1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
|
import re
from collections import defaultdict
from functools import partial
import numpy as np
import pytest
import scipy.sparse as sp
from sklearn.datasets import (
make_biclusters,
make_blobs,
make_checkerboard,
make_circles,
make_classification,
make_friedman1,
make_friedman2,
make_friedman3,
make_hastie_10_2,
make_low_rank_matrix,
make_moons,
make_multilabel_classification,
make_regression,
make_s_curve,
make_sparse_coded_signal,
make_sparse_spd_matrix,
make_sparse_uncorrelated,
make_spd_matrix,
make_swiss_roll,
)
from sklearn.utils._testing import (
assert_allclose,
assert_allclose_dense_sparse,
assert_almost_equal,
assert_array_almost_equal,
assert_array_equal,
ignore_warnings,
)
from sklearn.utils.validation import assert_all_finite
def test_make_classification():
weights = [0.1, 0.25]
X, y = make_classification(
n_samples=100,
n_features=20,
n_informative=5,
n_redundant=1,
n_repeated=1,
n_classes=3,
n_clusters_per_class=1,
hypercube=False,
shift=None,
scale=None,
weights=weights,
random_state=0,
)
assert weights == [0.1, 0.25]
assert X.shape == (100, 20), "X shape mismatch"
assert y.shape == (100,), "y shape mismatch"
assert np.unique(y).shape == (3,), "Unexpected number of classes"
assert sum(y == 0) == 10, "Unexpected number of samples in class #0"
assert sum(y == 1) == 25, "Unexpected number of samples in class #1"
assert sum(y == 2) == 65, "Unexpected number of samples in class #2"
# Test for n_features > 30
X, y = make_classification(
n_samples=2000,
n_features=31,
n_informative=31,
n_redundant=0,
n_repeated=0,
hypercube=True,
scale=0.5,
random_state=0,
)
assert X.shape == (2000, 31), "X shape mismatch"
assert y.shape == (2000,), "y shape mismatch"
assert (
np.unique(X.view([("", X.dtype)] * X.shape[1]))
.view(X.dtype)
.reshape(-1, X.shape[1])
.shape[0]
== 2000
), "Unexpected number of unique rows"
def test_make_classification_informative_features():
"""Test the construction of informative features in make_classification
Also tests `n_clusters_per_class`, `n_classes`, `hypercube` and
fully-specified `weights`.
"""
# Create very separate clusters; check that vertices are unique and
# correspond to classes
class_sep = 1e6
make = partial(
make_classification,
class_sep=class_sep,
n_redundant=0,
n_repeated=0,
flip_y=0,
shift=0,
scale=1,
shuffle=False,
)
for n_informative, weights, n_clusters_per_class in [
(2, [1], 1),
(2, [1 / 3] * 3, 1),
(2, [1 / 4] * 4, 1),
(2, [1 / 2] * 2, 2),
(2, [3 / 4, 1 / 4], 2),
(10, [1 / 3] * 3, 10),
(int(64), [1], 1),
]:
n_classes = len(weights)
n_clusters = n_classes * n_clusters_per_class
n_samples = n_clusters * 50
for hypercube in (False, True):
X, y = make(
n_samples=n_samples,
n_classes=n_classes,
weights=weights,
n_features=n_informative,
n_informative=n_informative,
n_clusters_per_class=n_clusters_per_class,
hypercube=hypercube,
random_state=0,
)
assert X.shape == (n_samples, n_informative)
assert y.shape == (n_samples,)
# Cluster by sign, viewed as strings to allow uniquing
signs = np.sign(X)
signs = signs.view(dtype="|S{0}".format(signs.strides[0])).ravel()
unique_signs, cluster_index = np.unique(signs, return_inverse=True)
assert (
len(unique_signs) == n_clusters
), "Wrong number of clusters, or not in distinct quadrants"
clusters_by_class = defaultdict(set)
for cluster, cls in zip(cluster_index, y):
clusters_by_class[cls].add(cluster)
for clusters in clusters_by_class.values():
assert (
len(clusters) == n_clusters_per_class
), "Wrong number of clusters per class"
assert len(clusters_by_class) == n_classes, "Wrong number of classes"
assert_array_almost_equal(
np.bincount(y) / len(y) // weights,
[1] * n_classes,
err_msg="Wrong number of samples per class",
)
# Ensure on vertices of hypercube
for cluster in range(len(unique_signs)):
centroid = X[cluster_index == cluster].mean(axis=0)
if hypercube:
assert_array_almost_equal(
np.abs(centroid) / class_sep,
np.ones(n_informative),
decimal=5,
err_msg="Clusters are not centered on hypercube vertices",
)
else:
with pytest.raises(AssertionError):
assert_array_almost_equal(
np.abs(centroid) / class_sep,
np.ones(n_informative),
decimal=5,
err_msg=(
"Clusters should not be centered on hypercube vertices"
),
)
with pytest.raises(ValueError):
make(n_features=2, n_informative=2, n_classes=5, n_clusters_per_class=1)
with pytest.raises(ValueError):
make(n_features=2, n_informative=2, n_classes=3, n_clusters_per_class=2)
@pytest.mark.parametrize(
"weights, err_type, err_msg",
[
([], ValueError, "Weights specified but incompatible with number of classes."),
(
[0.25, 0.75, 0.1],
ValueError,
"Weights specified but incompatible with number of classes.",
),
(
np.array([]),
ValueError,
"Weights specified but incompatible with number of classes.",
),
(
np.array([0.25, 0.75, 0.1]),
ValueError,
"Weights specified but incompatible with number of classes.",
),
(
np.random.random(3),
ValueError,
"Weights specified but incompatible with number of classes.",
),
],
)
def test_make_classification_weights_type(weights, err_type, err_msg):
with pytest.raises(err_type, match=err_msg):
make_classification(weights=weights)
@pytest.mark.parametrize("kwargs", [{}, {"n_classes": 3, "n_informative": 3}])
def test_make_classification_weights_array_or_list_ok(kwargs):
X1, y1 = make_classification(weights=[0.1, 0.9], random_state=0, **kwargs)
X2, y2 = make_classification(weights=np.array([0.1, 0.9]), random_state=0, **kwargs)
assert_almost_equal(X1, X2)
assert_almost_equal(y1, y2)
def test_make_multilabel_classification_return_sequences():
for allow_unlabeled, min_length in zip((True, False), (0, 1)):
X, Y = make_multilabel_classification(
n_samples=100,
n_features=20,
n_classes=3,
random_state=0,
return_indicator=False,
allow_unlabeled=allow_unlabeled,
)
assert X.shape == (100, 20), "X shape mismatch"
if not allow_unlabeled:
assert max([max(y) for y in Y]) == 2
assert min([len(y) for y in Y]) == min_length
assert max([len(y) for y in Y]) <= 3
def test_make_multilabel_classification_return_indicator():
for allow_unlabeled, min_length in zip((True, False), (0, 1)):
X, Y = make_multilabel_classification(
n_samples=25,
n_features=20,
n_classes=3,
random_state=0,
allow_unlabeled=allow_unlabeled,
)
assert X.shape == (25, 20), "X shape mismatch"
assert Y.shape == (25, 3), "Y shape mismatch"
assert np.all(np.sum(Y, axis=0) > min_length)
# Also test return_distributions and return_indicator with True
X2, Y2, p_c, p_w_c = make_multilabel_classification(
n_samples=25,
n_features=20,
n_classes=3,
random_state=0,
allow_unlabeled=allow_unlabeled,
return_distributions=True,
)
assert_array_almost_equal(X, X2)
assert_array_equal(Y, Y2)
assert p_c.shape == (3,)
assert_almost_equal(p_c.sum(), 1)
assert p_w_c.shape == (20, 3)
assert_almost_equal(p_w_c.sum(axis=0), [1] * 3)
def test_make_multilabel_classification_return_indicator_sparse():
for allow_unlabeled, min_length in zip((True, False), (0, 1)):
X, Y = make_multilabel_classification(
n_samples=25,
n_features=20,
n_classes=3,
random_state=0,
return_indicator="sparse",
allow_unlabeled=allow_unlabeled,
)
assert X.shape == (25, 20), "X shape mismatch"
assert Y.shape == (25, 3), "Y shape mismatch"
assert sp.issparse(Y)
def test_make_hastie_10_2():
X, y = make_hastie_10_2(n_samples=100, random_state=0)
assert X.shape == (100, 10), "X shape mismatch"
assert y.shape == (100,), "y shape mismatch"
assert np.unique(y).shape == (2,), "Unexpected number of classes"
def test_make_regression():
X, y, c = make_regression(
n_samples=100,
n_features=10,
n_informative=3,
effective_rank=5,
coef=True,
bias=0.0,
noise=1.0,
random_state=0,
)
assert X.shape == (100, 10), "X shape mismatch"
assert y.shape == (100,), "y shape mismatch"
assert c.shape == (10,), "coef shape mismatch"
assert sum(c != 0.0) == 3, "Unexpected number of informative features"
# Test that y ~= np.dot(X, c) + bias + N(0, 1.0).
assert_almost_equal(np.std(y - np.dot(X, c)), 1.0, decimal=1)
# Test with small number of features.
X, y = make_regression(n_samples=100, n_features=1) # n_informative=3
assert X.shape == (100, 1)
def test_make_regression_multitarget():
X, y, c = make_regression(
n_samples=100,
n_features=10,
n_informative=3,
n_targets=3,
coef=True,
noise=1.0,
random_state=0,
)
assert X.shape == (100, 10), "X shape mismatch"
assert y.shape == (100, 3), "y shape mismatch"
assert c.shape == (10, 3), "coef shape mismatch"
assert_array_equal(sum(c != 0.0), 3, "Unexpected number of informative features")
# Test that y ~= np.dot(X, c) + bias + N(0, 1.0)
assert_almost_equal(np.std(y - np.dot(X, c)), 1.0, decimal=1)
def test_make_blobs():
cluster_stds = np.array([0.05, 0.2, 0.4])
cluster_centers = np.array([[0.0, 0.0], [1.0, 1.0], [0.0, 1.0]])
X, y = make_blobs(
random_state=0,
n_samples=50,
n_features=2,
centers=cluster_centers,
cluster_std=cluster_stds,
)
assert X.shape == (50, 2), "X shape mismatch"
assert y.shape == (50,), "y shape mismatch"
assert np.unique(y).shape == (3,), "Unexpected number of blobs"
for i, (ctr, std) in enumerate(zip(cluster_centers, cluster_stds)):
assert_almost_equal((X[y == i] - ctr).std(), std, 1, "Unexpected std")
def test_make_blobs_n_samples_list():
n_samples = [50, 30, 20]
X, y = make_blobs(n_samples=n_samples, n_features=2, random_state=0)
assert X.shape == (sum(n_samples), 2), "X shape mismatch"
assert all(
np.bincount(y, minlength=len(n_samples)) == n_samples
), "Incorrect number of samples per blob"
def test_make_blobs_n_samples_list_with_centers():
n_samples = [20, 20, 20]
centers = np.array([[0.0, 0.0], [1.0, 1.0], [0.0, 1.0]])
cluster_stds = np.array([0.05, 0.2, 0.4])
X, y = make_blobs(
n_samples=n_samples, centers=centers, cluster_std=cluster_stds, random_state=0
)
assert X.shape == (sum(n_samples), 2), "X shape mismatch"
assert all(
np.bincount(y, minlength=len(n_samples)) == n_samples
), "Incorrect number of samples per blob"
for i, (ctr, std) in enumerate(zip(centers, cluster_stds)):
assert_almost_equal((X[y == i] - ctr).std(), std, 1, "Unexpected std")
@pytest.mark.parametrize(
"n_samples", [[5, 3, 0], np.array([5, 3, 0]), tuple([5, 3, 0])]
)
def test_make_blobs_n_samples_centers_none(n_samples):
centers = None
X, y = make_blobs(n_samples=n_samples, centers=centers, random_state=0)
assert X.shape == (sum(n_samples), 2), "X shape mismatch"
assert all(
np.bincount(y, minlength=len(n_samples)) == n_samples
), "Incorrect number of samples per blob"
def test_make_blobs_return_centers():
n_samples = [10, 20]
n_features = 3
X, y, centers = make_blobs(
n_samples=n_samples, n_features=n_features, return_centers=True, random_state=0
)
assert centers.shape == (len(n_samples), n_features)
def test_make_blobs_error():
n_samples = [20, 20, 20]
centers = np.array([[0.0, 0.0], [1.0, 1.0], [0.0, 1.0]])
cluster_stds = np.array([0.05, 0.2, 0.4])
wrong_centers_msg = re.escape(
"Length of `n_samples` not consistent with number of centers. "
f"Got n_samples = {n_samples} and centers = {centers[:-1]}"
)
with pytest.raises(ValueError, match=wrong_centers_msg):
make_blobs(n_samples, centers=centers[:-1])
wrong_std_msg = re.escape(
"Length of `clusters_std` not consistent with number of centers. "
f"Got centers = {centers} and cluster_std = {cluster_stds[:-1]}"
)
with pytest.raises(ValueError, match=wrong_std_msg):
make_blobs(n_samples, centers=centers, cluster_std=cluster_stds[:-1])
wrong_type_msg = "Parameter `centers` must be array-like. Got {!r} instead".format(
3
)
with pytest.raises(ValueError, match=wrong_type_msg):
make_blobs(n_samples, centers=3)
def test_make_friedman1():
X, y = make_friedman1(n_samples=5, n_features=10, noise=0.0, random_state=0)
assert X.shape == (5, 10), "X shape mismatch"
assert y.shape == (5,), "y shape mismatch"
assert_array_almost_equal(
y,
10 * np.sin(np.pi * X[:, 0] * X[:, 1])
+ 20 * (X[:, 2] - 0.5) ** 2
+ 10 * X[:, 3]
+ 5 * X[:, 4],
)
def test_make_friedman2():
X, y = make_friedman2(n_samples=5, noise=0.0, random_state=0)
assert X.shape == (5, 4), "X shape mismatch"
assert y.shape == (5,), "y shape mismatch"
assert_array_almost_equal(
y, (X[:, 0] ** 2 + (X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) ** 2) ** 0.5
)
def test_make_friedman3():
X, y = make_friedman3(n_samples=5, noise=0.0, random_state=0)
assert X.shape == (5, 4), "X shape mismatch"
assert y.shape == (5,), "y shape mismatch"
assert_array_almost_equal(
y, np.arctan((X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) / X[:, 0])
)
def test_make_low_rank_matrix():
X = make_low_rank_matrix(
n_samples=50,
n_features=25,
effective_rank=5,
tail_strength=0.01,
random_state=0,
)
assert X.shape == (50, 25), "X shape mismatch"
from numpy.linalg import svd
u, s, v = svd(X)
assert sum(s) - 5 < 0.1, "X rank is not approximately 5"
def test_make_sparse_coded_signal():
Y, D, X = make_sparse_coded_signal(
n_samples=5,
n_components=8,
n_features=10,
n_nonzero_coefs=3,
random_state=0,
)
assert Y.shape == (5, 10), "Y shape mismatch"
assert D.shape == (8, 10), "D shape mismatch"
assert X.shape == (5, 8), "X shape mismatch"
for row in X:
assert len(np.flatnonzero(row)) == 3, "Non-zero coefs mismatch"
assert_allclose(Y, X @ D)
assert_allclose(np.sqrt((D**2).sum(axis=1)), np.ones(D.shape[0]))
# TODO(1.5): remove
@ignore_warnings(category=FutureWarning)
def test_make_sparse_coded_signal_transposed():
Y, D, X = make_sparse_coded_signal(
n_samples=5,
n_components=8,
n_features=10,
n_nonzero_coefs=3,
random_state=0,
data_transposed=True,
)
assert Y.shape == (10, 5), "Y shape mismatch"
assert D.shape == (10, 8), "D shape mismatch"
assert X.shape == (8, 5), "X shape mismatch"
for col in X.T:
assert len(np.flatnonzero(col)) == 3, "Non-zero coefs mismatch"
assert_allclose(Y, D @ X)
assert_allclose(np.sqrt((D**2).sum(axis=0)), np.ones(D.shape[1]))
# TODO(1.5): remove
def test_make_sparse_code_signal_deprecation_warning():
"""Check the message for future deprecation."""
warn_msg = "data_transposed was deprecated in version 1.3"
with pytest.warns(FutureWarning, match=warn_msg):
make_sparse_coded_signal(
n_samples=1,
n_components=1,
n_features=1,
n_nonzero_coefs=1,
random_state=0,
data_transposed=True,
)
def test_make_sparse_uncorrelated():
X, y = make_sparse_uncorrelated(n_samples=5, n_features=10, random_state=0)
assert X.shape == (5, 10), "X shape mismatch"
assert y.shape == (5,), "y shape mismatch"
def test_make_spd_matrix():
X = make_spd_matrix(n_dim=5, random_state=0)
assert X.shape == (5, 5), "X shape mismatch"
assert_array_almost_equal(X, X.T)
from numpy.linalg import eig
eigenvalues, _ = eig(X)
assert np.all(eigenvalues > 0), "X is not positive-definite"
@pytest.mark.parametrize("norm_diag", [True, False])
@pytest.mark.parametrize(
"sparse_format", [None, "bsr", "coo", "csc", "csr", "dia", "dok", "lil"]
)
def test_make_sparse_spd_matrix(norm_diag, sparse_format, global_random_seed):
n_dim = 5
X = make_sparse_spd_matrix(
n_dim=n_dim,
norm_diag=norm_diag,
sparse_format=sparse_format,
random_state=global_random_seed,
)
assert X.shape == (n_dim, n_dim), "X shape mismatch"
if sparse_format is None:
assert not sp.issparse(X)
assert_allclose(X, X.T)
Xarr = X
else:
assert sp.issparse(X) and X.format == sparse_format
assert_allclose_dense_sparse(X, X.T)
Xarr = X.toarray()
from numpy.linalg import eig
# Do not use scipy.sparse.linalg.eigs because it cannot find all eigenvalues
eigenvalues, _ = eig(Xarr)
assert np.all(eigenvalues > 0), "X is not positive-definite"
if norm_diag:
# Check that leading diagonal elements are 1
assert_array_almost_equal(Xarr.diagonal(), np.ones(n_dim))
# TODO(1.6): remove
def test_make_sparse_spd_matrix_deprecation_warning():
"""Check the message for future deprecation."""
warn_msg = "dim was deprecated in version 1.4"
with pytest.warns(FutureWarning, match=warn_msg):
make_sparse_spd_matrix(
dim=1,
)
error_msg = "`dim` and `n_dim` cannot be both specified"
with pytest.raises(ValueError, match=error_msg):
make_sparse_spd_matrix(
dim=1,
n_dim=1,
)
X = make_sparse_spd_matrix()
assert X.shape[1] == 1
@pytest.mark.parametrize("hole", [False, True])
def test_make_swiss_roll(hole):
X, t = make_swiss_roll(n_samples=5, noise=0.0, random_state=0, hole=hole)
assert X.shape == (5, 3)
assert t.shape == (5,)
assert_array_almost_equal(X[:, 0], t * np.cos(t))
assert_array_almost_equal(X[:, 2], t * np.sin(t))
def test_make_s_curve():
X, t = make_s_curve(n_samples=5, noise=0.0, random_state=0)
assert X.shape == (5, 3), "X shape mismatch"
assert t.shape == (5,), "t shape mismatch"
assert_array_almost_equal(X[:, 0], np.sin(t))
assert_array_almost_equal(X[:, 2], np.sign(t) * (np.cos(t) - 1))
def test_make_biclusters():
X, rows, cols = make_biclusters(
shape=(100, 100), n_clusters=4, shuffle=True, random_state=0
)
assert X.shape == (100, 100), "X shape mismatch"
assert rows.shape == (4, 100), "rows shape mismatch"
assert cols.shape == (
4,
100,
), "columns shape mismatch"
assert_all_finite(X)
assert_all_finite(rows)
assert_all_finite(cols)
X2, _, _ = make_biclusters(
shape=(100, 100), n_clusters=4, shuffle=True, random_state=0
)
assert_array_almost_equal(X, X2)
def test_make_checkerboard():
X, rows, cols = make_checkerboard(
shape=(100, 100), n_clusters=(20, 5), shuffle=True, random_state=0
)
assert X.shape == (100, 100), "X shape mismatch"
assert rows.shape == (100, 100), "rows shape mismatch"
assert cols.shape == (
100,
100,
), "columns shape mismatch"
X, rows, cols = make_checkerboard(
shape=(100, 100), n_clusters=2, shuffle=True, random_state=0
)
assert_all_finite(X)
assert_all_finite(rows)
assert_all_finite(cols)
X1, _, _ = make_checkerboard(
shape=(100, 100), n_clusters=2, shuffle=True, random_state=0
)
X2, _, _ = make_checkerboard(
shape=(100, 100), n_clusters=2, shuffle=True, random_state=0
)
assert_array_almost_equal(X1, X2)
def test_make_moons():
X, y = make_moons(3, shuffle=False)
for x, label in zip(X, y):
center = [0.0, 0.0] if label == 0 else [1.0, 0.5]
dist_sqr = ((x - center) ** 2).sum()
assert_almost_equal(
dist_sqr, 1.0, err_msg="Point is not on expected unit circle"
)
def test_make_moons_unbalanced():
X, y = make_moons(n_samples=(7, 5))
assert (
np.sum(y == 0) == 7 and np.sum(y == 1) == 5
), "Number of samples in a moon is wrong"
assert X.shape == (12, 2), "X shape mismatch"
assert y.shape == (12,), "y shape mismatch"
with pytest.raises(
ValueError,
match=r"`n_samples` can be either an int " r"or a two-element tuple.",
):
make_moons(n_samples=(10,))
def test_make_circles():
factor = 0.3
for n_samples, n_outer, n_inner in [(7, 3, 4), (8, 4, 4)]:
# Testing odd and even case, because in the past make_circles always
# created an even number of samples.
X, y = make_circles(n_samples, shuffle=False, noise=None, factor=factor)
assert X.shape == (n_samples, 2), "X shape mismatch"
assert y.shape == (n_samples,), "y shape mismatch"
center = [0.0, 0.0]
for x, label in zip(X, y):
dist_sqr = ((x - center) ** 2).sum()
dist_exp = 1.0 if label == 0 else factor**2
dist_exp = 1.0 if label == 0 else factor**2
assert_almost_equal(
dist_sqr, dist_exp, err_msg="Point is not on expected circle"
)
assert X[y == 0].shape == (
n_outer,
2,
), "Samples not correctly distributed across circles."
assert X[y == 1].shape == (
n_inner,
2,
), "Samples not correctly distributed across circles."
def test_make_circles_unbalanced():
X, y = make_circles(n_samples=(2, 8))
assert np.sum(y == 0) == 2, "Number of samples in inner circle is wrong"
assert np.sum(y == 1) == 8, "Number of samples in outer circle is wrong"
assert X.shape == (10, 2), "X shape mismatch"
assert y.shape == (10,), "y shape mismatch"
with pytest.raises(
ValueError,
match="When a tuple, n_samples must have exactly two elements.",
):
make_circles(n_samples=(10,))
|