File: _california_housing.py

package info (click to toggle)
scikit-learn 1.4.2%2Bdfsg-8
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 25,036 kB
  • sloc: python: 201,105; cpp: 5,790; ansic: 854; makefile: 304; sh: 56; javascript: 20
file content (223 lines) | stat: -rw-r--r-- 6,707 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
"""California housing dataset.

The original database is available from StatLib

    http://lib.stat.cmu.edu/datasets/

The data contains 20,640 observations on 9 variables.

This dataset contains the average house value as target variable
and the following input variables (features): average income,
housing average age, average rooms, average bedrooms, population,
average occupation, latitude, and longitude in that order.

References
----------

Pace, R. Kelley and Ronald Barry, Sparse Spatial Autoregressions,
Statistics and Probability Letters, 33 (1997) 291-297.

"""
# Authors: Peter Prettenhofer
# License: BSD 3 clause

import logging
import tarfile
from os import PathLike, makedirs, remove
from os.path import exists

import joblib
import numpy as np

from ..utils import Bunch
from ..utils._param_validation import validate_params
from . import get_data_home
from ._base import (
    RemoteFileMetadata,
    _convert_data_dataframe,
    _fetch_remote,
    _pkl_filepath,
    load_descr,
)

# The original data can be found at:
# https://www.dcc.fc.up.pt/~ltorgo/Regression/cal_housing.tgz
ARCHIVE = RemoteFileMetadata(
    filename="cal_housing.tgz",
    url="https://ndownloader.figshare.com/files/5976036",
    checksum="aaa5c9a6afe2225cc2aed2723682ae403280c4a3695a2ddda4ffb5d8215ea681",
)

logger = logging.getLogger(__name__)


@validate_params(
    {
        "data_home": [str, PathLike, None],
        "download_if_missing": ["boolean"],
        "return_X_y": ["boolean"],
        "as_frame": ["boolean"],
    },
    prefer_skip_nested_validation=True,
)
def fetch_california_housing(
    *, data_home=None, download_if_missing=True, return_X_y=False, as_frame=False
):
    """Load the California housing dataset (regression).

    ==============   ==============
    Samples total             20640
    Dimensionality                8
    Features                   real
    Target           real 0.15 - 5.
    ==============   ==============

    Read more in the :ref:`User Guide <california_housing_dataset>`.

    Parameters
    ----------
    data_home : str or path-like, default=None
        Specify another download and cache folder for the datasets. By default
        all scikit-learn data is stored in '~/scikit_learn_data' subfolders.

    download_if_missing : bool, default=True
        If False, raise an OSError if the data is not locally available
        instead of trying to download the data from the source site.

    return_X_y : bool, default=False
        If True, returns ``(data.data, data.target)`` instead of a Bunch
        object.

        .. versionadded:: 0.20

    as_frame : bool, default=False
        If True, the data is a pandas DataFrame including columns with
        appropriate dtypes (numeric, string or categorical). The target is
        a pandas DataFrame or Series depending on the number of target_columns.

        .. versionadded:: 0.23

    Returns
    -------
    dataset : :class:`~sklearn.utils.Bunch`
        Dictionary-like object, with the following attributes.

        data : ndarray, shape (20640, 8)
            Each row corresponding to the 8 feature values in order.
            If ``as_frame`` is True, ``data`` is a pandas object.
        target : numpy array of shape (20640,)
            Each value corresponds to the average
            house value in units of 100,000.
            If ``as_frame`` is True, ``target`` is a pandas object.
        feature_names : list of length 8
            Array of ordered feature names used in the dataset.
        DESCR : str
            Description of the California housing dataset.
        frame : pandas DataFrame
            Only present when `as_frame=True`. DataFrame with ``data`` and
            ``target``.

            .. versionadded:: 0.23

    (data, target) : tuple if ``return_X_y`` is True
        A tuple of two ndarray. The first containing a 2D array of
        shape (n_samples, n_features) with each row representing one
        sample and each column representing the features. The second
        ndarray of shape (n_samples,) containing the target samples.

        .. versionadded:: 0.20

    Notes
    -----

    This dataset consists of 20,640 samples and 9 features.

    Examples
    --------
    >>> from sklearn.datasets import fetch_california_housing
    >>> housing = fetch_california_housing()
    >>> print(housing.data.shape, housing.target.shape)
    (20640, 8) (20640,)
    >>> print(housing.feature_names[0:6])
    ['MedInc', 'HouseAge', 'AveRooms', 'AveBedrms', 'Population', 'AveOccup']
    """
    data_home = get_data_home(data_home=data_home)
    if not exists(data_home):
        makedirs(data_home)

    filepath = _pkl_filepath(data_home, "cal_housing.pkz")
    if not exists(filepath):
        if not download_if_missing:
            raise OSError("Data not found and `download_if_missing` is False")

        logger.info(
            "Downloading Cal. housing from {} to {}".format(ARCHIVE.url, data_home)
        )

        archive_path = _fetch_remote(ARCHIVE, dirname=data_home)

        with tarfile.open(mode="r:gz", name=archive_path) as f:
            cal_housing = np.loadtxt(
                f.extractfile("CaliforniaHousing/cal_housing.data"), delimiter=","
            )
            # Columns are not in the same order compared to the previous
            # URL resource on lib.stat.cmu.edu
            columns_index = [8, 7, 2, 3, 4, 5, 6, 1, 0]
            cal_housing = cal_housing[:, columns_index]

            joblib.dump(cal_housing, filepath, compress=6)
        remove(archive_path)

    else:
        cal_housing = joblib.load(filepath)

    feature_names = [
        "MedInc",
        "HouseAge",
        "AveRooms",
        "AveBedrms",
        "Population",
        "AveOccup",
        "Latitude",
        "Longitude",
    ]

    target, data = cal_housing[:, 0], cal_housing[:, 1:]

    # avg rooms = total rooms / households
    data[:, 2] /= data[:, 5]

    # avg bed rooms = total bed rooms / households
    data[:, 3] /= data[:, 5]

    # avg occupancy = population / households
    data[:, 5] = data[:, 4] / data[:, 5]

    # target in units of 100,000
    target = target / 100000.0

    descr = load_descr("california_housing.rst")

    X = data
    y = target

    frame = None
    target_names = [
        "MedHouseVal",
    ]
    if as_frame:
        frame, X, y = _convert_data_dataframe(
            "fetch_california_housing", data, target, feature_names, target_names
        )

    if return_X_y:
        return X, y

    return Bunch(
        data=X,
        target=y,
        frame=frame,
        target_names=target_names,
        feature_names=feature_names,
        DESCR=descr,
    )