1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
|
import gzip
import os
import shutil
from bz2 import BZ2File
from importlib import resources
from io import BytesIO
from tempfile import NamedTemporaryFile
import numpy as np
import pytest
import scipy.sparse as sp
import sklearn
from sklearn.datasets import dump_svmlight_file, load_svmlight_file, load_svmlight_files
from sklearn.utils._testing import (
assert_allclose,
assert_array_almost_equal,
assert_array_equal,
create_memmap_backed_data,
fails_if_pypy,
)
from sklearn.utils.fixes import CSR_CONTAINERS
TEST_DATA_MODULE = "sklearn.datasets.tests.data"
datafile = "svmlight_classification.txt"
multifile = "svmlight_multilabel.txt"
invalidfile = "svmlight_invalid.txt"
invalidfile2 = "svmlight_invalid_order.txt"
pytestmark = fails_if_pypy
def _svmlight_local_test_file_path(filename):
return resources.files(TEST_DATA_MODULE) / filename
def _load_svmlight_local_test_file(filename, **kwargs):
"""
Helper to load resource `filename` with `importlib.resources`
"""
data_path = _svmlight_local_test_file_path(filename)
with data_path.open("rb") as f:
return load_svmlight_file(f, **kwargs)
def test_load_svmlight_file():
X, y = _load_svmlight_local_test_file(datafile)
# test X's shape
assert X.indptr.shape[0] == 7
assert X.shape[0] == 6
assert X.shape[1] == 21
assert y.shape[0] == 6
# test X's non-zero values
for i, j, val in (
(0, 2, 2.5),
(0, 10, -5.2),
(0, 15, 1.5),
(1, 5, 1.0),
(1, 12, -3),
(2, 20, 27),
):
assert X[i, j] == val
# tests X's zero values
assert X[0, 3] == 0
assert X[0, 5] == 0
assert X[1, 8] == 0
assert X[1, 16] == 0
assert X[2, 18] == 0
# test can change X's values
X[0, 2] *= 2
assert X[0, 2] == 5
# test y
assert_array_equal(y, [1, 2, 3, 4, 1, 2])
def test_load_svmlight_file_fd():
# test loading from file descriptor
# GH20081: testing equality between path-based and
# fd-based load_svmlight_file
data_path = resources.files(TEST_DATA_MODULE) / datafile
data_path = str(data_path)
X1, y1 = load_svmlight_file(data_path)
fd = os.open(data_path, os.O_RDONLY)
try:
X2, y2 = load_svmlight_file(fd)
assert_array_almost_equal(X1.data, X2.data)
assert_array_almost_equal(y1, y2)
finally:
os.close(fd)
def test_load_svmlight_pathlib():
# test loading from file descriptor
data_path = _svmlight_local_test_file_path(datafile)
X1, y1 = load_svmlight_file(str(data_path))
X2, y2 = load_svmlight_file(data_path)
assert_allclose(X1.data, X2.data)
assert_allclose(y1, y2)
def test_load_svmlight_file_multilabel():
X, y = _load_svmlight_local_test_file(multifile, multilabel=True)
assert y == [(0, 1), (2,), (), (1, 2)]
def test_load_svmlight_files():
data_path = _svmlight_local_test_file_path(datafile)
X_train, y_train, X_test, y_test = load_svmlight_files(
[str(data_path)] * 2, dtype=np.float32
)
assert_array_equal(X_train.toarray(), X_test.toarray())
assert_array_almost_equal(y_train, y_test)
assert X_train.dtype == np.float32
assert X_test.dtype == np.float32
X1, y1, X2, y2, X3, y3 = load_svmlight_files([str(data_path)] * 3, dtype=np.float64)
assert X1.dtype == X2.dtype
assert X2.dtype == X3.dtype
assert X3.dtype == np.float64
def test_load_svmlight_file_n_features():
X, y = _load_svmlight_local_test_file(datafile, n_features=22)
# test X'shape
assert X.indptr.shape[0] == 7
assert X.shape[0] == 6
assert X.shape[1] == 22
# test X's non-zero values
for i, j, val in ((0, 2, 2.5), (0, 10, -5.2), (1, 5, 1.0), (1, 12, -3)):
assert X[i, j] == val
# 21 features in file
with pytest.raises(ValueError):
_load_svmlight_local_test_file(datafile, n_features=20)
def test_load_compressed():
X, y = _load_svmlight_local_test_file(datafile)
with NamedTemporaryFile(prefix="sklearn-test", suffix=".gz") as tmp:
tmp.close() # necessary under windows
with _svmlight_local_test_file_path(datafile).open("rb") as f:
with gzip.open(tmp.name, "wb") as fh_out:
shutil.copyfileobj(f, fh_out)
Xgz, ygz = load_svmlight_file(tmp.name)
# because we "close" it manually and write to it,
# we need to remove it manually.
os.remove(tmp.name)
assert_array_almost_equal(X.toarray(), Xgz.toarray())
assert_array_almost_equal(y, ygz)
with NamedTemporaryFile(prefix="sklearn-test", suffix=".bz2") as tmp:
tmp.close() # necessary under windows
with _svmlight_local_test_file_path(datafile).open("rb") as f:
with BZ2File(tmp.name, "wb") as fh_out:
shutil.copyfileobj(f, fh_out)
Xbz, ybz = load_svmlight_file(tmp.name)
# because we "close" it manually and write to it,
# we need to remove it manually.
os.remove(tmp.name)
assert_array_almost_equal(X.toarray(), Xbz.toarray())
assert_array_almost_equal(y, ybz)
def test_load_invalid_file():
with pytest.raises(ValueError):
_load_svmlight_local_test_file(invalidfile)
def test_load_invalid_order_file():
with pytest.raises(ValueError):
_load_svmlight_local_test_file(invalidfile2)
def test_load_zero_based():
f = BytesIO(b"-1 4:1.\n1 0:1\n")
with pytest.raises(ValueError):
load_svmlight_file(f, zero_based=False)
def test_load_zero_based_auto():
data1 = b"-1 1:1 2:2 3:3\n"
data2 = b"-1 0:0 1:1\n"
f1 = BytesIO(data1)
X, y = load_svmlight_file(f1, zero_based="auto")
assert X.shape == (1, 3)
f1 = BytesIO(data1)
f2 = BytesIO(data2)
X1, y1, X2, y2 = load_svmlight_files([f1, f2], zero_based="auto")
assert X1.shape == (1, 4)
assert X2.shape == (1, 4)
def test_load_with_qid():
# load svmfile with qid attribute
data = b"""
3 qid:1 1:0.53 2:0.12
2 qid:1 1:0.13 2:0.1
7 qid:2 1:0.87 2:0.12"""
X, y = load_svmlight_file(BytesIO(data), query_id=False)
assert_array_equal(y, [3, 2, 7])
assert_array_equal(X.toarray(), [[0.53, 0.12], [0.13, 0.1], [0.87, 0.12]])
res1 = load_svmlight_files([BytesIO(data)], query_id=True)
res2 = load_svmlight_file(BytesIO(data), query_id=True)
for X, y, qid in (res1, res2):
assert_array_equal(y, [3, 2, 7])
assert_array_equal(qid, [1, 1, 2])
assert_array_equal(X.toarray(), [[0.53, 0.12], [0.13, 0.1], [0.87, 0.12]])
@pytest.mark.skip(
"testing the overflow of 32 bit sparse indexing requires a large amount of memory"
)
def test_load_large_qid():
"""
load large libsvm / svmlight file with qid attribute. Tests 64-bit query ID
"""
data = b"\n".join(
(
"3 qid:{0} 1:0.53 2:0.12\n2 qid:{0} 1:0.13 2:0.1".format(i).encode()
for i in range(1, 40 * 1000 * 1000)
)
)
X, y, qid = load_svmlight_file(BytesIO(data), query_id=True)
assert_array_equal(y[-4:], [3, 2, 3, 2])
assert_array_equal(np.unique(qid), np.arange(1, 40 * 1000 * 1000))
def test_load_invalid_file2():
with pytest.raises(ValueError):
data_path = _svmlight_local_test_file_path(datafile)
invalid_path = _svmlight_local_test_file_path(invalidfile)
load_svmlight_files([str(data_path), str(invalid_path), str(data_path)])
def test_not_a_filename():
# in python 3 integers are valid file opening arguments (taken as unix
# file descriptors)
with pytest.raises(TypeError):
load_svmlight_file(0.42)
def test_invalid_filename():
with pytest.raises(OSError):
load_svmlight_file("trou pic nic douille")
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_dump(csr_container):
X_sparse, y_dense = _load_svmlight_local_test_file(datafile)
X_dense = X_sparse.toarray()
y_sparse = csr_container(np.atleast_2d(y_dense))
# slicing a csr_matrix can unsort its .indices, so test that we sort
# those correctly
X_sliced = X_sparse[np.arange(X_sparse.shape[0])]
y_sliced = y_sparse[np.arange(y_sparse.shape[0])]
for X in (X_sparse, X_dense, X_sliced):
for y in (y_sparse, y_dense, y_sliced):
for zero_based in (True, False):
for dtype in [np.float32, np.float64, np.int32, np.int64]:
f = BytesIO()
# we need to pass a comment to get the version info in;
# LibSVM doesn't grok comments so they're not put in by
# default anymore.
if sp.issparse(y) and y.shape[0] == 1:
# make sure y's shape is: (n_samples, n_labels)
# when it is sparse
y = y.T
# Note: with dtype=np.int32 we are performing unsafe casts,
# where X.astype(dtype) overflows. The result is
# then platform dependent and X_dense.astype(dtype) may be
# different from X_sparse.astype(dtype).asarray().
X_input = X.astype(dtype)
dump_svmlight_file(
X_input, y, f, comment="test", zero_based=zero_based
)
f.seek(0)
comment = f.readline()
comment = str(comment, "utf-8")
assert "scikit-learn %s" % sklearn.__version__ in comment
comment = f.readline()
comment = str(comment, "utf-8")
assert ["one", "zero"][zero_based] + "-based" in comment
X2, y2 = load_svmlight_file(f, dtype=dtype, zero_based=zero_based)
assert X2.dtype == dtype
assert_array_equal(X2.sorted_indices().indices, X2.indices)
X2_dense = X2.toarray()
if sp.issparse(X_input):
X_input_dense = X_input.toarray()
else:
X_input_dense = X_input
if dtype == np.float32:
# allow a rounding error at the last decimal place
assert_array_almost_equal(X_input_dense, X2_dense, 4)
assert_array_almost_equal(
y_dense.astype(dtype, copy=False), y2, 4
)
else:
# allow a rounding error at the last decimal place
assert_array_almost_equal(X_input_dense, X2_dense, 15)
assert_array_almost_equal(
y_dense.astype(dtype, copy=False), y2, 15
)
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_dump_multilabel(csr_container):
X = [[1, 0, 3, 0, 5], [0, 0, 0, 0, 0], [0, 5, 0, 1, 0]]
y_dense = [[0, 1, 0], [1, 0, 1], [1, 1, 0]]
y_sparse = csr_container(y_dense)
for y in [y_dense, y_sparse]:
f = BytesIO()
dump_svmlight_file(X, y, f, multilabel=True)
f.seek(0)
# make sure it dumps multilabel correctly
assert f.readline() == b"1 0:1 2:3 4:5\n"
assert f.readline() == b"0,2 \n"
assert f.readline() == b"0,1 1:5 3:1\n"
def test_dump_concise():
one = 1
two = 2.1
three = 3.01
exact = 1.000000000000001
# loses the last decimal place
almost = 1.0000000000000001
X = [
[one, two, three, exact, almost],
[1e9, 2e18, 3e27, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
]
y = [one, two, three, exact, almost]
f = BytesIO()
dump_svmlight_file(X, y, f)
f.seek(0)
# make sure it's using the most concise format possible
assert f.readline() == b"1 0:1 1:2.1 2:3.01 3:1.000000000000001 4:1\n"
assert f.readline() == b"2.1 0:1000000000 1:2e+18 2:3e+27\n"
assert f.readline() == b"3.01 \n"
assert f.readline() == b"1.000000000000001 \n"
assert f.readline() == b"1 \n"
f.seek(0)
# make sure it's correct too :)
X2, y2 = load_svmlight_file(f)
assert_array_almost_equal(X, X2.toarray())
assert_array_almost_equal(y, y2)
def test_dump_comment():
X, y = _load_svmlight_local_test_file(datafile)
X = X.toarray()
f = BytesIO()
ascii_comment = "This is a comment\nspanning multiple lines."
dump_svmlight_file(X, y, f, comment=ascii_comment, zero_based=False)
f.seek(0)
X2, y2 = load_svmlight_file(f, zero_based=False)
assert_array_almost_equal(X, X2.toarray())
assert_array_almost_equal(y, y2)
# XXX we have to update this to support Python 3.x
utf8_comment = b"It is true that\n\xc2\xbd\xc2\xb2 = \xc2\xbc"
f = BytesIO()
with pytest.raises(UnicodeDecodeError):
dump_svmlight_file(X, y, f, comment=utf8_comment)
unicode_comment = utf8_comment.decode("utf-8")
f = BytesIO()
dump_svmlight_file(X, y, f, comment=unicode_comment, zero_based=False)
f.seek(0)
X2, y2 = load_svmlight_file(f, zero_based=False)
assert_array_almost_equal(X, X2.toarray())
assert_array_almost_equal(y, y2)
f = BytesIO()
with pytest.raises(ValueError):
dump_svmlight_file(X, y, f, comment="I've got a \0.")
def test_dump_invalid():
X, y = _load_svmlight_local_test_file(datafile)
f = BytesIO()
y2d = [y]
with pytest.raises(ValueError):
dump_svmlight_file(X, y2d, f)
f = BytesIO()
with pytest.raises(ValueError):
dump_svmlight_file(X, y[:-1], f)
def test_dump_query_id():
# test dumping a file with query_id
X, y = _load_svmlight_local_test_file(datafile)
X = X.toarray()
query_id = np.arange(X.shape[0]) // 2
f = BytesIO()
dump_svmlight_file(X, y, f, query_id=query_id, zero_based=True)
f.seek(0)
X1, y1, query_id1 = load_svmlight_file(f, query_id=True, zero_based=True)
assert_array_almost_equal(X, X1.toarray())
assert_array_almost_equal(y, y1)
assert_array_almost_equal(query_id, query_id1)
def test_load_with_long_qid():
# load svmfile with longint qid attribute
data = b"""
1 qid:0 0:1 1:2 2:3
0 qid:72048431380967004 0:1440446648 1:72048431380967004 2:236784985
0 qid:-9223372036854775807 0:1440446648 1:72048431380967004 2:236784985
3 qid:9223372036854775807 0:1440446648 1:72048431380967004 2:236784985"""
X, y, qid = load_svmlight_file(BytesIO(data), query_id=True)
true_X = [
[1, 2, 3],
[1440446648, 72048431380967004, 236784985],
[1440446648, 72048431380967004, 236784985],
[1440446648, 72048431380967004, 236784985],
]
true_y = [1, 0, 0, 3]
trueQID = [0, 72048431380967004, -9223372036854775807, 9223372036854775807]
assert_array_equal(y, true_y)
assert_array_equal(X.toarray(), true_X)
assert_array_equal(qid, trueQID)
f = BytesIO()
dump_svmlight_file(X, y, f, query_id=qid, zero_based=True)
f.seek(0)
X, y, qid = load_svmlight_file(f, query_id=True, zero_based=True)
assert_array_equal(y, true_y)
assert_array_equal(X.toarray(), true_X)
assert_array_equal(qid, trueQID)
f.seek(0)
X, y = load_svmlight_file(f, query_id=False, zero_based=True)
assert_array_equal(y, true_y)
assert_array_equal(X.toarray(), true_X)
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_load_zeros(csr_container):
f = BytesIO()
true_X = csr_container(np.zeros(shape=(3, 4)))
true_y = np.array([0, 1, 0])
dump_svmlight_file(true_X, true_y, f)
for zero_based in ["auto", True, False]:
f.seek(0)
X, y = load_svmlight_file(f, n_features=4, zero_based=zero_based)
assert_array_almost_equal(y, true_y)
assert_array_almost_equal(X.toarray(), true_X.toarray())
@pytest.mark.parametrize("sparsity", [0, 0.1, 0.5, 0.99, 1])
@pytest.mark.parametrize("n_samples", [13, 101])
@pytest.mark.parametrize("n_features", [2, 7, 41])
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_load_with_offsets(sparsity, n_samples, n_features, csr_container):
rng = np.random.RandomState(0)
X = rng.uniform(low=0.0, high=1.0, size=(n_samples, n_features))
if sparsity:
X[X < sparsity] = 0.0
X = csr_container(X)
y = rng.randint(low=0, high=2, size=n_samples)
f = BytesIO()
dump_svmlight_file(X, y, f)
f.seek(0)
size = len(f.getvalue())
# put some marks that are likely to happen anywhere in a row
mark_0 = 0
mark_1 = size // 3
length_0 = mark_1 - mark_0
mark_2 = 4 * size // 5
length_1 = mark_2 - mark_1
# load the original sparse matrix into 3 independent CSR matrices
X_0, y_0 = load_svmlight_file(
f, n_features=n_features, offset=mark_0, length=length_0
)
X_1, y_1 = load_svmlight_file(
f, n_features=n_features, offset=mark_1, length=length_1
)
X_2, y_2 = load_svmlight_file(f, n_features=n_features, offset=mark_2)
y_concat = np.concatenate([y_0, y_1, y_2])
X_concat = sp.vstack([X_0, X_1, X_2])
assert_array_almost_equal(y, y_concat)
assert_array_almost_equal(X.toarray(), X_concat.toarray())
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_load_offset_exhaustive_splits(csr_container):
rng = np.random.RandomState(0)
X = np.array(
[
[0, 0, 0, 0, 0, 0],
[1, 2, 3, 4, 0, 6],
[1, 2, 3, 4, 0, 6],
[0, 0, 0, 0, 0, 0],
[1, 0, 3, 0, 0, 0],
[0, 0, 0, 0, 0, 1],
[1, 0, 0, 0, 0, 0],
]
)
X = csr_container(X)
n_samples, n_features = X.shape
y = rng.randint(low=0, high=2, size=n_samples)
query_id = np.arange(n_samples) // 2
f = BytesIO()
dump_svmlight_file(X, y, f, query_id=query_id)
f.seek(0)
size = len(f.getvalue())
# load the same data in 2 parts with all the possible byte offsets to
# locate the split so has to test for particular boundary cases
for mark in range(size):
f.seek(0)
X_0, y_0, q_0 = load_svmlight_file(
f, n_features=n_features, query_id=True, offset=0, length=mark
)
X_1, y_1, q_1 = load_svmlight_file(
f, n_features=n_features, query_id=True, offset=mark, length=-1
)
q_concat = np.concatenate([q_0, q_1])
y_concat = np.concatenate([y_0, y_1])
X_concat = sp.vstack([X_0, X_1])
assert_array_almost_equal(y, y_concat)
assert_array_equal(query_id, q_concat)
assert_array_almost_equal(X.toarray(), X_concat.toarray())
def test_load_with_offsets_error():
with pytest.raises(ValueError, match="n_features is required"):
_load_svmlight_local_test_file(datafile, offset=3, length=3)
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_multilabel_y_explicit_zeros(tmp_path, csr_container):
"""
Ensure that if y contains explicit zeros (i.e. elements of y.data equal to
0) then those explicit zeros are not encoded.
"""
save_path = str(tmp_path / "svm_explicit_zero")
rng = np.random.RandomState(42)
X = rng.randn(3, 5).astype(np.float64)
indptr = np.array([0, 2, 3, 6])
indices = np.array([0, 2, 2, 0, 1, 2])
# The first and last element are explicit zeros.
data = np.array([0, 1, 1, 1, 1, 0])
y = csr_container((data, indices, indptr), shape=(3, 3))
# y as a dense array would look like
# [[0, 0, 1],
# [0, 0, 1],
# [1, 1, 0]]
dump_svmlight_file(X, y, save_path, multilabel=True)
_, y_load = load_svmlight_file(save_path, multilabel=True)
y_true = [(2.0,), (2.0,), (0.0, 1.0)]
assert y_load == y_true
def test_dump_read_only(tmp_path):
"""Ensure that there is no ValueError when dumping a read-only `X`.
Non-regression test for:
https://github.com/scikit-learn/scikit-learn/issues/28026
"""
rng = np.random.RandomState(42)
X = rng.randn(5, 2)
y = rng.randn(5)
# Convert to memmap-backed which are read-only
X, y = create_memmap_backed_data([X, y])
save_path = str(tmp_path / "svm_read_only")
dump_svmlight_file(X, y, save_path)
|