1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
|
# Author: Andreas Mueller
#
# Licence: BSD 3 clause
from cython cimport floating
from cython.parallel import prange, parallel
from libc.stdlib cimport calloc, free
from libc.string cimport memset
from ..utils._openmp_helpers cimport omp_lock_t
from ..utils._openmp_helpers cimport omp_init_lock
from ..utils._openmp_helpers cimport omp_destroy_lock
from ..utils._openmp_helpers cimport omp_set_lock
from ..utils._openmp_helpers cimport omp_unset_lock
from ..utils.extmath import row_norms
from ._k_means_common import CHUNK_SIZE
from ._k_means_common cimport _relocate_empty_clusters_dense
from ._k_means_common cimport _relocate_empty_clusters_sparse
from ._k_means_common cimport _euclidean_dense_dense
from ._k_means_common cimport _euclidean_sparse_dense
from ._k_means_common cimport _average_centers
from ._k_means_common cimport _center_shift
def init_bounds_dense(
const floating[:, ::1] X, # IN
const floating[:, ::1] centers, # IN
const floating[:, ::1] center_half_distances, # IN
int[::1] labels, # OUT
floating[::1] upper_bounds, # OUT
floating[:, ::1] lower_bounds, # OUT
int n_threads):
"""Initialize upper and lower bounds for each sample for dense input data.
Given X, centers and the pairwise distances divided by 2.0 between the
centers this calculates the upper bounds and lower bounds for each sample.
The upper bound for each sample is set to the distance between the sample
and the closest center.
The lower bound for each sample is a one-dimensional array of n_clusters.
For each sample i assume that the previously assigned cluster is c1 and the
previous closest distance is dist, for a new cluster c2, the
lower_bound[i][c2] is set to distance between the sample and this new
cluster, if and only if dist > center_half_distances[c1][c2]. This prevents
computation of unnecessary distances for each sample to the clusters that
it is unlikely to be assigned to.
Parameters
----------
X : ndarray of shape (n_samples, n_features), dtype=floating
The input data.
centers : ndarray of shape (n_clusters, n_features), dtype=floating
The cluster centers.
center_half_distances : ndarray of shape (n_clusters, n_clusters), \
dtype=floating
The half of the distance between any 2 clusters centers.
labels : ndarray of shape(n_samples), dtype=int
The label for each sample. This array is modified in place.
upper_bounds : ndarray of shape(n_samples,), dtype=floating
The upper bound on the distance between each sample and its closest
cluster center. This array is modified in place.
lower_bounds : ndarray, of shape(n_samples, n_clusters), dtype=floating
The lower bound on the distance between each sample and each cluster
center. This array is modified in place.
n_threads : int
The number of threads to be used by openmp.
"""
cdef:
int n_samples = X.shape[0]
int n_clusters = centers.shape[0]
int n_features = X.shape[1]
floating min_dist, dist
int best_cluster, i, j
for i in prange(
n_samples, num_threads=n_threads, schedule='static', nogil=True
):
best_cluster = 0
min_dist = _euclidean_dense_dense(&X[i, 0], ¢ers[0, 0],
n_features, False)
lower_bounds[i, 0] = min_dist
for j in range(1, n_clusters):
if min_dist > center_half_distances[best_cluster, j]:
dist = _euclidean_dense_dense(&X[i, 0], ¢ers[j, 0],
n_features, False)
lower_bounds[i, j] = dist
if dist < min_dist:
min_dist = dist
best_cluster = j
labels[i] = best_cluster
upper_bounds[i] = min_dist
def init_bounds_sparse(
X, # IN
const floating[:, ::1] centers, # IN
const floating[:, ::1] center_half_distances, # IN
int[::1] labels, # OUT
floating[::1] upper_bounds, # OUT
floating[:, ::1] lower_bounds, # OUT
int n_threads):
"""Initialize upper and lower bounds for each sample for sparse input data.
Given X, centers and the pairwise distances divided by 2.0 between the
centers this calculates the upper bounds and lower bounds for each sample.
The upper bound for each sample is set to the distance between the sample
and the closest center.
The lower bound for each sample is a one-dimensional array of n_clusters.
For each sample i assume that the previously assigned cluster is c1 and the
previous closest distance is dist, for a new cluster c2, the
lower_bound[i][c2] is set to distance between the sample and this new
cluster, if and only if dist > center_half_distances[c1][c2]. This prevents
computation of unnecessary distances for each sample to the clusters that
it is unlikely to be assigned to.
Parameters
----------
X : sparse matrix of shape (n_samples, n_features), dtype=floating
The input data. Must be in CSR format.
centers : ndarray of shape (n_clusters, n_features), dtype=floating
The cluster centers.
center_half_distances : ndarray of shape (n_clusters, n_clusters), \
dtype=floating
The half of the distance between any 2 clusters centers.
labels : ndarray of shape(n_samples), dtype=int
The label for each sample. This array is modified in place.
upper_bounds : ndarray of shape(n_samples,), dtype=floating
The upper bound on the distance between each sample and its closest
cluster center. This array is modified in place.
lower_bounds : ndarray of shape(n_samples, n_clusters), dtype=floating
The lower bound on the distance between each sample and each cluster
center. This array is modified in place.
n_threads : int
The number of threads to be used by openmp.
"""
cdef:
int n_samples = X.shape[0]
int n_clusters = centers.shape[0]
floating[::1] X_data = X.data
int[::1] X_indices = X.indices
int[::1] X_indptr = X.indptr
floating min_dist, dist
int best_cluster, i, j
floating[::1] centers_squared_norms = row_norms(centers, squared=True)
for i in prange(
n_samples, num_threads=n_threads, schedule='static', nogil=True
):
best_cluster = 0
min_dist = _euclidean_sparse_dense(
X_data[X_indptr[i]: X_indptr[i + 1]],
X_indices[X_indptr[i]: X_indptr[i + 1]],
centers[0], centers_squared_norms[0], False)
lower_bounds[i, 0] = min_dist
for j in range(1, n_clusters):
if min_dist > center_half_distances[best_cluster, j]:
dist = _euclidean_sparse_dense(
X_data[X_indptr[i]: X_indptr[i + 1]],
X_indices[X_indptr[i]: X_indptr[i + 1]],
centers[j], centers_squared_norms[j], False)
lower_bounds[i, j] = dist
if dist < min_dist:
min_dist = dist
best_cluster = j
labels[i] = best_cluster
upper_bounds[i] = min_dist
def elkan_iter_chunked_dense(
const floating[:, ::1] X, # IN
const floating[::1] sample_weight, # IN
const floating[:, ::1] centers_old, # IN
floating[:, ::1] centers_new, # OUT
floating[::1] weight_in_clusters, # OUT
const floating[:, ::1] center_half_distances, # IN
const floating[::1] distance_next_center, # IN
floating[::1] upper_bounds, # INOUT
floating[:, ::1] lower_bounds, # INOUT
int[::1] labels, # INOUT
floating[::1] center_shift, # OUT
int n_threads,
bint update_centers=True):
"""Single iteration of K-means Elkan algorithm with dense input.
Update labels and centers (inplace), for one iteration, distributed
over data chunks.
Parameters
----------
X : ndarray of shape (n_samples, n_features), dtype=floating
The observations to cluster.
sample_weight : ndarray of shape (n_samples,), dtype=floating
The weights for each observation in X.
centers_old : ndarray of shape (n_clusters, n_features), dtype=floating
Centers before previous iteration, placeholder for the centers after
previous iteration.
centers_new : ndarray of shape (n_clusters, n_features), dtype=floating
Centers after previous iteration, placeholder for the new centers
computed during this iteration.
weight_in_clusters : ndarray of shape (n_clusters,), dtype=floating
Placeholder for the sums of the weights of every observation assigned
to each center.
center_half_distances : ndarray of shape (n_clusters, n_clusters), \
dtype=floating
Half pairwise distances between centers.
distance_next_center : ndarray of shape (n_clusters,), dtype=floating
Distance between each center its closest center.
upper_bounds : ndarray of shape (n_samples,), dtype=floating
Upper bound for the distance between each sample and its center,
updated inplace.
lower_bounds : ndarray of shape (n_samples, n_clusters), dtype=floating
Lower bound for the distance between each sample and each center,
updated inplace.
labels : ndarray of shape (n_samples,), dtype=int
labels assignment.
center_shift : ndarray of shape (n_clusters,), dtype=floating
Distance between old and new centers.
n_threads : int
The number of threads to be used by openmp.
update_centers : bool
- If True, the labels and the new centers will be computed, i.e. runs
the E-step and the M-step of the algorithm.
- If False, only the labels will be computed, i.e runs the E-step of
the algorithm. This is useful especially when calling predict on a
fitted model.
"""
cdef:
int n_samples = X.shape[0]
int n_features = X.shape[1]
int n_clusters = centers_new.shape[0]
if n_samples == 0:
# An empty array was passed, do nothing and return early (before
# attempting to compute n_chunks). This can typically happen when
# calling the prediction function of a bisecting k-means model with a
# large fraction of outiers.
return
cdef:
# hard-coded number of samples per chunk. Splitting in chunks is
# necessary to get parallelism. Chunk size chosen to be same as lloyd's
int n_samples_chunk = CHUNK_SIZE if n_samples > CHUNK_SIZE else n_samples
int n_chunks = n_samples // n_samples_chunk
int n_samples_rem = n_samples % n_samples_chunk
int chunk_idx
int start, end
int i, j, k
floating *centers_new_chunk
floating *weight_in_clusters_chunk
omp_lock_t lock
# count remainder chunk in total number of chunks
n_chunks += n_samples != n_chunks * n_samples_chunk
# number of threads should not be bigger than number of chunks
n_threads = min(n_threads, n_chunks)
if update_centers:
memset(¢ers_new[0, 0], 0, n_clusters * n_features * sizeof(floating))
memset(&weight_in_clusters[0], 0, n_clusters * sizeof(floating))
omp_init_lock(&lock)
with nogil, parallel(num_threads=n_threads):
# thread local buffers
centers_new_chunk = <floating*> calloc(n_clusters * n_features, sizeof(floating))
weight_in_clusters_chunk = <floating*> calloc(n_clusters, sizeof(floating))
for chunk_idx in prange(n_chunks, schedule='static'):
start = chunk_idx * n_samples_chunk
if chunk_idx == n_chunks - 1 and n_samples_rem > 0:
end = start + n_samples_rem
else:
end = start + n_samples_chunk
_update_chunk_dense(
X[start: end],
sample_weight[start: end],
centers_old,
center_half_distances,
distance_next_center,
labels[start: end],
upper_bounds[start: end],
lower_bounds[start: end],
centers_new_chunk,
weight_in_clusters_chunk,
update_centers)
# reduction from local buffers.
if update_centers:
# The lock is necessary to avoid race conditions when aggregating
# info from different thread-local buffers.
omp_set_lock(&lock)
for j in range(n_clusters):
weight_in_clusters[j] += weight_in_clusters_chunk[j]
for k in range(n_features):
centers_new[j, k] += centers_new_chunk[j * n_features + k]
omp_unset_lock(&lock)
free(centers_new_chunk)
free(weight_in_clusters_chunk)
if update_centers:
omp_destroy_lock(&lock)
_relocate_empty_clusters_dense(X, sample_weight, centers_old,
centers_new, weight_in_clusters, labels)
_average_centers(centers_new, weight_in_clusters)
_center_shift(centers_old, centers_new, center_shift)
# update lower and upper bounds
for i in range(n_samples):
upper_bounds[i] += center_shift[labels[i]]
for j in range(n_clusters):
lower_bounds[i, j] -= center_shift[j]
if lower_bounds[i, j] < 0:
lower_bounds[i, j] = 0
cdef void _update_chunk_dense(
const floating[:, ::1] X, # IN
const floating[::1] sample_weight, # IN
const floating[:, ::1] centers_old, # IN
const floating[:, ::1] center_half_distances, # IN
const floating[::1] distance_next_center, # IN
int[::1] labels, # INOUT
floating[::1] upper_bounds, # INOUT
floating[:, ::1] lower_bounds, # INOUT
floating *centers_new, # OUT
floating *weight_in_clusters, # OUT
bint update_centers) noexcept nogil:
"""K-means combined EM step for one dense data chunk.
Compute the partial contribution of a single data chunk to the labels and
centers.
"""
cdef:
int n_samples = labels.shape[0]
int n_clusters = centers_old.shape[0]
int n_features = centers_old.shape[1]
floating upper_bound, distance
int i, j, k, label
for i in range(n_samples):
upper_bound = upper_bounds[i]
bounds_tight = 0
label = labels[i]
# Next center is not far away from the currently assigned center.
# Sample might need to be assigned to another center.
if not distance_next_center[label] >= upper_bound:
for j in range(n_clusters):
# If this holds, then center_index is a good candidate for the
# sample to be relabelled, and we need to confirm this by
# recomputing the upper and lower bounds.
if (
j != label
and (upper_bound > lower_bounds[i, j])
and (upper_bound > center_half_distances[label, j])
):
# Recompute upper bound by calculating the actual distance
# between the sample and its current assigned center.
if not bounds_tight:
upper_bound = _euclidean_dense_dense(
&X[i, 0], ¢ers_old[label, 0], n_features, False)
lower_bounds[i, label] = upper_bound
bounds_tight = 1
# If the condition still holds, then compute the actual
# distance between the sample and center. If this is less
# than the previous distance, reassign label.
if (
upper_bound > lower_bounds[i, j]
or (upper_bound > center_half_distances[label, j])
):
distance = _euclidean_dense_dense(
&X[i, 0], ¢ers_old[j, 0], n_features, False)
lower_bounds[i, j] = distance
if distance < upper_bound:
label = j
upper_bound = distance
labels[i] = label
upper_bounds[i] = upper_bound
if update_centers:
weight_in_clusters[label] += sample_weight[i]
for k in range(n_features):
centers_new[label * n_features + k] += X[i, k] * sample_weight[i]
def elkan_iter_chunked_sparse(
X, # IN
const floating[::1] sample_weight, # IN
const floating[:, ::1] centers_old, # IN
floating[:, ::1] centers_new, # OUT
floating[::1] weight_in_clusters, # OUT
const floating[:, ::1] center_half_distances, # IN
const floating[::1] distance_next_center, # IN
floating[::1] upper_bounds, # INOUT
floating[:, ::1] lower_bounds, # INOUT
int[::1] labels, # INOUT
floating[::1] center_shift, # OUT
int n_threads,
bint update_centers=True):
"""Single iteration of K-means Elkan algorithm with sparse input.
Update labels and centers (inplace), for one iteration, distributed
over data chunks.
Parameters
----------
X : sparse matrix of shape (n_samples, n_features)
The observations to cluster. Must be in CSR format.
sample_weight : ndarray of shape (n_samples,), dtype=floating
The weights for each observation in X.
centers_old : ndarray of shape (n_clusters, n_features), dtype=floating
Centers before previous iteration, placeholder for the centers after
previous iteration.
centers_new : ndarray of shape (n_clusters, n_features), dtype=floating
Centers after previous iteration, placeholder for the new centers
computed during this iteration.
weight_in_clusters : ndarray of shape (n_clusters,), dtype=floating
Placeholder for the sums of the weights of every observation assigned
to each center.
center_half_distances : ndarray of shape (n_clusters, n_clusters), \
dtype=floating
Half pairwise distances between centers.
distance_next_center : ndarray of shape (n_clusters,), dtype=floating
Distance between each center its closest center.
upper_bounds : ndarray of shape (n_samples,), dtype=floating
Upper bound for the distance between each sample and its center,
updated inplace.
lower_bounds : ndarray of shape (n_samples, n_clusters), dtype=floating
Lower bound for the distance between each sample and each center,
updated inplace.
labels : ndarray of shape (n_samples,), dtype=int
labels assignment.
center_shift : ndarray of shape (n_clusters,), dtype=floating
Distance between old and new centers.
n_threads : int
The number of threads to be used by openmp.
update_centers : bool
- If True, the labels and the new centers will be computed, i.e. runs
the E-step and the M-step of the algorithm.
- If False, only the labels will be computed, i.e runs the E-step of
the algorithm. This is useful especially when calling predict on a
fitted model.
"""
cdef:
int n_samples = X.shape[0]
int n_features = X.shape[1]
int n_clusters = centers_new.shape[0]
if n_samples == 0:
# An empty array was passed, do nothing and return early (before
# attempting to compute n_chunks). This can typically happen when
# calling the prediction function of a bisecting k-means model with a
# large fraction of outiers.
return
cdef:
floating[::1] X_data = X.data
int[::1] X_indices = X.indices
int[::1] X_indptr = X.indptr
# hard-coded number of samples per chunk. Splitting in chunks is
# necessary to get parallelism. Chunk size chosen to be same as lloyd's
int n_samples_chunk = CHUNK_SIZE if n_samples > CHUNK_SIZE else n_samples
int n_chunks = n_samples // n_samples_chunk
int n_samples_rem = n_samples % n_samples_chunk
int chunk_idx
int start, end
int i, j, k
floating[::1] centers_squared_norms = row_norms(centers_old, squared=True)
floating *centers_new_chunk
floating *weight_in_clusters_chunk
omp_lock_t lock
# count remainder chunk in total number of chunks
n_chunks += n_samples != n_chunks * n_samples_chunk
# number of threads should not be bigger than number of chunks
n_threads = min(n_threads, n_chunks)
if update_centers:
memset(¢ers_new[0, 0], 0, n_clusters * n_features * sizeof(floating))
memset(&weight_in_clusters[0], 0, n_clusters * sizeof(floating))
omp_init_lock(&lock)
with nogil, parallel(num_threads=n_threads):
# thread local buffers
centers_new_chunk = <floating*> calloc(n_clusters * n_features, sizeof(floating))
weight_in_clusters_chunk = <floating*> calloc(n_clusters, sizeof(floating))
for chunk_idx in prange(n_chunks, schedule='static'):
start = chunk_idx * n_samples_chunk
if chunk_idx == n_chunks - 1 and n_samples_rem > 0:
end = start + n_samples_rem
else:
end = start + n_samples_chunk
_update_chunk_sparse(
X_data[X_indptr[start]: X_indptr[end]],
X_indices[X_indptr[start]: X_indptr[end]],
X_indptr[start: end+1],
sample_weight[start: end],
centers_old,
centers_squared_norms,
center_half_distances,
distance_next_center,
labels[start: end],
upper_bounds[start: end],
lower_bounds[start: end],
centers_new_chunk,
weight_in_clusters_chunk,
update_centers)
# reduction from local buffers.
if update_centers:
# The lock is necessary to avoid race conditions when aggregating
# info from different thread-local buffers.
omp_set_lock(&lock)
for j in range(n_clusters):
weight_in_clusters[j] += weight_in_clusters_chunk[j]
for k in range(n_features):
centers_new[j, k] += centers_new_chunk[j * n_features + k]
omp_unset_lock(&lock)
free(centers_new_chunk)
free(weight_in_clusters_chunk)
if update_centers:
omp_destroy_lock(&lock)
_relocate_empty_clusters_sparse(
X_data, X_indices, X_indptr, sample_weight,
centers_old, centers_new, weight_in_clusters, labels)
_average_centers(centers_new, weight_in_clusters)
_center_shift(centers_old, centers_new, center_shift)
# update lower and upper bounds
for i in range(n_samples):
upper_bounds[i] += center_shift[labels[i]]
for j in range(n_clusters):
lower_bounds[i, j] -= center_shift[j]
if lower_bounds[i, j] < 0:
lower_bounds[i, j] = 0
cdef void _update_chunk_sparse(
const floating[::1] X_data, # IN
const int[::1] X_indices, # IN
const int[::1] X_indptr, # IN
const floating[::1] sample_weight, # IN
const floating[:, ::1] centers_old, # IN
const floating[::1] centers_squared_norms, # IN
const floating[:, ::1] center_half_distances, # IN
const floating[::1] distance_next_center, # IN
int[::1] labels, # INOUT
floating[::1] upper_bounds, # INOUT
floating[:, ::1] lower_bounds, # INOUT
floating *centers_new, # OUT
floating *weight_in_clusters, # OUT
bint update_centers) noexcept nogil:
"""K-means combined EM step for one sparse data chunk.
Compute the partial contribution of a single data chunk to the labels and
centers.
"""
cdef:
int n_samples = labels.shape[0]
int n_clusters = centers_old.shape[0]
int n_features = centers_old.shape[1]
floating upper_bound, distance
int i, j, k, label
int s = X_indptr[0]
for i in range(n_samples):
upper_bound = upper_bounds[i]
bounds_tight = 0
label = labels[i]
# Next center is not far away from the currently assigned center.
# Sample might need to be assigned to another center.
if not distance_next_center[label] >= upper_bound:
for j in range(n_clusters):
# If this holds, then center_index is a good candidate for the
# sample to be relabelled, and we need to confirm this by
# recomputing the upper and lower bounds.
if (
j != label
and (upper_bound > lower_bounds[i, j])
and (upper_bound > center_half_distances[label, j])
):
# Recompute upper bound by calculating the actual distance
# between the sample and its current assigned center.
if not bounds_tight:
upper_bound = _euclidean_sparse_dense(
X_data[X_indptr[i] - s: X_indptr[i + 1] - s],
X_indices[X_indptr[i] - s: X_indptr[i + 1] - s],
centers_old[label], centers_squared_norms[label], False)
lower_bounds[i, label] = upper_bound
bounds_tight = 1
# If the condition still holds, then compute the actual
# distance between the sample and center. If this is less
# than the previous distance, reassign label.
if (
upper_bound > lower_bounds[i, j]
or (upper_bound > center_half_distances[label, j])
):
distance = _euclidean_sparse_dense(
X_data[X_indptr[i] - s: X_indptr[i + 1] - s],
X_indices[X_indptr[i] - s: X_indptr[i + 1] - s],
centers_old[j], centers_squared_norms[j], False)
lower_bounds[i, j] = distance
if distance < upper_bound:
label = j
upper_bound = distance
labels[i] = label
upper_bounds[i] = upper_bound
if update_centers:
weight_in_clusters[label] += sample_weight[i]
for k in range(X_indptr[i] - s, X_indptr[i + 1] - s):
centers_new[label * n_features + X_indices[k]] += X_data[k] * sample_weight[i]
|