File: test_k_means.py

package info (click to toggle)
scikit-learn 1.4.2%2Bdfsg-8
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 25,036 kB
  • sloc: python: 201,105; cpp: 5,790; ansic: 854; makefile: 304; sh: 56; javascript: 20
file content (1372 lines) | stat: -rw-r--r-- 48,900 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
"""Testing for K-means"""
import re
import sys
from io import StringIO

import numpy as np
import pytest
from scipy import sparse as sp

from sklearn.base import clone
from sklearn.cluster import KMeans, MiniBatchKMeans, k_means, kmeans_plusplus
from sklearn.cluster._k_means_common import (
    _euclidean_dense_dense_wrapper,
    _euclidean_sparse_dense_wrapper,
    _inertia_dense,
    _inertia_sparse,
    _is_same_clustering,
    _relocate_empty_clusters_dense,
    _relocate_empty_clusters_sparse,
)
from sklearn.cluster._kmeans import _labels_inertia, _mini_batch_step
from sklearn.datasets import make_blobs
from sklearn.exceptions import ConvergenceWarning
from sklearn.metrics import pairwise_distances, pairwise_distances_argmin
from sklearn.metrics.cluster import v_measure_score
from sklearn.metrics.pairwise import euclidean_distances
from sklearn.utils._testing import (
    assert_allclose,
    assert_array_equal,
    create_memmap_backed_data,
)
from sklearn.utils.extmath import row_norms
from sklearn.utils.fixes import CSR_CONTAINERS, threadpool_limits

# non centered, sparse centers to check the
centers = np.array(
    [
        [0.0, 5.0, 0.0, 0.0, 0.0],
        [1.0, 1.0, 4.0, 0.0, 0.0],
        [1.0, 0.0, 0.0, 5.0, 1.0],
    ]
)
n_samples = 100
n_clusters, n_features = centers.shape
X, true_labels = make_blobs(
    n_samples=n_samples, centers=centers, cluster_std=1.0, random_state=42
)
X_as_any_csr = [container(X) for container in CSR_CONTAINERS]
data_containers = [np.array] + CSR_CONTAINERS
data_containers_ids = (
    ["dense", "sparse_matrix", "sparse_array"]
    if len(X_as_any_csr) == 2
    else ["dense", "sparse_matrix"]
)


@pytest.mark.parametrize("array_constr", data_containers, ids=data_containers_ids)
@pytest.mark.parametrize("algo", ["lloyd", "elkan"])
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
def test_kmeans_results(array_constr, algo, dtype):
    # Checks that KMeans works as intended on toy dataset by comparing with
    # expected results computed by hand.
    X = array_constr([[0, 0], [0.5, 0], [0.5, 1], [1, 1]], dtype=dtype)
    sample_weight = [3, 1, 1, 3]
    init_centers = np.array([[0, 0], [1, 1]], dtype=dtype)

    expected_labels = [0, 0, 1, 1]
    expected_inertia = 0.375
    expected_centers = np.array([[0.125, 0], [0.875, 1]], dtype=dtype)
    expected_n_iter = 2

    kmeans = KMeans(n_clusters=2, n_init=1, init=init_centers, algorithm=algo)
    kmeans.fit(X, sample_weight=sample_weight)

    assert_array_equal(kmeans.labels_, expected_labels)
    assert_allclose(kmeans.inertia_, expected_inertia)
    assert_allclose(kmeans.cluster_centers_, expected_centers)
    assert kmeans.n_iter_ == expected_n_iter


@pytest.mark.parametrize("array_constr", data_containers, ids=data_containers_ids)
@pytest.mark.parametrize("algo", ["lloyd", "elkan"])
def test_kmeans_relocated_clusters(array_constr, algo):
    # check that empty clusters are relocated as expected
    X = array_constr([[0, 0], [0.5, 0], [0.5, 1], [1, 1]])

    # second center too far from others points will be empty at first iter
    init_centers = np.array([[0.5, 0.5], [3, 3]])

    kmeans = KMeans(n_clusters=2, n_init=1, init=init_centers, algorithm=algo)
    kmeans.fit(X)

    expected_n_iter = 3
    expected_inertia = 0.25
    assert_allclose(kmeans.inertia_, expected_inertia)
    assert kmeans.n_iter_ == expected_n_iter

    # There are two acceptable ways of relocating clusters in this example, the output
    # depends on how the argpartition strategy breaks ties. We accept both outputs.
    try:
        expected_labels = [0, 0, 1, 1]
        expected_centers = [[0.25, 0], [0.75, 1]]
        assert_array_equal(kmeans.labels_, expected_labels)
        assert_allclose(kmeans.cluster_centers_, expected_centers)
    except AssertionError:
        expected_labels = [1, 1, 0, 0]
        expected_centers = [[0.75, 1.0], [0.25, 0.0]]
        assert_array_equal(kmeans.labels_, expected_labels)
        assert_allclose(kmeans.cluster_centers_, expected_centers)


@pytest.mark.parametrize("array_constr", data_containers, ids=data_containers_ids)
def test_relocate_empty_clusters(array_constr):
    # test for the _relocate_empty_clusters_(dense/sparse) helpers

    # Synthetic dataset with 3 obvious clusters of different sizes
    X = np.array([-10.0, -9.5, -9, -8.5, -8, -1, 1, 9, 9.5, 10]).reshape(-1, 1)
    X = array_constr(X)
    sample_weight = np.ones(10)

    # centers all initialized to the first point of X
    centers_old = np.array([-10.0, -10, -10]).reshape(-1, 1)

    # With this initialization, all points will be assigned to the first center
    # At this point a center in centers_new is the weighted sum of the points
    # it contains if it's not empty, otherwise it is the same as before.
    centers_new = np.array([-16.5, -10, -10]).reshape(-1, 1)
    weight_in_clusters = np.array([10.0, 0, 0])
    labels = np.zeros(10, dtype=np.int32)

    if array_constr is np.array:
        _relocate_empty_clusters_dense(
            X, sample_weight, centers_old, centers_new, weight_in_clusters, labels
        )
    else:
        _relocate_empty_clusters_sparse(
            X.data,
            X.indices,
            X.indptr,
            sample_weight,
            centers_old,
            centers_new,
            weight_in_clusters,
            labels,
        )

    # The relocation scheme will take the 2 points farthest from the center and
    # assign them to the 2 empty clusters, i.e. points at 10 and at 9.9. The
    # first center will be updated to contain the other 8 points.
    assert_array_equal(weight_in_clusters, [8, 1, 1])
    assert_allclose(centers_new, [[-36], [10], [9.5]])


@pytest.mark.parametrize("distribution", ["normal", "blobs"])
@pytest.mark.parametrize("array_constr", data_containers, ids=data_containers_ids)
@pytest.mark.parametrize("tol", [1e-2, 1e-8, 1e-100, 0])
def test_kmeans_elkan_results(distribution, array_constr, tol, global_random_seed):
    # Check that results are identical between lloyd and elkan algorithms
    rnd = np.random.RandomState(global_random_seed)
    if distribution == "normal":
        X = rnd.normal(size=(5000, 10))
    else:
        X, _ = make_blobs(random_state=rnd)
    X[X < 0] = 0
    X = array_constr(X)

    km_lloyd = KMeans(n_clusters=5, random_state=global_random_seed, n_init=1, tol=tol)
    km_elkan = KMeans(
        algorithm="elkan",
        n_clusters=5,
        random_state=global_random_seed,
        n_init=1,
        tol=tol,
    )

    km_lloyd.fit(X)
    km_elkan.fit(X)
    assert_allclose(km_elkan.cluster_centers_, km_lloyd.cluster_centers_)
    assert_array_equal(km_elkan.labels_, km_lloyd.labels_)
    assert km_elkan.n_iter_ == km_lloyd.n_iter_
    assert km_elkan.inertia_ == pytest.approx(km_lloyd.inertia_, rel=1e-6)


@pytest.mark.parametrize("algorithm", ["lloyd", "elkan"])
def test_kmeans_convergence(algorithm, global_random_seed):
    # Check that KMeans stops when convergence is reached when tol=0. (#16075)
    rnd = np.random.RandomState(global_random_seed)
    X = rnd.normal(size=(5000, 10))
    max_iter = 300

    km = KMeans(
        algorithm=algorithm,
        n_clusters=5,
        random_state=global_random_seed,
        n_init=1,
        tol=0,
        max_iter=max_iter,
    ).fit(X)

    assert km.n_iter_ < max_iter


@pytest.mark.parametrize("Estimator", [KMeans, MiniBatchKMeans])
def test_predict_sample_weight_deprecation_warning(Estimator):
    X = np.random.rand(100, 2)
    sample_weight = np.random.uniform(size=100)
    kmeans = Estimator()
    kmeans.fit(X, sample_weight=sample_weight)
    warn_msg = (
        "'sample_weight' was deprecated in version 1.3 and will be removed in 1.5."
    )
    with pytest.warns(FutureWarning, match=warn_msg):
        kmeans.predict(X, sample_weight=sample_weight)


@pytest.mark.parametrize("X_csr", X_as_any_csr)
def test_minibatch_update_consistency(X_csr, global_random_seed):
    # Check that dense and sparse minibatch update give the same results
    rng = np.random.RandomState(global_random_seed)

    centers_old = centers + rng.normal(size=centers.shape)
    centers_old_csr = centers_old.copy()

    centers_new = np.zeros_like(centers_old)
    centers_new_csr = np.zeros_like(centers_old_csr)

    weight_sums = np.zeros(centers_old.shape[0], dtype=X.dtype)
    weight_sums_csr = np.zeros(centers_old.shape[0], dtype=X.dtype)

    sample_weight = np.ones(X.shape[0], dtype=X.dtype)

    # extract a small minibatch
    X_mb = X[:10]
    X_mb_csr = X_csr[:10]
    sample_weight_mb = sample_weight[:10]

    # step 1: compute the dense minibatch update
    old_inertia = _mini_batch_step(
        X_mb,
        sample_weight_mb,
        centers_old,
        centers_new,
        weight_sums,
        np.random.RandomState(global_random_seed),
        random_reassign=False,
    )
    assert old_inertia > 0.0

    # compute the new inertia on the same batch to check that it decreased
    labels, new_inertia = _labels_inertia(X_mb, sample_weight_mb, centers_new)
    assert new_inertia > 0.0
    assert new_inertia < old_inertia

    # step 2: compute the sparse minibatch update
    old_inertia_csr = _mini_batch_step(
        X_mb_csr,
        sample_weight_mb,
        centers_old_csr,
        centers_new_csr,
        weight_sums_csr,
        np.random.RandomState(global_random_seed),
        random_reassign=False,
    )
    assert old_inertia_csr > 0.0

    # compute the new inertia on the same batch to check that it decreased
    labels_csr, new_inertia_csr = _labels_inertia(
        X_mb_csr, sample_weight_mb, centers_new_csr
    )
    assert new_inertia_csr > 0.0
    assert new_inertia_csr < old_inertia_csr

    # step 3: check that sparse and dense updates lead to the same results
    assert_array_equal(labels, labels_csr)
    assert_allclose(centers_new, centers_new_csr)
    assert_allclose(old_inertia, old_inertia_csr)
    assert_allclose(new_inertia, new_inertia_csr)


def _check_fitted_model(km):
    # check that the number of clusters centers and distinct labels match
    # the expectation
    centers = km.cluster_centers_
    assert centers.shape == (n_clusters, n_features)

    labels = km.labels_
    assert np.unique(labels).shape[0] == n_clusters

    # check that the labels assignment are perfect (up to a permutation)
    assert_allclose(v_measure_score(true_labels, labels), 1.0)
    assert km.inertia_ > 0.0


@pytest.mark.parametrize(
    "input_data",
    [X] + X_as_any_csr,
    ids=data_containers_ids,
)
@pytest.mark.parametrize(
    "init",
    ["random", "k-means++", centers, lambda X, k, random_state: centers],
    ids=["random", "k-means++", "ndarray", "callable"],
)
@pytest.mark.parametrize("Estimator", [KMeans, MiniBatchKMeans])
def test_all_init(Estimator, input_data, init):
    # Check KMeans and MiniBatchKMeans with all possible init.
    n_init = 10 if isinstance(init, str) else 1
    km = Estimator(
        init=init, n_clusters=n_clusters, random_state=42, n_init=n_init
    ).fit(input_data)
    _check_fitted_model(km)


@pytest.mark.parametrize(
    "init",
    ["random", "k-means++", centers, lambda X, k, random_state: centers],
    ids=["random", "k-means++", "ndarray", "callable"],
)
def test_minibatch_kmeans_partial_fit_init(init):
    # Check MiniBatchKMeans init with partial_fit
    n_init = 10 if isinstance(init, str) else 1
    km = MiniBatchKMeans(
        init=init, n_clusters=n_clusters, random_state=0, n_init=n_init
    )
    for i in range(100):
        # "random" init requires many batches to recover the true labels.
        km.partial_fit(X)
    _check_fitted_model(km)


@pytest.mark.parametrize(
    "init, expected_n_init",
    [
        ("k-means++", 1),
        ("random", "default"),
        (
            lambda X, n_clusters, random_state: random_state.uniform(
                size=(n_clusters, X.shape[1])
            ),
            "default",
        ),
        ("array-like", 1),
    ],
)
@pytest.mark.parametrize("Estimator", [KMeans, MiniBatchKMeans])
def test_kmeans_init_auto_with_initial_centroids(Estimator, init, expected_n_init):
    """Check that `n_init="auto"` chooses the right number of initializations.
    Non-regression test for #26657:
    https://github.com/scikit-learn/scikit-learn/pull/26657
    """
    n_sample, n_features, n_clusters = 100, 10, 5
    X = np.random.randn(n_sample, n_features)
    if init == "array-like":
        init = np.random.randn(n_clusters, n_features)
    if expected_n_init == "default":
        expected_n_init = 3 if Estimator is MiniBatchKMeans else 10

    kmeans = Estimator(n_clusters=n_clusters, init=init, n_init="auto").fit(X)
    assert kmeans._n_init == expected_n_init


@pytest.mark.parametrize("Estimator", [KMeans, MiniBatchKMeans])
def test_fortran_aligned_data(Estimator, global_random_seed):
    # Check that KMeans works with fortran-aligned data.
    X_fortran = np.asfortranarray(X)
    centers_fortran = np.asfortranarray(centers)

    km_c = Estimator(
        n_clusters=n_clusters, init=centers, n_init=1, random_state=global_random_seed
    ).fit(X)
    km_f = Estimator(
        n_clusters=n_clusters,
        init=centers_fortran,
        n_init=1,
        random_state=global_random_seed,
    ).fit(X_fortran)
    assert_allclose(km_c.cluster_centers_, km_f.cluster_centers_)
    assert_array_equal(km_c.labels_, km_f.labels_)


def test_minibatch_kmeans_verbose():
    # Check verbose mode of MiniBatchKMeans for better coverage.
    km = MiniBatchKMeans(n_clusters=n_clusters, random_state=42, verbose=1)
    old_stdout = sys.stdout
    sys.stdout = StringIO()
    try:
        km.fit(X)
    finally:
        sys.stdout = old_stdout


@pytest.mark.parametrize("algorithm", ["lloyd", "elkan"])
@pytest.mark.parametrize("tol", [1e-2, 0])
def test_kmeans_verbose(algorithm, tol, capsys):
    # Check verbose mode of KMeans for better coverage.
    X = np.random.RandomState(0).normal(size=(5000, 10))

    KMeans(
        algorithm=algorithm,
        n_clusters=n_clusters,
        random_state=42,
        init="random",
        n_init=1,
        tol=tol,
        verbose=1,
    ).fit(X)

    captured = capsys.readouterr()

    assert re.search(r"Initialization complete", captured.out)
    assert re.search(r"Iteration [0-9]+, inertia", captured.out)

    if tol == 0:
        assert re.search(r"strict convergence", captured.out)
    else:
        assert re.search(r"center shift .* within tolerance", captured.out)


def test_minibatch_kmeans_warning_init_size():
    # Check that a warning is raised when init_size is smaller than n_clusters
    with pytest.warns(
        RuntimeWarning, match=r"init_size.* should be larger than n_clusters"
    ):
        MiniBatchKMeans(init_size=10, n_clusters=20).fit(X)


@pytest.mark.parametrize("Estimator", [KMeans, MiniBatchKMeans])
def test_warning_n_init_precomputed_centers(Estimator):
    # Check that a warning is raised when n_init > 1 and an array is passed for
    # the init parameter.
    with pytest.warns(
        RuntimeWarning,
        match="Explicit initial center position passed: performing only one init",
    ):
        Estimator(init=centers, n_clusters=n_clusters, n_init=10).fit(X)


def test_minibatch_sensible_reassign(global_random_seed):
    # check that identical initial clusters are reassigned
    # also a regression test for when there are more desired reassignments than
    # samples.
    zeroed_X, true_labels = make_blobs(
        n_samples=100, centers=5, random_state=global_random_seed
    )
    zeroed_X[::2, :] = 0

    km = MiniBatchKMeans(
        n_clusters=20, batch_size=10, random_state=global_random_seed, init="random"
    ).fit(zeroed_X)
    # there should not be too many exact zero cluster centers
    assert km.cluster_centers_.any(axis=1).sum() > 10

    # do the same with batch-size > X.shape[0] (regression test)
    km = MiniBatchKMeans(
        n_clusters=20, batch_size=200, random_state=global_random_seed, init="random"
    ).fit(zeroed_X)
    # there should not be too many exact zero cluster centers
    assert km.cluster_centers_.any(axis=1).sum() > 10

    # do the same with partial_fit API
    km = MiniBatchKMeans(n_clusters=20, random_state=global_random_seed, init="random")
    for i in range(100):
        km.partial_fit(zeroed_X)
    # there should not be too many exact zero cluster centers
    assert km.cluster_centers_.any(axis=1).sum() > 10


@pytest.mark.parametrize(
    "input_data",
    [X] + X_as_any_csr,
    ids=data_containers_ids,
)
def test_minibatch_reassign(input_data, global_random_seed):
    # Check the reassignment part of the minibatch step with very high or very
    # low reassignment ratio.
    perfect_centers = np.empty((n_clusters, n_features))
    for i in range(n_clusters):
        perfect_centers[i] = X[true_labels == i].mean(axis=0)

    sample_weight = np.ones(n_samples)
    centers_new = np.empty_like(perfect_centers)

    # Give a perfect initialization, but a large reassignment_ratio, as a
    # result many centers should be reassigned and the model should no longer
    # be good
    score_before = -_labels_inertia(input_data, sample_weight, perfect_centers, 1)[1]

    _mini_batch_step(
        input_data,
        sample_weight,
        perfect_centers,
        centers_new,
        np.zeros(n_clusters),
        np.random.RandomState(global_random_seed),
        random_reassign=True,
        reassignment_ratio=1,
    )

    score_after = -_labels_inertia(input_data, sample_weight, centers_new, 1)[1]

    assert score_before > score_after

    # Give a perfect initialization, with a small reassignment_ratio,
    # no center should be reassigned.
    _mini_batch_step(
        input_data,
        sample_weight,
        perfect_centers,
        centers_new,
        np.zeros(n_clusters),
        np.random.RandomState(global_random_seed),
        random_reassign=True,
        reassignment_ratio=1e-15,
    )

    assert_allclose(centers_new, perfect_centers)


def test_minibatch_with_many_reassignments():
    # Test for the case that the number of clusters to reassign is bigger
    # than the batch_size. Run the test with 100 clusters and a batch_size of
    # 10 because it turned out that these values ensure that the number of
    # clusters to reassign is always bigger than the batch_size.
    MiniBatchKMeans(
        n_clusters=100,
        batch_size=10,
        init_size=n_samples,
        random_state=42,
        verbose=True,
    ).fit(X)


def test_minibatch_kmeans_init_size():
    # Check the internal _init_size attribute of MiniBatchKMeans

    # default init size should be 3 * batch_size
    km = MiniBatchKMeans(n_clusters=10, batch_size=5, n_init=1).fit(X)
    assert km._init_size == 15

    # if 3 * batch size < n_clusters, it should then be 3 * n_clusters
    km = MiniBatchKMeans(n_clusters=10, batch_size=1, n_init=1).fit(X)
    assert km._init_size == 30

    # it should not be larger than n_samples
    km = MiniBatchKMeans(
        n_clusters=10, batch_size=5, n_init=1, init_size=n_samples + 1
    ).fit(X)
    assert km._init_size == n_samples


@pytest.mark.parametrize("tol, max_no_improvement", [(1e-4, None), (0, 10)])
def test_minibatch_declared_convergence(capsys, tol, max_no_improvement):
    # Check convergence detection based on ewa batch inertia or on
    # small center change.
    X, _, centers = make_blobs(centers=3, random_state=0, return_centers=True)

    km = MiniBatchKMeans(
        n_clusters=3,
        init=centers,
        batch_size=20,
        tol=tol,
        random_state=0,
        max_iter=10,
        n_init=1,
        verbose=1,
        max_no_improvement=max_no_improvement,
    )

    km.fit(X)
    assert 1 < km.n_iter_ < 10

    captured = capsys.readouterr()
    if max_no_improvement is None:
        assert "Converged (small centers change)" in captured.out
    if tol == 0:
        assert "Converged (lack of improvement in inertia)" in captured.out


def test_minibatch_iter_steps():
    # Check consistency of n_iter_ and n_steps_ attributes.
    batch_size = 30
    n_samples = X.shape[0]
    km = MiniBatchKMeans(n_clusters=3, batch_size=batch_size, random_state=0).fit(X)

    # n_iter_ is the number of started epochs
    assert km.n_iter_ == np.ceil((km.n_steps_ * batch_size) / n_samples)
    assert isinstance(km.n_iter_, int)

    # without stopping condition, max_iter should be reached
    km = MiniBatchKMeans(
        n_clusters=3,
        batch_size=batch_size,
        random_state=0,
        tol=0,
        max_no_improvement=None,
        max_iter=10,
    ).fit(X)

    assert km.n_iter_ == 10
    assert km.n_steps_ == (10 * n_samples) // batch_size
    assert isinstance(km.n_steps_, int)


def test_kmeans_copyx():
    # Check that copy_x=False returns nearly equal X after de-centering.
    my_X = X.copy()
    km = KMeans(copy_x=False, n_clusters=n_clusters, random_state=42)
    km.fit(my_X)
    _check_fitted_model(km)

    # check that my_X is de-centered
    assert_allclose(my_X, X)


@pytest.mark.parametrize("Estimator", [KMeans, MiniBatchKMeans])
def test_score_max_iter(Estimator, global_random_seed):
    # Check that fitting KMeans or MiniBatchKMeans with more iterations gives
    # better score
    X = np.random.RandomState(global_random_seed).randn(100, 10)

    km1 = Estimator(n_init=1, random_state=global_random_seed, max_iter=1)
    s1 = km1.fit(X).score(X)
    km2 = Estimator(n_init=1, random_state=global_random_seed, max_iter=10)
    s2 = km2.fit(X).score(X)
    assert s2 > s1


@pytest.mark.parametrize("array_constr", data_containers, ids=data_containers_ids)
@pytest.mark.parametrize(
    "Estimator, algorithm",
    [(KMeans, "lloyd"), (KMeans, "elkan"), (MiniBatchKMeans, None)],
)
@pytest.mark.parametrize("max_iter", [2, 100])
def test_kmeans_predict(
    Estimator, algorithm, array_constr, max_iter, global_dtype, global_random_seed
):
    # Check the predict method and the equivalence between fit.predict and
    # fit_predict.
    X, _ = make_blobs(
        n_samples=200, n_features=10, centers=10, random_state=global_random_seed
    )
    X = array_constr(X, dtype=global_dtype)

    km = Estimator(
        n_clusters=10,
        init="random",
        n_init=10,
        max_iter=max_iter,
        random_state=global_random_seed,
    )
    if algorithm is not None:
        km.set_params(algorithm=algorithm)
    km.fit(X)
    labels = km.labels_

    # re-predict labels for training set using predict
    pred = km.predict(X)
    assert_array_equal(pred, labels)

    # re-predict labels for training set using fit_predict
    pred = km.fit_predict(X)
    assert_array_equal(pred, labels)

    # predict centroid labels
    pred = km.predict(km.cluster_centers_)
    assert_array_equal(pred, np.arange(10))


@pytest.mark.parametrize("X_csr", X_as_any_csr)
@pytest.mark.parametrize("Estimator", [KMeans, MiniBatchKMeans])
def test_dense_sparse(Estimator, X_csr, global_random_seed):
    # Check that the results are the same for dense and sparse input.
    sample_weight = np.random.RandomState(global_random_seed).random_sample(
        (n_samples,)
    )
    km_dense = Estimator(
        n_clusters=n_clusters, random_state=global_random_seed, n_init=1
    )
    km_dense.fit(X, sample_weight=sample_weight)
    km_sparse = Estimator(
        n_clusters=n_clusters, random_state=global_random_seed, n_init=1
    )
    km_sparse.fit(X_csr, sample_weight=sample_weight)

    assert_array_equal(km_dense.labels_, km_sparse.labels_)
    assert_allclose(km_dense.cluster_centers_, km_sparse.cluster_centers_)


@pytest.mark.parametrize("X_csr", X_as_any_csr)
@pytest.mark.parametrize(
    "init", ["random", "k-means++", centers], ids=["random", "k-means++", "ndarray"]
)
@pytest.mark.parametrize("Estimator", [KMeans, MiniBatchKMeans])
def test_predict_dense_sparse(Estimator, init, X_csr):
    # check that models trained on sparse input also works for dense input at
    # predict time and vice versa.
    n_init = 10 if isinstance(init, str) else 1
    km = Estimator(n_clusters=n_clusters, init=init, n_init=n_init, random_state=0)

    km.fit(X_csr)
    assert_array_equal(km.predict(X), km.labels_)

    km.fit(X)
    assert_array_equal(km.predict(X_csr), km.labels_)


@pytest.mark.parametrize("array_constr", data_containers, ids=data_containers_ids)
@pytest.mark.parametrize("dtype", [np.int32, np.int64])
@pytest.mark.parametrize("init", ["k-means++", "ndarray"])
@pytest.mark.parametrize("Estimator", [KMeans, MiniBatchKMeans])
def test_integer_input(Estimator, array_constr, dtype, init, global_random_seed):
    # Check that KMeans and MiniBatchKMeans work with integer input.
    X_dense = np.array([[0, 0], [10, 10], [12, 9], [-1, 1], [2, 0], [8, 10]])
    X = array_constr(X_dense, dtype=dtype)

    n_init = 1 if init == "ndarray" else 10
    init = X_dense[:2] if init == "ndarray" else init

    km = Estimator(
        n_clusters=2, init=init, n_init=n_init, random_state=global_random_seed
    )
    if Estimator is MiniBatchKMeans:
        km.set_params(batch_size=2)

    km.fit(X)

    # Internally integer input should be converted to float64
    assert km.cluster_centers_.dtype == np.float64

    expected_labels = [0, 1, 1, 0, 0, 1]
    assert_allclose(v_measure_score(km.labels_, expected_labels), 1.0)

    # Same with partial_fit (#14314)
    if Estimator is MiniBatchKMeans:
        km = clone(km).partial_fit(X)
        assert km.cluster_centers_.dtype == np.float64


@pytest.mark.parametrize("Estimator", [KMeans, MiniBatchKMeans])
def test_transform(Estimator, global_random_seed):
    # Check the transform method
    km = Estimator(n_clusters=n_clusters, random_state=global_random_seed).fit(X)

    # Transorfming cluster_centers_ should return the pairwise distances
    # between centers
    Xt = km.transform(km.cluster_centers_)
    assert_allclose(Xt, pairwise_distances(km.cluster_centers_))
    # In particular, diagonal must be 0
    assert_array_equal(Xt.diagonal(), np.zeros(n_clusters))

    # Transorfming X should return the pairwise distances between X and the
    # centers
    Xt = km.transform(X)
    assert_allclose(Xt, pairwise_distances(X, km.cluster_centers_))


@pytest.mark.parametrize("Estimator", [KMeans, MiniBatchKMeans])
def test_fit_transform(Estimator, global_random_seed):
    # Check equivalence between fit.transform and fit_transform
    X1 = Estimator(random_state=global_random_seed, n_init=1).fit(X).transform(X)
    X2 = Estimator(random_state=global_random_seed, n_init=1).fit_transform(X)
    assert_allclose(X1, X2)


def test_n_init(global_random_seed):
    # Check that increasing the number of init increases the quality
    previous_inertia = np.inf
    for n_init in [1, 5, 10]:
        # set max_iter=1 to avoid finding the global minimum and get the same
        # inertia each time
        km = KMeans(
            n_clusters=n_clusters,
            init="random",
            n_init=n_init,
            random_state=global_random_seed,
            max_iter=1,
        ).fit(X)
        assert km.inertia_ <= previous_inertia


def test_k_means_function(global_random_seed):
    # test calling the k_means function directly
    cluster_centers, labels, inertia = k_means(
        X, n_clusters=n_clusters, sample_weight=None, random_state=global_random_seed
    )

    assert cluster_centers.shape == (n_clusters, n_features)
    assert np.unique(labels).shape[0] == n_clusters

    # check that the labels assignment are perfect (up to a permutation)
    assert_allclose(v_measure_score(true_labels, labels), 1.0)
    assert inertia > 0.0


@pytest.mark.parametrize(
    "input_data",
    [X] + X_as_any_csr,
    ids=data_containers_ids,
)
@pytest.mark.parametrize("Estimator", [KMeans, MiniBatchKMeans])
def test_float_precision(Estimator, input_data, global_random_seed):
    # Check that the results are the same for single and double precision.
    km = Estimator(n_init=1, random_state=global_random_seed)

    inertia = {}
    Xt = {}
    centers = {}
    labels = {}

    for dtype in [np.float64, np.float32]:
        X = input_data.astype(dtype, copy=False)
        km.fit(X)

        inertia[dtype] = km.inertia_
        Xt[dtype] = km.transform(X)
        centers[dtype] = km.cluster_centers_
        labels[dtype] = km.labels_

        # dtype of cluster centers has to be the dtype of the input data
        assert km.cluster_centers_.dtype == dtype

        # same with partial_fit
        if Estimator is MiniBatchKMeans:
            km.partial_fit(X[0:3])
            assert km.cluster_centers_.dtype == dtype

    # compare arrays with low precision since the difference between 32 and
    # 64 bit comes from an accumulation of rounding errors.
    assert_allclose(inertia[np.float32], inertia[np.float64], rtol=1e-4)
    assert_allclose(Xt[np.float32], Xt[np.float64], atol=Xt[np.float64].max() * 1e-4)
    assert_allclose(
        centers[np.float32], centers[np.float64], atol=centers[np.float64].max() * 1e-4
    )
    assert_array_equal(labels[np.float32], labels[np.float64])


@pytest.mark.parametrize("dtype", [np.int32, np.int64, np.float32, np.float64])
@pytest.mark.parametrize("Estimator", [KMeans, MiniBatchKMeans])
def test_centers_not_mutated(Estimator, dtype):
    # Check that KMeans and MiniBatchKMeans won't mutate the user provided
    # init centers silently even if input data and init centers have the same
    # type.
    X_new_type = X.astype(dtype, copy=False)
    centers_new_type = centers.astype(dtype, copy=False)

    km = Estimator(init=centers_new_type, n_clusters=n_clusters, n_init=1)
    km.fit(X_new_type)

    assert not np.may_share_memory(km.cluster_centers_, centers_new_type)


@pytest.mark.parametrize(
    "input_data",
    [X] + X_as_any_csr,
    ids=data_containers_ids,
)
def test_kmeans_init_fitted_centers(input_data):
    # Check that starting fitting from a local optimum shouldn't change the
    # solution
    km1 = KMeans(n_clusters=n_clusters).fit(input_data)
    km2 = KMeans(n_clusters=n_clusters, init=km1.cluster_centers_, n_init=1).fit(
        input_data
    )

    assert_allclose(km1.cluster_centers_, km2.cluster_centers_)


def test_kmeans_warns_less_centers_than_unique_points(global_random_seed):
    # Check KMeans when the number of found clusters is smaller than expected
    X = np.asarray([[0, 0], [0, 1], [1, 0], [1, 0]])  # last point is duplicated
    km = KMeans(n_clusters=4, random_state=global_random_seed)

    # KMeans should warn that fewer labels than cluster centers have been used
    msg = (
        r"Number of distinct clusters \(3\) found smaller than "
        r"n_clusters \(4\). Possibly due to duplicate points in X."
    )
    with pytest.warns(ConvergenceWarning, match=msg):
        km.fit(X)
        # only three distinct points, so only three clusters
        # can have points assigned to them
        assert set(km.labels_) == set(range(3))


def _sort_centers(centers):
    return np.sort(centers, axis=0)


def test_weighted_vs_repeated(global_random_seed):
    # Check that a sample weight of N should yield the same result as an N-fold
    # repetition of the sample. Valid only if init is precomputed, otherwise
    # rng produces different results. Not valid for MinibatchKMeans due to rng
    # to extract minibatches.
    sample_weight = np.random.RandomState(global_random_seed).randint(
        1, 5, size=n_samples
    )
    X_repeat = np.repeat(X, sample_weight, axis=0)

    km = KMeans(
        init=centers, n_init=1, n_clusters=n_clusters, random_state=global_random_seed
    )

    km_weighted = clone(km).fit(X, sample_weight=sample_weight)
    repeated_labels = np.repeat(km_weighted.labels_, sample_weight)
    km_repeated = clone(km).fit(X_repeat)

    assert_array_equal(km_repeated.labels_, repeated_labels)
    assert_allclose(km_weighted.inertia_, km_repeated.inertia_)
    assert_allclose(
        _sort_centers(km_weighted.cluster_centers_),
        _sort_centers(km_repeated.cluster_centers_),
    )


@pytest.mark.parametrize(
    "input_data",
    [X] + X_as_any_csr,
    ids=data_containers_ids,
)
@pytest.mark.parametrize("Estimator", [KMeans, MiniBatchKMeans])
def test_unit_weights_vs_no_weights(Estimator, input_data, global_random_seed):
    # Check that not passing sample weights should be equivalent to passing
    # sample weights all equal to one.
    sample_weight = np.ones(n_samples)

    km = Estimator(n_clusters=n_clusters, random_state=global_random_seed, n_init=1)
    km_none = clone(km).fit(input_data, sample_weight=None)
    km_ones = clone(km).fit(input_data, sample_weight=sample_weight)

    assert_array_equal(km_none.labels_, km_ones.labels_)
    assert_allclose(km_none.cluster_centers_, km_ones.cluster_centers_)


@pytest.mark.parametrize(
    "input_data",
    [X] + X_as_any_csr,
    ids=data_containers_ids,
)
@pytest.mark.parametrize("Estimator", [KMeans, MiniBatchKMeans])
def test_scaled_weights(Estimator, input_data, global_random_seed):
    # Check that scaling all sample weights by a common factor
    # shouldn't change the result
    sample_weight = np.random.RandomState(global_random_seed).uniform(size=n_samples)

    km = Estimator(n_clusters=n_clusters, random_state=global_random_seed, n_init=1)
    km_orig = clone(km).fit(input_data, sample_weight=sample_weight)
    km_scaled = clone(km).fit(input_data, sample_weight=0.5 * sample_weight)

    assert_array_equal(km_orig.labels_, km_scaled.labels_)
    assert_allclose(km_orig.cluster_centers_, km_scaled.cluster_centers_)


def test_kmeans_elkan_iter_attribute():
    # Regression test on bad n_iter_ value. Previous bug n_iter_ was one off
    # it's right value (#11340).
    km = KMeans(algorithm="elkan", max_iter=1).fit(X)
    assert km.n_iter_ == 1


@pytest.mark.parametrize("array_constr", data_containers, ids=data_containers_ids)
def test_kmeans_empty_cluster_relocated(array_constr):
    # check that empty clusters are correctly relocated when using sample
    # weights (#13486)
    X = array_constr([[-1], [1]])
    sample_weight = [1.9, 0.1]
    init = np.array([[-1], [10]])

    km = KMeans(n_clusters=2, init=init, n_init=1)
    km.fit(X, sample_weight=sample_weight)

    assert len(set(km.labels_)) == 2
    assert_allclose(km.cluster_centers_, [[-1], [1]])


@pytest.mark.parametrize("Estimator", [KMeans, MiniBatchKMeans])
def test_result_equal_in_diff_n_threads(Estimator, global_random_seed):
    # Check that KMeans/MiniBatchKMeans give the same results in parallel mode
    # than in sequential mode.
    rnd = np.random.RandomState(global_random_seed)
    X = rnd.normal(size=(50, 10))

    with threadpool_limits(limits=1, user_api="openmp"):
        result_1 = (
            Estimator(n_clusters=n_clusters, random_state=global_random_seed)
            .fit(X)
            .labels_
        )
    with threadpool_limits(limits=2, user_api="openmp"):
        result_2 = (
            Estimator(n_clusters=n_clusters, random_state=global_random_seed)
            .fit(X)
            .labels_
        )
    assert_array_equal(result_1, result_2)


def test_warning_elkan_1_cluster():
    # Check warning messages specific to KMeans
    with pytest.warns(
        RuntimeWarning,
        match="algorithm='elkan' doesn't make sense for a single cluster",
    ):
        KMeans(n_clusters=1, algorithm="elkan").fit(X)


@pytest.mark.parametrize("array_constr", data_containers, ids=data_containers_ids)
@pytest.mark.parametrize("algo", ["lloyd", "elkan"])
def test_k_means_1_iteration(array_constr, algo, global_random_seed):
    # check the results after a single iteration (E-step M-step E-step) by
    # comparing against a pure python implementation.
    X = np.random.RandomState(global_random_seed).uniform(size=(100, 5))
    init_centers = X[:5]
    X = array_constr(X)

    def py_kmeans(X, init):
        new_centers = init.copy()
        labels = pairwise_distances_argmin(X, init)
        for label in range(init.shape[0]):
            new_centers[label] = X[labels == label].mean(axis=0)
        labels = pairwise_distances_argmin(X, new_centers)
        return labels, new_centers

    py_labels, py_centers = py_kmeans(X, init_centers)

    cy_kmeans = KMeans(
        n_clusters=5, n_init=1, init=init_centers, algorithm=algo, max_iter=1
    ).fit(X)
    cy_labels = cy_kmeans.labels_
    cy_centers = cy_kmeans.cluster_centers_

    assert_array_equal(py_labels, cy_labels)
    assert_allclose(py_centers, cy_centers)


@pytest.mark.parametrize("dtype", [np.float32, np.float64])
@pytest.mark.parametrize("squared", [True, False])
def test_euclidean_distance(dtype, squared, global_random_seed):
    # Check that the _euclidean_(dense/sparse)_dense helpers produce correct
    # results
    rng = np.random.RandomState(global_random_seed)
    a_sparse = sp.random(
        1, 100, density=0.5, format="csr", random_state=rng, dtype=dtype
    )
    a_dense = a_sparse.toarray().reshape(-1)
    b = rng.randn(100).astype(dtype, copy=False)
    b_squared_norm = (b**2).sum()

    expected = ((a_dense - b) ** 2).sum()
    expected = expected if squared else np.sqrt(expected)

    distance_dense_dense = _euclidean_dense_dense_wrapper(a_dense, b, squared)
    distance_sparse_dense = _euclidean_sparse_dense_wrapper(
        a_sparse.data, a_sparse.indices, b, b_squared_norm, squared
    )

    rtol = 1e-4 if dtype == np.float32 else 1e-7
    assert_allclose(distance_dense_dense, distance_sparse_dense, rtol=rtol)
    assert_allclose(distance_dense_dense, expected, rtol=rtol)
    assert_allclose(distance_sparse_dense, expected, rtol=rtol)


@pytest.mark.parametrize("dtype", [np.float32, np.float64])
def test_inertia(dtype, global_random_seed):
    # Check that the _inertia_(dense/sparse) helpers produce correct results.
    rng = np.random.RandomState(global_random_seed)
    X_sparse = sp.random(
        100, 10, density=0.5, format="csr", random_state=rng, dtype=dtype
    )
    X_dense = X_sparse.toarray()
    sample_weight = rng.randn(100).astype(dtype, copy=False)
    centers = rng.randn(5, 10).astype(dtype, copy=False)
    labels = rng.randint(5, size=100, dtype=np.int32)

    distances = ((X_dense - centers[labels]) ** 2).sum(axis=1)
    expected = np.sum(distances * sample_weight)

    inertia_dense = _inertia_dense(X_dense, sample_weight, centers, labels, n_threads=1)
    inertia_sparse = _inertia_sparse(
        X_sparse, sample_weight, centers, labels, n_threads=1
    )

    rtol = 1e-4 if dtype == np.float32 else 1e-6
    assert_allclose(inertia_dense, inertia_sparse, rtol=rtol)
    assert_allclose(inertia_dense, expected, rtol=rtol)
    assert_allclose(inertia_sparse, expected, rtol=rtol)

    # Check the single_label parameter.
    label = 1
    mask = labels == label
    distances = ((X_dense[mask] - centers[label]) ** 2).sum(axis=1)
    expected = np.sum(distances * sample_weight[mask])

    inertia_dense = _inertia_dense(
        X_dense, sample_weight, centers, labels, n_threads=1, single_label=label
    )
    inertia_sparse = _inertia_sparse(
        X_sparse, sample_weight, centers, labels, n_threads=1, single_label=label
    )

    assert_allclose(inertia_dense, inertia_sparse, rtol=rtol)
    assert_allclose(inertia_dense, expected, rtol=rtol)
    assert_allclose(inertia_sparse, expected, rtol=rtol)


@pytest.mark.parametrize("Klass, default_n_init", [(KMeans, 10), (MiniBatchKMeans, 3)])
def test_n_init_auto(Klass, default_n_init):
    est = Klass(n_init="auto", init="k-means++")
    est.fit(X)
    assert est._n_init == 1

    est = Klass(n_init="auto", init="random")
    est.fit(X)
    assert est._n_init == 10 if Klass.__name__ == "KMeans" else 3


@pytest.mark.parametrize("Estimator", [KMeans, MiniBatchKMeans])
def test_sample_weight_unchanged(Estimator):
    # Check that sample_weight is not modified in place by KMeans (#17204)
    X = np.array([[1], [2], [4]])
    sample_weight = np.array([0.5, 0.2, 0.3])
    Estimator(n_clusters=2, random_state=0).fit(X, sample_weight=sample_weight)

    assert_array_equal(sample_weight, np.array([0.5, 0.2, 0.3]))


@pytest.mark.parametrize("Estimator", [KMeans, MiniBatchKMeans])
@pytest.mark.parametrize(
    "param, match",
    [
        ({"n_clusters": n_samples + 1}, r"n_samples.* should be >= n_clusters"),
        (
            {"init": X[:2]},
            r"The shape of the initial centers .* does not match "
            r"the number of clusters",
        ),
        (
            {"init": lambda X_, k, random_state: X_[:2]},
            r"The shape of the initial centers .* does not match "
            r"the number of clusters",
        ),
        (
            {"init": X[:8, :2]},
            r"The shape of the initial centers .* does not match "
            r"the number of features of the data",
        ),
        (
            {"init": lambda X_, k, random_state: X_[:8, :2]},
            r"The shape of the initial centers .* does not match "
            r"the number of features of the data",
        ),
    ],
)
def test_wrong_params(Estimator, param, match):
    # Check that error are raised with clear error message when wrong values
    # are passed for the parameters
    # Set n_init=1 by default to avoid warning with precomputed init
    km = Estimator(n_init=1)
    with pytest.raises(ValueError, match=match):
        km.set_params(**param).fit(X)


@pytest.mark.parametrize(
    "param, match",
    [
        (
            {"x_squared_norms": X[:2]},
            r"The length of x_squared_norms .* should "
            r"be equal to the length of n_samples",
        ),
    ],
)
def test_kmeans_plusplus_wrong_params(param, match):
    with pytest.raises(ValueError, match=match):
        kmeans_plusplus(X, n_clusters, **param)


@pytest.mark.parametrize(
    "input_data",
    [X] + X_as_any_csr,
)
@pytest.mark.parametrize("dtype", [np.float64, np.float32])
def test_kmeans_plusplus_output(input_data, dtype, global_random_seed):
    # Check for the correct number of seeds and all positive values
    data = input_data.astype(dtype)
    centers, indices = kmeans_plusplus(
        data, n_clusters, random_state=global_random_seed
    )

    # Check there are the correct number of indices and that all indices are
    # positive and within the number of samples
    assert indices.shape[0] == n_clusters
    assert (indices >= 0).all()
    assert (indices <= data.shape[0]).all()

    # Check for the correct number of seeds and that they are bound by the data
    assert centers.shape[0] == n_clusters
    assert (centers.max(axis=0) <= data.max(axis=0)).all()
    assert (centers.min(axis=0) >= data.min(axis=0)).all()

    # Check that indices correspond to reported centers
    # Use X for comparison rather than data, test still works against centers
    # calculated with sparse data.
    assert_allclose(X[indices].astype(dtype), centers)


@pytest.mark.parametrize("x_squared_norms", [row_norms(X, squared=True), None])
def test_kmeans_plusplus_norms(x_squared_norms):
    # Check that defining x_squared_norms returns the same as default=None.
    centers, indices = kmeans_plusplus(X, n_clusters, x_squared_norms=x_squared_norms)

    assert_allclose(X[indices], centers)


def test_kmeans_plusplus_dataorder(global_random_seed):
    # Check that memory layout does not effect result
    centers_c, _ = kmeans_plusplus(X, n_clusters, random_state=global_random_seed)

    X_fortran = np.asfortranarray(X)

    centers_fortran, _ = kmeans_plusplus(
        X_fortran, n_clusters, random_state=global_random_seed
    )

    assert_allclose(centers_c, centers_fortran)


def test_is_same_clustering():
    # Sanity check for the _is_same_clustering utility function
    labels1 = np.array([1, 0, 0, 1, 2, 0, 2, 1], dtype=np.int32)
    assert _is_same_clustering(labels1, labels1, 3)

    # these other labels represent the same clustering since we can retrieve the first
    # labels by simply renaming the labels: 0 -> 1, 1 -> 2, 2 -> 0.
    labels2 = np.array([0, 2, 2, 0, 1, 2, 1, 0], dtype=np.int32)
    assert _is_same_clustering(labels1, labels2, 3)

    # these other labels do not represent the same clustering since not all ones are
    # mapped to a same value
    labels3 = np.array([1, 0, 0, 2, 2, 0, 2, 1], dtype=np.int32)
    assert not _is_same_clustering(labels1, labels3, 3)


@pytest.mark.parametrize(
    "kwargs", ({"init": np.str_("k-means++")}, {"init": [[0, 0], [1, 1]], "n_init": 1})
)
def test_kmeans_with_array_like_or_np_scalar_init(kwargs):
    """Check that init works with numpy scalar strings.

    Non-regression test for #21964.
    """
    X = np.asarray([[0, 0], [0.5, 0], [0.5, 1], [1, 1]], dtype=np.float64)

    clustering = KMeans(n_clusters=2, **kwargs)
    # Does not raise
    clustering.fit(X)


@pytest.mark.parametrize(
    "Klass, method",
    [(KMeans, "fit"), (MiniBatchKMeans, "fit"), (MiniBatchKMeans, "partial_fit")],
)
def test_feature_names_out(Klass, method):
    """Check `feature_names_out` for `KMeans` and `MiniBatchKMeans`."""
    class_name = Klass.__name__.lower()
    kmeans = Klass()
    getattr(kmeans, method)(X)
    n_clusters = kmeans.cluster_centers_.shape[0]

    names_out = kmeans.get_feature_names_out()
    assert_array_equal([f"{class_name}{i}" for i in range(n_clusters)], names_out)


@pytest.mark.parametrize("csr_container", CSR_CONTAINERS + [None])
def test_predict_does_not_change_cluster_centers(csr_container):
    """Check that predict does not change cluster centers.

    Non-regression test for gh-24253.
    """
    X, _ = make_blobs(n_samples=200, n_features=10, centers=10, random_state=0)
    if csr_container is not None:
        X = csr_container(X)

    kmeans = KMeans()
    y_pred1 = kmeans.fit_predict(X)
    # Make cluster_centers readonly
    kmeans.cluster_centers_ = create_memmap_backed_data(kmeans.cluster_centers_)
    kmeans.labels_ = create_memmap_backed_data(kmeans.labels_)

    y_pred2 = kmeans.predict(X)
    assert_array_equal(y_pred1, y_pred2)


@pytest.mark.parametrize("init", ["k-means++", "random"])
def test_sample_weight_init(init, global_random_seed):
    """Check that sample weight is used during init.

    `_init_centroids` is shared across all classes inheriting from _BaseKMeans so
    it's enough to check for KMeans.
    """
    rng = np.random.RandomState(global_random_seed)
    X, _ = make_blobs(
        n_samples=200, n_features=10, centers=10, random_state=global_random_seed
    )
    x_squared_norms = row_norms(X, squared=True)

    kmeans = KMeans()
    clusters_weighted = kmeans._init_centroids(
        X=X,
        x_squared_norms=x_squared_norms,
        init=init,
        sample_weight=rng.uniform(size=X.shape[0]),
        n_centroids=5,
        random_state=np.random.RandomState(global_random_seed),
    )
    clusters = kmeans._init_centroids(
        X=X,
        x_squared_norms=x_squared_norms,
        init=init,
        sample_weight=np.ones(X.shape[0]),
        n_centroids=5,
        random_state=np.random.RandomState(global_random_seed),
    )
    with pytest.raises(AssertionError):
        assert_allclose(clusters_weighted, clusters)


@pytest.mark.parametrize("init", ["k-means++", "random"])
def test_sample_weight_zero(init, global_random_seed):
    """Check that if sample weight is 0, this sample won't be chosen.

    `_init_centroids` is shared across all classes inheriting from _BaseKMeans so
    it's enough to check for KMeans.
    """
    rng = np.random.RandomState(global_random_seed)
    X, _ = make_blobs(
        n_samples=100, n_features=5, centers=5, random_state=global_random_seed
    )
    sample_weight = rng.uniform(size=X.shape[0])
    sample_weight[::2] = 0
    x_squared_norms = row_norms(X, squared=True)

    kmeans = KMeans()
    clusters_weighted = kmeans._init_centroids(
        X=X,
        x_squared_norms=x_squared_norms,
        init=init,
        sample_weight=sample_weight,
        n_centroids=10,
        random_state=np.random.RandomState(global_random_seed),
    )
    # No center should be one of the 0 sample weight point
    # (i.e. be at a distance=0 from it)
    d = euclidean_distances(X[::2], clusters_weighted)
    assert not np.any(np.isclose(d, 0))


@pytest.mark.parametrize("array_constr", data_containers, ids=data_containers_ids)
@pytest.mark.parametrize("algorithm", ["lloyd", "elkan"])
def test_relocating_with_duplicates(algorithm, array_constr):
    """Check that kmeans stops when there are more centers than non-duplicate samples

    Non-regression test for issue:
    https://github.com/scikit-learn/scikit-learn/issues/28055
    """
    X = np.array([[0, 0], [1, 1], [1, 1], [1, 0], [0, 1]])
    km = KMeans(n_clusters=5, init=X, algorithm=algorithm)

    msg = r"Number of distinct clusters \(4\) found smaller than n_clusters \(5\)"
    with pytest.warns(ConvergenceWarning, match=msg):
        km.fit(array_constr(X))

    assert km.n_iter_ == 1