org/stable/documentation.html",
"Source Code": "https://github.com/scikit-learn/scikit-learn",
}
# We can actually import a restricted version of sklearn that
# does not need the compiled code
import sklearn # noqa
import sklearn._min_dependencies as min_deps # noqa
from sklearn._build_utils import _check_cython_version # noqa
from sklearn.externals._packaging.version import parse as parse_version # noqa
VERSION = sklearn.__version__
# Custom clean command to remove build artifacts
class CleanCommand(Command):
description = "Remove build artifacts from the source tree"
user_options = []
def initialize_options(self):
pass
def finalize_options(self):
pass
def all(self):
run()
def run(self):
# Remove c files if we are not within a sdist package
cwd = os.path.abspath(os.path.dirname(__file__))
remove_c_files = not os.path.exists(os.path.join(cwd, "PKG-INFO"))
if remove_c_files:
print("Will remove generated .c files")
if os.path.exists("build"):
shutil.rmtree("build")
for dirpath, dirnames, filenames in os.walk("sklearn"):
for filename in filenames:
root, extension = os.path.splitext(filename)
if extension in [".so", ".pyd", ".dll", ".pyc"]:
os.unlink(os.path.join(dirpath, filename))
if remove_c_files and extension in [".c", ".cpp"]:
pyx_file = str.replace(filename, extension, ".pyx")
if os.path.exists(os.path.join(dirpath, pyx_file)):
os.unlink(os.path.join(dirpath, filename))
if remove_c_files and extension == ".tp":
if os.path.exists(os.path.join(dirpath, root)):
os.unlink(os.path.join(dirpath, root))
for dirname in dirnames:
if dirname == "__pycache__":
shutil.rmtree(os.path.join(dirpath, dirname))
# Custom build_ext command to set OpenMP compile flags depending on os and
# compiler. Also makes it possible to set the parallelism level via
# and environment variable (useful for the wheel building CI).
# build_ext has to be imported after setuptools
class build_ext_subclass(build_ext):
def finalize_options(self):
build_ext.finalize_options(self)
if self.parallel is None:
# Do not override self.parallel if already defined by
# command-line flag (--parallel or -j)
parallel = os.environ.get("SKLEARN_BUILD_PARALLEL")
if parallel:
self.parallel = int(parallel)
if self.parallel:
print("setting parallel=%d " % self.parallel)
def build_extensions(self):
from sklearn._build_utils.openmp_helpers import get_openmp_flag
# Always use NumPy 1.7 C API for all compiled extensions.
# See: https://numpy.org/doc/stable/reference/c-api/deprecations.html
DEFINE_MACRO_NUMPY_C_API = (
"NPY_NO_DEPRECATED_API",
"NPY_1_7_API_VERSION",
)
for ext in self.extensions:
ext.define_macros.append(DEFINE_MACRO_NUMPY_C_API)
if sklearn._OPENMP_SUPPORTED:
openmp_flag = get_openmp_flag()
for e in self.extensions:
e.extra_compile_args += openmp_flag
e.extra_link_args += openmp_flag
build_ext.build_extensions(self)
def run(self):
# Specifying `build_clib` allows running `python setup.py develop`
# fully from a fresh clone.
self.run_command("build_clib")
build_ext.run(self)
cmdclass = {
"clean": CleanCommand,
"build_ext": build_ext_subclass,
}
def check_package_status(package, min_version):
"""
Returns a dictionary containing a boolean specifying whether given package
is up-to-date, along with the version string (empty string if
not installed).
"""
package_status = {}
try:
module = importlib.import_module(package)
package_version = module.__version__
package_status["up_to_date"] = parse_version(package_version) >= parse_version(
min_version
)
package_status["version"] = package_version
except ImportError:
traceback.print_exc()
package_status["up_to_date"] = False
package_status["version"] = ""
req_str = "scikit-learn requires {} >= {}.\n".format(package, min_version)
instructions = (
"Installation instructions are available on the "
"scikit-learn website: "
"https://scikit-learn.org/stable/install.html\n"
)
if package_status["up_to_date"] is False:
if package_status["version"]:
raise ImportError(
"Your installation of {} {} is out-of-date.\n{}{}".format(
package, package_status["version"], req_str, instructions
)
)
else:
raise ImportError(
"{} is not installed.\n{}{}".format(package, req_str, instructions)
)
extension_config = {
"__check_build": [
{"sources": ["_check_build.pyx"]},
],
"": [
{"sources": ["_isotonic.pyx"]},
],
"_loss": [
{"sources": ["_loss.pyx.tp"]},
],
"cluster": [
{"sources": ["_dbscan_inner.pyx"], "language": "c++", "include_np": True},
{"sources": ["_hierarchical_fast.pyx"], "language": "c++", "include_np": True},
{"sources": ["_k_means_common.pyx"], "include_np": True},
{"sources": ["_k_means_lloyd.pyx"], "include_np": True},
{"sources": ["_k_means_elkan.pyx"], "include_np": True},
{"sources": ["_k_means_minibatch.pyx"], "include_np": True},
],
"cluster._hdbscan": [
{"sources": ["_linkage.pyx"], "include_np": True},
{"sources": ["_reachability.pyx"], "include_np": True},
{"sources": ["_tree.pyx"], "include_np": True},
],
"datasets": [
{
"sources": ["_svmlight_format_fast.pyx"],
"include_np": True,
"compile_for_pypy": False,
}
],
"decomposition": [
{"sources": ["_online_lda_fast.pyx"], "include_np": True},
{"sources": ["_cdnmf_fast.pyx"], "include_np": True},
],
"ensemble": [
{"sources": ["_gradient_boosting.pyx"], "include_np": True},
],
"ensemble._hist_gradient_boosting": [
{"sources": ["_gradient_boosting.pyx"], "include_np": True},
{"sources": ["histogram.pyx"], "include_np": True},
{"sources": ["splitting.pyx"], "include_np": True},
{"sources": ["_binning.pyx"], "include_np": True},
{"sources": ["_predictor.pyx"], "include_np": True},
{"sources": ["_bitset.pyx"], "include_np": True},
{"sources": ["common.pyx"], "include_np": True},
{"sources": ["utils.pyx"], "include_np": True},
],
"feature_extraction": [
{"sources": ["_hashing_fast.pyx"], "language": "c++", "include_np": True},
],
"linear_model": [
{"sources": ["_cd_fast.pyx"], "include_np": True},
{"sources": ["_sgd_fast.pyx.tp"], "include_np": True},
{"sources": ["_sag_fast.pyx.tp"], "include_np": True},
],
"manifold": [
{"sources": ["_utils.pyx"], "include_np": True},
{"sources": ["_barnes_hut_tsne.pyx"], "include_np": True},
],
"metrics": [
{"sources": ["_pairwise_fast.pyx"], "include_np": True},
{
"sources": ["_dist_metrics.pyx.tp", "_dist_metrics.pxd.tp"],
"include_np": True,
},
],
"metrics.cluster": [
{"sources": ["_expected_mutual_info_fast.pyx"], "include_np": True},
],
"metrics._pairwise_distances_reduction": [
{
"sources": ["_datasets_pair.pyx.tp", "_datasets_pair.pxd.tp"],
"language": "c++",
"include_np": True,
"extra_compile_args": ["-std=c++11"],
},
{
"sources": ["_middle_term_computer.pyx.tp", "_middle_term_computer.pxd.tp"],
"language": "c++",
"extra_compile_args": ["-std=c++11"],
},
{
"sources": ["_base.pyx.tp", "_base.pxd.tp"],
"language": "c++",
"include_np": True,
"extra_compile_args": ["-std=c++11"],
},
{
"sources": ["_argkmin.pyx.tp", "_argkmin.pxd.tp"],
"language": "c++",
"include_np": True,
"extra_compile_args": ["-std=c++11"],
},
{
"sources": ["_argkmin_classmode.pyx.tp"],
"language": "c++",
"include_np": True,
"extra_compile_args": ["-std=c++11"],
},
{
"sources": ["_radius_neighbors.pyx.tp", "_radius_neighbors.pxd.tp"],
"language": "c++",
"include_np": True,
"extra_compile_args": ["-std=c++11"],
},
{
"sources": ["_radius_neighbors_classmode.pyx.tp"],
"language": "c++",
"include_np": True,
"extra_compile_args": ["-std=c++11"],
},
],
"preprocessing": [
{"sources": ["_csr_polynomial_expansion.pyx"]},
{
"sources": ["_target_encoder_fast.pyx"],
"include_np": True,
"language": "c++",
"extra_compile_args": ["-std=c++11"],
},
],
"neighbors": [
{"sources": ["_binary_tree.pxi.tp"], "include_np": True},
{"sources": ["_ball_tree.pyx.tp"], "include_np": True},
{"sources": ["_kd_tree.pyx.tp"], "include_np": True},
{"sources": ["_partition_nodes.pyx"], "language": "c++", "include_np": True},
{"sources": ["_quad_tree.pyx"], "include_np": True},
],
"svm": [
{
"sources": ["_newrand.pyx"],
"include_np": True,
"include_dirs": [join("src", "newrand")],
"language": "c++",
# Use C++11 random number generator fix
"extra_compile_args": ["-std=c++11"],
},
{
"sources": ["_libsvm.pyx"],
"depends": [
join("src", "libsvm", "libsvm_helper.c"),
join("src", "libsvm", "libsvm_template.cpp"),
join("src", "libsvm", "svm.cpp"),
join("src", "libsvm", "svm.h"),
join("src", "newrand", "newrand.h"),
],
"include_dirs": [
join("src", "libsvm"),
join("src", "newrand"),
],
"libraries": ["libsvm-skl"],
"extra_link_args": ["-lstdc++"],
"include_np": True,
},
{
"sources": ["_liblinear.pyx"],
"libraries": ["liblinear-skl"],
"include_dirs": [
join("src", "liblinear"),
join("src", "newrand"),
join("..", "utils"),
],
"include_np": True,
"depends": [
join("src", "liblinear", "tron.h"),
join("src", "liblinear", "linear.h"),
join("src", "liblinear", "liblinear_helper.c"),
join("src", "newrand", "newrand.h"),
],
"extra_link_args": ["-lstdc++"],
},
{
"sources": ["_libsvm_sparse.pyx"],
"libraries": ["libsvm-skl"],
"include_dirs": [
join("src", "libsvm"),
join("src", "newrand"),
],
"include_np": True,
"depends": [
join("src", "libsvm", "svm.h"),
join("src", "newrand", "newrand.h"),
join("src", "libsvm", "libsvm_sparse_helper.c"),
],
"extra_link_args": ["-lstdc++"],
},
],
"tree": [
{
"sources": ["_tree.pyx"],
"language": "c++",
"include_np": True,
"optimization_level": "O3",
},
{"sources": ["_splitter.pyx"], "include_np": True, "optimization_level": "O3"},
{"sources": ["_criterion.pyx"], "include_np": True, "optimization_level": "O3"},
{"sources": ["_utils.pyx"], "include_np": True, "optimization_level": "O3"},
],
"utils": [
{"sources": ["sparsefuncs_fast.pyx"], "include_np": True},
{"sources": ["_cython_blas.pyx"]},
{"sources": ["arrayfuncs.pyx"]},
{
"sources": ["murmurhash.pyx", join("src", "MurmurHash3.cpp")],
"include_dirs": ["src"],
"include_np": True,
},
{"sources": ["_fast_dict.pyx"], "language": "c++"},
{"sources": ["_openmp_helpers.pyx"]},
{"sources": ["_seq_dataset.pyx.tp", "_seq_dataset.pxd.tp"], "include_np": True},
{
"sources": ["_weight_vector.pyx.tp", "_weight_vector.pxd.tp"],
"include_np": True,
},
{"sources": ["_random.pyx"], "include_np": True},
{"sources": ["_typedefs.pyx"]},
{"sources": ["_heap.pyx"]},
{"sources": ["_sorting.pyx"]},
{"sources": ["_vector_sentinel.pyx"], "language": "c++", "include_np": True},
{"sources": ["_isfinite.pyx"]},
],
}
# Paths in `libraries` must be relative to the root directory because `libraries` is
# passed directly to `setup`
libraries = [
(
"libsvm-skl",
{
"sources": [
join("sklearn", "svm", "src", "libsvm", "libsvm_template.cpp"),
],
"depends": [
join("sklearn", "svm", "src", "libsvm", "svm.cpp"),
join("sklearn", "svm", "src", "libsvm", "svm.h"),
join("sklearn", "svm", "src", "newrand", "newrand.h"),
],
# Use C++11 to use the random number generator fix
"extra_compiler_args": ["-std=c++11"],
"extra_link_args": ["-lstdc++"],
},
),
(
"liblinear-skl",
{
"sources": [
join("sklearn", "svm", "src", "liblinear", "linear.cpp"),
join("sklearn", "svm", "src", "liblinear", "tron.cpp"),
],
"depends": [
join("sklearn", "svm", "src", "liblinear", "linear.h"),
join("sklearn", "svm", "src", "liblinear", "tron.h"),
join("sklearn", "svm", "src", "newrand", "newrand.h"),
],
# Use C++11 to use the random number generator fix
"extra_compiler_args": ["-std=c++11"],
"extra_link_args": ["-lstdc++"],
},
),
]
def configure_extension_modules():
# Skip cythonization as we do not want to include the generated
# C/C++ files in the release tarballs as they are not necessarily
# forward compatible with future versions of Python for instance.
if "sdist" in sys.argv or "--help" in sys.argv:
return []
import numpy
from sklearn._build_utils import cythonize_extensions, gen_from_templates
is_pypy = platform.python_implementation() == "PyPy"
np_include = numpy.get_include()
default_optimization_level = "O2"
if os.name == "posix":
default_libraries = ["m"]
else:
default_libraries = []
default_extra_compile_args = []
build_with_debug_symbols = (
os.environ.get("SKLEARN_BUILD_ENABLE_DEBUG_SYMBOLS", "0") != "0"
)
if os.name == "posix":
if build_with_debug_symbols:
default_extra_compile_args.append("-g")
else:
# Setting -g0 will strip symbols, reducing the binary size of extensions
default_extra_compile_args.append("-g0")
cython_exts = []
for submodule, extensions in extension_config.items():
submodule_parts = submodule.split(".")
parent_dir = join("sklearn", *submodule_parts)
for extension in extensions:
if is_pypy and not extension.get("compile_for_pypy", True):
continue
# Generate files with Tempita
tempita_sources = []
sources = []
for source in extension["sources"]:
source = join(parent_dir, source)
new_source_path, path_ext = os.path.splitext(source)
if path_ext != ".tp":
sources.append(source)
continue
# `source` is a Tempita file
tempita_sources.append(source)
# Only include source files that are pyx files
if os.path.splitext(new_source_path)[-1] == ".pyx":
sources.append(new_source_path)
gen_from_templates(tempita_sources)
# Do not progress if we only have a tempita file which we don't
# want to include like the .pxi.tp extension. In such a case
# sources would be empty.
if not sources:
continue
# By convention, our extensions always use the name of the first source
source_name = os.path.splitext(os.path.basename(sources[0]))[0]
if submodule:
name_parts = ["sklearn", submodule, source_name]
else:
name_parts = ["sklearn", source_name]
name = ".".join(name_parts)
# Make paths start from the root directory
include_dirs = [
join(parent_dir, include_dir)
for include_dir in extension.get("include_dirs", [])
]
if extension.get("include_np", False):
include_dirs.append(np_include)
depends = [
join(parent_dir, depend) for depend in extension.get("depends", [])
]
extra_compile_args = (
extension.get("extra_compile_args", []) + default_extra_compile_args
)
optimization_level = extension.get(
"optimization_level", default_optimization_level
)
if os.name == "posix":
extra_compile_args.append(f"-{optimization_level}")
else:
extra_compile_args.append(f"/{optimization_level}")
libraries_ext = extension.get("libraries", []) + default_libraries
new_ext = Extension(
name=name,
sources=sources,
language=extension.get("language", None),
include_dirs=include_dirs,
libraries=libraries_ext,
depends=depends,
extra_link_args=extension.get("extra_link_args", None),
extra_compile_args=extra_compile_args,
)
cython_exts.append(new_ext)
return cythonize_extensions(cython_exts)
def setup_package():
python_requires = ">=3.9"
required_python_version = (3, 9)
metadata = dict(
name=DISTNAME,
maintainer=MAINTAINER,
maintainer_email=MAINTAINER_EMAIL,
description=DESCRIPTION,
license=LICENSE,
url=URL,
download_url=DOWNLOAD_URL,
project_urls=PROJECT_URLS,
version=VERSION,
long_description=LONG_DESCRIPTION,
classifiers=[
"Intended Audience :: Science/Research",
"Intended Audience :: Developers",
"License :: OSI Approved :: BSD License",
"Programming Language :: C",
"Programming Language :: Python",
"Topic :: Software Development",
"Topic :: Scientific/Engineering",
"Development Status :: 5 - Production/Stable",
"Operating System :: Microsoft :: Windows",
"Operating System :: POSIX",
"Operating System :: Unix",
"Operating System :: MacOS",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.10",
"Programming Language :: Python :: 3.11",
"Programming Language :: Python :: 3.12",
"Programming Language :: Python :: Implementation :: CPython",
"Programming Language :: Python :: Implementation :: PyPy",
],
cmdclass=cmdclass,
python_requires=python_requires,
install_requires=min_deps.tag_to_packages["install"],
package_data={
"": ["*.csv", "*.gz", "*.txt", "*.pxd", "*.rst", "*.jpg", "*.css"]
},
zip_safe=False, # the package can run out of an .egg file
extras_require={
key: min_deps.tag_to_packages[key]
for key in ["examples", "docs", "tests", "benchmark"]
},
)
commands = [arg for arg in sys.argv[1:] if not arg.startswith("-")]
if not all(
command in ("egg_info", "dist_info", "clean", "check") for command in commands
):
if sys.version_info < required_python_version:
required_version = "%d.%d" % required_python_version
raise RuntimeError(
"Scikit-learn requires Python %s or later. The current"
" Python version is %s installed in %s."
% (required_version, platform.python_version(), sys.executable)
)
check_package_status("numpy", min_deps.NUMPY_MIN_VERSION)
check_package_status("scipy", min_deps.SCIPY_MIN_VERSION)
_check_cython_version()
metadata["ext_modules"] = configure_extension_modules()
metadata["libraries"] = libraries
setup(**metadata)
if __name__ == "__main__":
setup_package()
|