1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
|
"""California housing dataset.
The original database is available from StatLib
http://lib.stat.cmu.edu/datasets/
The data contains 20,640 observations on 9 variables.
This dataset contains the average house value as target variable
and the following input variables (features): average income,
housing average age, average rooms, average bedrooms, population,
average occupation, latitude, and longitude in that order.
References
----------
Pace, R. Kelley and Ronald Barry, Sparse Spatial Autoregressions,
Statistics and Probability Letters, 33 (1997) 291-297.
"""
# Authors: Peter Prettenhofer
# License: BSD 3 clause
import logging
import tarfile
from os import PathLike, makedirs, remove
from os.path import exists
import joblib
import numpy as np
from ..utils import Bunch
from ..utils._param_validation import validate_params
from . import get_data_home
from ._base import (
RemoteFileMetadata,
_convert_data_dataframe,
_fetch_remote,
_pkl_filepath,
load_descr,
)
# The original data can be found at:
# https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.tgz
ARCHIVE = RemoteFileMetadata(
filename="cal_housing.tgz",
url="https://ndownloader.figshare.com/files/5976036",
checksum="aaa5c9a6afe2225cc2aed2723682ae403280c4a3695a2ddda4ffb5d8215ea681",
)
logger = logging.getLogger(__name__)
@validate_params(
{
"data_home": [str, PathLike, None],
"download_if_missing": ["boolean"],
"return_X_y": ["boolean"],
"as_frame": ["boolean"],
},
prefer_skip_nested_validation=True,
)
def fetch_california_housing(
*, data_home=None, download_if_missing=True, return_X_y=False, as_frame=False
):
"""Load the California housing dataset (regression).
============== ==============
Samples total 20640
Dimensionality 8
Features real
Target real 0.15 - 5.
============== ==============
Read more in the :ref:`User Guide <california_housing_dataset>`.
Parameters
----------
data_home : str or path-like, default=None
Specify another download and cache folder for the datasets. By default
all scikit-learn data is stored in '~/scikit_learn_data' subfolders.
download_if_missing : bool, default=True
If False, raise an OSError if the data is not locally available
instead of trying to download the data from the source site.
return_X_y : bool, default=False
If True, returns ``(data.data, data.target)`` instead of a Bunch
object.
.. versionadded:: 0.20
as_frame : bool, default=False
If True, the data is a pandas DataFrame including columns with
appropriate dtypes (numeric, string or categorical). The target is
a pandas DataFrame or Series depending on the number of target_columns.
.. versionadded:: 0.23
Returns
-------
dataset : :class:`~sklearn.utils.Bunch`
Dictionary-like object, with the following attributes.
data : ndarray, shape (20640, 8)
Each row corresponding to the 8 feature values in order.
If ``as_frame`` is True, ``data`` is a pandas object.
target : numpy array of shape (20640,)
Each value corresponds to the average
house value in units of 100,000.
If ``as_frame`` is True, ``target`` is a pandas object.
feature_names : list of length 8
Array of ordered feature names used in the dataset.
DESCR : str
Description of the California housing dataset.
frame : pandas DataFrame
Only present when `as_frame=True`. DataFrame with ``data`` and
``target``.
.. versionadded:: 0.23
(data, target) : tuple if ``return_X_y`` is True
A tuple of two ndarray. The first containing a 2D array of
shape (n_samples, n_features) with each row representing one
sample and each column representing the features. The second
ndarray of shape (n_samples,) containing the target samples.
.. versionadded:: 0.20
Notes
-----
This dataset consists of 20,640 samples and 9 features.
Examples
--------
>>> from sklearn.datasets import fetch_california_housing
>>> housing = fetch_california_housing()
>>> print(housing.data.shape, housing.target.shape)
(20640, 8) (20640,)
>>> print(housing.feature_names[0:6])
['MedInc', 'HouseAge', 'AveRooms', 'AveBedrms', 'Population', 'AveOccup']
"""
data_home = get_data_home(data_home=data_home)
if not exists(data_home):
makedirs(data_home)
filepath = _pkl_filepath(data_home, "cal_housing.pkz")
if not exists(filepath):
if not download_if_missing:
raise OSError("Data not found and `download_if_missing` is False")
logger.info(
"Downloading Cal. housing from {} to {}".format(ARCHIVE.url, data_home)
)
archive_path = _fetch_remote(ARCHIVE, dirname=data_home)
with tarfile.open(mode="r:gz", name=archive_path) as f:
cal_housing = np.loadtxt(
f.extractfile("CaliforniaHousing/cal_housing.data"), delimiter=","
)
# Columns are not in the same order compared to the previous
# URL resource on lib.stat.cmu.edu
columns_index = [8, 7, 2, 3, 4, 5, 6, 1, 0]
cal_housing = cal_housing[:, columns_index]
joblib.dump(cal_housing, filepath, compress=6)
remove(archive_path)
else:
cal_housing = joblib.load(filepath)
feature_names = [
"MedInc",
"HouseAge",
"AveRooms",
"AveBedrms",
"Population",
"AveOccup",
"Latitude",
"Longitude",
]
target, data = cal_housing[:, 0], cal_housing[:, 1:]
# avg rooms = total rooms / households
data[:, 2] /= data[:, 5]
# avg bed rooms = total bed rooms / households
data[:, 3] /= data[:, 5]
# avg occupancy = population / households
data[:, 5] = data[:, 4] / data[:, 5]
# target in units of 100,000
target = target / 100000.0
descr = load_descr("california_housing.rst")
X = data
y = target
frame = None
target_names = [
"MedHouseVal",
]
if as_frame:
frame, X, y = _convert_data_dataframe(
"fetch_california_housing", data, target, feature_names, target_names
)
if return_X_y:
return X, y
return Bunch(
data=X,
target=y,
frame=frame,
target_names=target_names,
feature_names=feature_names,
DESCR=descr,
)
|