1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
|
"""Forest covertype dataset.
A classic dataset for classification benchmarks, featuring categorical and
real-valued features.
The dataset page is available from UCI Machine Learning Repository
https://archive.ics.uci.edu/ml/datasets/Covertype
Courtesy of Jock A. Blackard and Colorado State University.
"""
# Author: Lars Buitinck
# Peter Prettenhofer <peter.prettenhofer@gmail.com>
# License: BSD 3 clause
import logging
import os
from gzip import GzipFile
from os.path import exists, join
from tempfile import TemporaryDirectory
import joblib
import numpy as np
from ..utils import Bunch, check_random_state
from ..utils._param_validation import validate_params
from . import get_data_home
from ._base import (
RemoteFileMetadata,
_convert_data_dataframe,
_fetch_remote,
_pkl_filepath,
load_descr,
)
# The original data can be found in:
# https://archive.ics.uci.edu/ml/machine-learning-databases/covtype/covtype.data.gz
ARCHIVE = RemoteFileMetadata(
filename="covtype.data.gz",
url="https://ndownloader.figshare.com/files/5976039",
checksum="614360d0257557dd1792834a85a1cdebfadc3c4f30b011d56afee7ffb5b15771",
)
logger = logging.getLogger(__name__)
# Column names reference:
# https://archive.ics.uci.edu/ml/machine-learning-databases/covtype/covtype.info
FEATURE_NAMES = [
"Elevation",
"Aspect",
"Slope",
"Horizontal_Distance_To_Hydrology",
"Vertical_Distance_To_Hydrology",
"Horizontal_Distance_To_Roadways",
"Hillshade_9am",
"Hillshade_Noon",
"Hillshade_3pm",
"Horizontal_Distance_To_Fire_Points",
]
FEATURE_NAMES += [f"Wilderness_Area_{i}" for i in range(4)]
FEATURE_NAMES += [f"Soil_Type_{i}" for i in range(40)]
TARGET_NAMES = ["Cover_Type"]
@validate_params(
{
"data_home": [str, os.PathLike, None],
"download_if_missing": ["boolean"],
"random_state": ["random_state"],
"shuffle": ["boolean"],
"return_X_y": ["boolean"],
"as_frame": ["boolean"],
},
prefer_skip_nested_validation=True,
)
def fetch_covtype(
*,
data_home=None,
download_if_missing=True,
random_state=None,
shuffle=False,
return_X_y=False,
as_frame=False,
):
"""Load the covertype dataset (classification).
Download it if necessary.
================= ============
Classes 7
Samples total 581012
Dimensionality 54
Features int
================= ============
Read more in the :ref:`User Guide <covtype_dataset>`.
Parameters
----------
data_home : str or path-like, default=None
Specify another download and cache folder for the datasets. By default
all scikit-learn data is stored in '~/scikit_learn_data' subfolders.
download_if_missing : bool, default=True
If False, raise an OSError if the data is not locally available
instead of trying to download the data from the source site.
random_state : int, RandomState instance or None, default=None
Determines random number generation for dataset shuffling. Pass an int
for reproducible output across multiple function calls.
See :term:`Glossary <random_state>`.
shuffle : bool, default=False
Whether to shuffle dataset.
return_X_y : bool, default=False
If True, returns ``(data.data, data.target)`` instead of a Bunch
object.
.. versionadded:: 0.20
as_frame : bool, default=False
If True, the data is a pandas DataFrame including columns with
appropriate dtypes (numeric). The target is a pandas DataFrame or
Series depending on the number of target columns. If `return_X_y` is
True, then (`data`, `target`) will be pandas DataFrames or Series as
described below.
.. versionadded:: 0.24
Returns
-------
dataset : :class:`~sklearn.utils.Bunch`
Dictionary-like object, with the following attributes.
data : ndarray of shape (581012, 54)
Each row corresponds to the 54 features in the dataset.
target : ndarray of shape (581012,)
Each value corresponds to one of
the 7 forest covertypes with values
ranging between 1 to 7.
frame : dataframe of shape (581012, 55)
Only present when `as_frame=True`. Contains `data` and `target`.
DESCR : str
Description of the forest covertype dataset.
feature_names : list
The names of the dataset columns.
target_names: list
The names of the target columns.
(data, target) : tuple if ``return_X_y`` is True
A tuple of two ndarray. The first containing a 2D array of
shape (n_samples, n_features) with each row representing one
sample and each column representing the features. The second
ndarray of shape (n_samples,) containing the target samples.
.. versionadded:: 0.20
Examples
--------
>>> from sklearn.datasets import fetch_covtype
>>> cov_type = fetch_covtype()
>>> cov_type.data.shape
(581012, 54)
>>> cov_type.target.shape
(581012,)
>>> # Let's check the 4 first feature names
>>> cov_type.feature_names[:4]
['Elevation', 'Aspect', 'Slope', 'Horizontal_Distance_To_Hydrology']
"""
data_home = get_data_home(data_home=data_home)
covtype_dir = join(data_home, "covertype")
samples_path = _pkl_filepath(covtype_dir, "samples")
targets_path = _pkl_filepath(covtype_dir, "targets")
available = exists(samples_path) and exists(targets_path)
if download_if_missing and not available:
os.makedirs(covtype_dir, exist_ok=True)
# Creating temp_dir as a direct subdirectory of the target directory
# guarantees that both reside on the same filesystem, so that we can use
# os.rename to atomically move the data files to their target location.
with TemporaryDirectory(dir=covtype_dir) as temp_dir:
logger.info(f"Downloading {ARCHIVE.url}")
archive_path = _fetch_remote(ARCHIVE, dirname=temp_dir)
Xy = np.genfromtxt(GzipFile(filename=archive_path), delimiter=",")
X = Xy[:, :-1]
y = Xy[:, -1].astype(np.int32, copy=False)
samples_tmp_path = _pkl_filepath(temp_dir, "samples")
joblib.dump(X, samples_tmp_path, compress=9)
os.rename(samples_tmp_path, samples_path)
targets_tmp_path = _pkl_filepath(temp_dir, "targets")
joblib.dump(y, targets_tmp_path, compress=9)
os.rename(targets_tmp_path, targets_path)
elif not available and not download_if_missing:
raise OSError("Data not found and `download_if_missing` is False")
try:
X, y
except NameError:
X = joblib.load(samples_path)
y = joblib.load(targets_path)
if shuffle:
ind = np.arange(X.shape[0])
rng = check_random_state(random_state)
rng.shuffle(ind)
X = X[ind]
y = y[ind]
fdescr = load_descr("covtype.rst")
frame = None
if as_frame:
frame, X, y = _convert_data_dataframe(
caller_name="fetch_covtype",
data=X,
target=y,
feature_names=FEATURE_NAMES,
target_names=TARGET_NAMES,
)
if return_X_y:
return X, y
return Bunch(
data=X,
target=y,
frame=frame,
target_names=TARGET_NAMES,
feature_names=FEATURE_NAMES,
DESCR=fdescr,
)
|