File: test_svmlight_format.py

package info (click to toggle)
scikit-learn 1.4.2%2Bdfsg-8
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 25,036 kB
  • sloc: python: 201,105; cpp: 5,790; ansic: 854; makefile: 304; sh: 56; javascript: 20
file content (616 lines) | stat: -rw-r--r-- 20,269 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
import gzip
import os
import shutil
from bz2 import BZ2File
from importlib import resources
from io import BytesIO
from tempfile import NamedTemporaryFile

import numpy as np
import pytest
import scipy.sparse as sp

import sklearn
from sklearn.datasets import dump_svmlight_file, load_svmlight_file, load_svmlight_files
from sklearn.utils._testing import (
    assert_allclose,
    assert_array_almost_equal,
    assert_array_equal,
    create_memmap_backed_data,
    fails_if_pypy,
)
from sklearn.utils.fixes import CSR_CONTAINERS

TEST_DATA_MODULE = "sklearn.datasets.tests.data"
datafile = "svmlight_classification.txt"
multifile = "svmlight_multilabel.txt"
invalidfile = "svmlight_invalid.txt"
invalidfile2 = "svmlight_invalid_order.txt"

pytestmark = fails_if_pypy


def _svmlight_local_test_file_path(filename):
    return resources.files(TEST_DATA_MODULE) / filename


def _load_svmlight_local_test_file(filename, **kwargs):
    """
    Helper to load resource `filename` with `importlib.resources`
    """
    data_path = _svmlight_local_test_file_path(filename)
    with data_path.open("rb") as f:
        return load_svmlight_file(f, **kwargs)


def test_load_svmlight_file():
    X, y = _load_svmlight_local_test_file(datafile)

    # test X's shape
    assert X.indptr.shape[0] == 7
    assert X.shape[0] == 6
    assert X.shape[1] == 21
    assert y.shape[0] == 6

    # test X's non-zero values
    for i, j, val in (
        (0, 2, 2.5),
        (0, 10, -5.2),
        (0, 15, 1.5),
        (1, 5, 1.0),
        (1, 12, -3),
        (2, 20, 27),
    ):
        assert X[i, j] == val

    # tests X's zero values
    assert X[0, 3] == 0
    assert X[0, 5] == 0
    assert X[1, 8] == 0
    assert X[1, 16] == 0
    assert X[2, 18] == 0

    # test can change X's values
    X[0, 2] *= 2
    assert X[0, 2] == 5

    # test y
    assert_array_equal(y, [1, 2, 3, 4, 1, 2])


def test_load_svmlight_file_fd():
    # test loading from file descriptor

    # GH20081: testing equality between path-based and
    # fd-based load_svmlight_file

    data_path = resources.files(TEST_DATA_MODULE) / datafile
    data_path = str(data_path)
    X1, y1 = load_svmlight_file(data_path)

    fd = os.open(data_path, os.O_RDONLY)
    try:
        X2, y2 = load_svmlight_file(fd)
        assert_array_almost_equal(X1.data, X2.data)
        assert_array_almost_equal(y1, y2)
    finally:
        os.close(fd)


def test_load_svmlight_pathlib():
    # test loading from file descriptor
    data_path = _svmlight_local_test_file_path(datafile)
    X1, y1 = load_svmlight_file(str(data_path))
    X2, y2 = load_svmlight_file(data_path)

    assert_allclose(X1.data, X2.data)
    assert_allclose(y1, y2)


def test_load_svmlight_file_multilabel():
    X, y = _load_svmlight_local_test_file(multifile, multilabel=True)
    assert y == [(0, 1), (2,), (), (1, 2)]


def test_load_svmlight_files():
    data_path = _svmlight_local_test_file_path(datafile)
    X_train, y_train, X_test, y_test = load_svmlight_files(
        [str(data_path)] * 2, dtype=np.float32
    )
    assert_array_equal(X_train.toarray(), X_test.toarray())
    assert_array_almost_equal(y_train, y_test)
    assert X_train.dtype == np.float32
    assert X_test.dtype == np.float32

    X1, y1, X2, y2, X3, y3 = load_svmlight_files([str(data_path)] * 3, dtype=np.float64)
    assert X1.dtype == X2.dtype
    assert X2.dtype == X3.dtype
    assert X3.dtype == np.float64


def test_load_svmlight_file_n_features():
    X, y = _load_svmlight_local_test_file(datafile, n_features=22)

    # test X'shape
    assert X.indptr.shape[0] == 7
    assert X.shape[0] == 6
    assert X.shape[1] == 22

    # test X's non-zero values
    for i, j, val in ((0, 2, 2.5), (0, 10, -5.2), (1, 5, 1.0), (1, 12, -3)):
        assert X[i, j] == val

    # 21 features in file
    with pytest.raises(ValueError):
        _load_svmlight_local_test_file(datafile, n_features=20)


def test_load_compressed():
    X, y = _load_svmlight_local_test_file(datafile)

    with NamedTemporaryFile(prefix="sklearn-test", suffix=".gz") as tmp:
        tmp.close()  # necessary under windows
        with _svmlight_local_test_file_path(datafile).open("rb") as f:
            with gzip.open(tmp.name, "wb") as fh_out:
                shutil.copyfileobj(f, fh_out)
        Xgz, ygz = load_svmlight_file(tmp.name)
        # because we "close" it manually and write to it,
        # we need to remove it manually.
        os.remove(tmp.name)
    assert_array_almost_equal(X.toarray(), Xgz.toarray())
    assert_array_almost_equal(y, ygz)

    with NamedTemporaryFile(prefix="sklearn-test", suffix=".bz2") as tmp:
        tmp.close()  # necessary under windows
        with _svmlight_local_test_file_path(datafile).open("rb") as f:
            with BZ2File(tmp.name, "wb") as fh_out:
                shutil.copyfileobj(f, fh_out)
        Xbz, ybz = load_svmlight_file(tmp.name)
        # because we "close" it manually and write to it,
        # we need to remove it manually.
        os.remove(tmp.name)
    assert_array_almost_equal(X.toarray(), Xbz.toarray())
    assert_array_almost_equal(y, ybz)


def test_load_invalid_file():
    with pytest.raises(ValueError):
        _load_svmlight_local_test_file(invalidfile)


def test_load_invalid_order_file():
    with pytest.raises(ValueError):
        _load_svmlight_local_test_file(invalidfile2)


def test_load_zero_based():
    f = BytesIO(b"-1 4:1.\n1 0:1\n")
    with pytest.raises(ValueError):
        load_svmlight_file(f, zero_based=False)


def test_load_zero_based_auto():
    data1 = b"-1 1:1 2:2 3:3\n"
    data2 = b"-1 0:0 1:1\n"

    f1 = BytesIO(data1)
    X, y = load_svmlight_file(f1, zero_based="auto")
    assert X.shape == (1, 3)

    f1 = BytesIO(data1)
    f2 = BytesIO(data2)
    X1, y1, X2, y2 = load_svmlight_files([f1, f2], zero_based="auto")
    assert X1.shape == (1, 4)
    assert X2.shape == (1, 4)


def test_load_with_qid():
    # load svmfile with qid attribute
    data = b"""
    3 qid:1 1:0.53 2:0.12
    2 qid:1 1:0.13 2:0.1
    7 qid:2 1:0.87 2:0.12"""
    X, y = load_svmlight_file(BytesIO(data), query_id=False)
    assert_array_equal(y, [3, 2, 7])
    assert_array_equal(X.toarray(), [[0.53, 0.12], [0.13, 0.1], [0.87, 0.12]])
    res1 = load_svmlight_files([BytesIO(data)], query_id=True)
    res2 = load_svmlight_file(BytesIO(data), query_id=True)
    for X, y, qid in (res1, res2):
        assert_array_equal(y, [3, 2, 7])
        assert_array_equal(qid, [1, 1, 2])
        assert_array_equal(X.toarray(), [[0.53, 0.12], [0.13, 0.1], [0.87, 0.12]])


@pytest.mark.skip(
    "testing the overflow of 32 bit sparse indexing requires a large amount of memory"
)
def test_load_large_qid():
    """
    load large libsvm / svmlight file with qid attribute. Tests 64-bit query ID
    """
    data = b"\n".join(
        (
            "3 qid:{0} 1:0.53 2:0.12\n2 qid:{0} 1:0.13 2:0.1".format(i).encode()
            for i in range(1, 40 * 1000 * 1000)
        )
    )
    X, y, qid = load_svmlight_file(BytesIO(data), query_id=True)
    assert_array_equal(y[-4:], [3, 2, 3, 2])
    assert_array_equal(np.unique(qid), np.arange(1, 40 * 1000 * 1000))


def test_load_invalid_file2():
    with pytest.raises(ValueError):
        data_path = _svmlight_local_test_file_path(datafile)
        invalid_path = _svmlight_local_test_file_path(invalidfile)
        load_svmlight_files([str(data_path), str(invalid_path), str(data_path)])


def test_not_a_filename():
    # in python 3 integers are valid file opening arguments (taken as unix
    # file descriptors)
    with pytest.raises(TypeError):
        load_svmlight_file(0.42)


def test_invalid_filename():
    with pytest.raises(OSError):
        load_svmlight_file("trou pic nic douille")


@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_dump(csr_container):
    X_sparse, y_dense = _load_svmlight_local_test_file(datafile)
    X_dense = X_sparse.toarray()
    y_sparse = csr_container(np.atleast_2d(y_dense))

    # slicing a csr_matrix can unsort its .indices, so test that we sort
    # those correctly
    X_sliced = X_sparse[np.arange(X_sparse.shape[0])]
    y_sliced = y_sparse[np.arange(y_sparse.shape[0])]

    for X in (X_sparse, X_dense, X_sliced):
        for y in (y_sparse, y_dense, y_sliced):
            for zero_based in (True, False):
                for dtype in [np.float32, np.float64, np.int32, np.int64]:
                    f = BytesIO()
                    # we need to pass a comment to get the version info in;
                    # LibSVM doesn't grok comments so they're not put in by
                    # default anymore.

                    if sp.issparse(y) and y.shape[0] == 1:
                        # make sure y's shape is: (n_samples, n_labels)
                        # when it is sparse
                        y = y.T

                    # Note: with dtype=np.int32 we are performing unsafe casts,
                    # where X.astype(dtype) overflows. The result is
                    # then platform dependent and X_dense.astype(dtype) may be
                    # different from X_sparse.astype(dtype).asarray().
                    X_input = X.astype(dtype)

                    dump_svmlight_file(
                        X_input, y, f, comment="test", zero_based=zero_based
                    )
                    f.seek(0)

                    comment = f.readline()
                    comment = str(comment, "utf-8")

                    assert "scikit-learn %s" % sklearn.__version__ in comment

                    comment = f.readline()
                    comment = str(comment, "utf-8")

                    assert ["one", "zero"][zero_based] + "-based" in comment

                    X2, y2 = load_svmlight_file(f, dtype=dtype, zero_based=zero_based)
                    assert X2.dtype == dtype
                    assert_array_equal(X2.sorted_indices().indices, X2.indices)

                    X2_dense = X2.toarray()
                    if sp.issparse(X_input):
                        X_input_dense = X_input.toarray()
                    else:
                        X_input_dense = X_input

                    if dtype == np.float32:
                        # allow a rounding error at the last decimal place
                        assert_array_almost_equal(X_input_dense, X2_dense, 4)
                        assert_array_almost_equal(
                            y_dense.astype(dtype, copy=False), y2, 4
                        )
                    else:
                        # allow a rounding error at the last decimal place
                        assert_array_almost_equal(X_input_dense, X2_dense, 15)
                        assert_array_almost_equal(
                            y_dense.astype(dtype, copy=False), y2, 15
                        )


@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_dump_multilabel(csr_container):
    X = [[1, 0, 3, 0, 5], [0, 0, 0, 0, 0], [0, 5, 0, 1, 0]]
    y_dense = [[0, 1, 0], [1, 0, 1], [1, 1, 0]]
    y_sparse = csr_container(y_dense)
    for y in [y_dense, y_sparse]:
        f = BytesIO()
        dump_svmlight_file(X, y, f, multilabel=True)
        f.seek(0)
        # make sure it dumps multilabel correctly
        assert f.readline() == b"1 0:1 2:3 4:5\n"
        assert f.readline() == b"0,2 \n"
        assert f.readline() == b"0,1 1:5 3:1\n"


def test_dump_concise():
    one = 1
    two = 2.1
    three = 3.01
    exact = 1.000000000000001
    # loses the last decimal place
    almost = 1.0000000000000001
    X = [
        [one, two, three, exact, almost],
        [1e9, 2e18, 3e27, 0, 0],
        [0, 0, 0, 0, 0],
        [0, 0, 0, 0, 0],
        [0, 0, 0, 0, 0],
    ]
    y = [one, two, three, exact, almost]
    f = BytesIO()
    dump_svmlight_file(X, y, f)
    f.seek(0)
    # make sure it's using the most concise format possible
    assert f.readline() == b"1 0:1 1:2.1 2:3.01 3:1.000000000000001 4:1\n"
    assert f.readline() == b"2.1 0:1000000000 1:2e+18 2:3e+27\n"
    assert f.readline() == b"3.01 \n"
    assert f.readline() == b"1.000000000000001 \n"
    assert f.readline() == b"1 \n"
    f.seek(0)
    # make sure it's correct too :)
    X2, y2 = load_svmlight_file(f)
    assert_array_almost_equal(X, X2.toarray())
    assert_array_almost_equal(y, y2)


def test_dump_comment():
    X, y = _load_svmlight_local_test_file(datafile)
    X = X.toarray()

    f = BytesIO()
    ascii_comment = "This is a comment\nspanning multiple lines."
    dump_svmlight_file(X, y, f, comment=ascii_comment, zero_based=False)
    f.seek(0)

    X2, y2 = load_svmlight_file(f, zero_based=False)
    assert_array_almost_equal(X, X2.toarray())
    assert_array_almost_equal(y, y2)

    # XXX we have to update this to support Python 3.x
    utf8_comment = b"It is true that\n\xc2\xbd\xc2\xb2 = \xc2\xbc"
    f = BytesIO()
    with pytest.raises(UnicodeDecodeError):
        dump_svmlight_file(X, y, f, comment=utf8_comment)

    unicode_comment = utf8_comment.decode("utf-8")
    f = BytesIO()
    dump_svmlight_file(X, y, f, comment=unicode_comment, zero_based=False)
    f.seek(0)

    X2, y2 = load_svmlight_file(f, zero_based=False)
    assert_array_almost_equal(X, X2.toarray())
    assert_array_almost_equal(y, y2)

    f = BytesIO()
    with pytest.raises(ValueError):
        dump_svmlight_file(X, y, f, comment="I've got a \0.")


def test_dump_invalid():
    X, y = _load_svmlight_local_test_file(datafile)

    f = BytesIO()
    y2d = [y]
    with pytest.raises(ValueError):
        dump_svmlight_file(X, y2d, f)

    f = BytesIO()
    with pytest.raises(ValueError):
        dump_svmlight_file(X, y[:-1], f)


def test_dump_query_id():
    # test dumping a file with query_id
    X, y = _load_svmlight_local_test_file(datafile)
    X = X.toarray()
    query_id = np.arange(X.shape[0]) // 2
    f = BytesIO()
    dump_svmlight_file(X, y, f, query_id=query_id, zero_based=True)

    f.seek(0)
    X1, y1, query_id1 = load_svmlight_file(f, query_id=True, zero_based=True)
    assert_array_almost_equal(X, X1.toarray())
    assert_array_almost_equal(y, y1)
    assert_array_almost_equal(query_id, query_id1)


def test_load_with_long_qid():
    # load svmfile with longint qid attribute
    data = b"""
    1 qid:0 0:1 1:2 2:3
    0 qid:72048431380967004 0:1440446648 1:72048431380967004 2:236784985
    0 qid:-9223372036854775807 0:1440446648 1:72048431380967004 2:236784985
    3 qid:9223372036854775807  0:1440446648 1:72048431380967004 2:236784985"""
    X, y, qid = load_svmlight_file(BytesIO(data), query_id=True)

    true_X = [
        [1, 2, 3],
        [1440446648, 72048431380967004, 236784985],
        [1440446648, 72048431380967004, 236784985],
        [1440446648, 72048431380967004, 236784985],
    ]

    true_y = [1, 0, 0, 3]
    trueQID = [0, 72048431380967004, -9223372036854775807, 9223372036854775807]
    assert_array_equal(y, true_y)
    assert_array_equal(X.toarray(), true_X)
    assert_array_equal(qid, trueQID)

    f = BytesIO()
    dump_svmlight_file(X, y, f, query_id=qid, zero_based=True)
    f.seek(0)
    X, y, qid = load_svmlight_file(f, query_id=True, zero_based=True)
    assert_array_equal(y, true_y)
    assert_array_equal(X.toarray(), true_X)
    assert_array_equal(qid, trueQID)

    f.seek(0)
    X, y = load_svmlight_file(f, query_id=False, zero_based=True)
    assert_array_equal(y, true_y)
    assert_array_equal(X.toarray(), true_X)


@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_load_zeros(csr_container):
    f = BytesIO()
    true_X = csr_container(np.zeros(shape=(3, 4)))
    true_y = np.array([0, 1, 0])
    dump_svmlight_file(true_X, true_y, f)

    for zero_based in ["auto", True, False]:
        f.seek(0)
        X, y = load_svmlight_file(f, n_features=4, zero_based=zero_based)
        assert_array_almost_equal(y, true_y)
        assert_array_almost_equal(X.toarray(), true_X.toarray())


@pytest.mark.parametrize("sparsity", [0, 0.1, 0.5, 0.99, 1])
@pytest.mark.parametrize("n_samples", [13, 101])
@pytest.mark.parametrize("n_features", [2, 7, 41])
@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_load_with_offsets(sparsity, n_samples, n_features, csr_container):
    rng = np.random.RandomState(0)
    X = rng.uniform(low=0.0, high=1.0, size=(n_samples, n_features))
    if sparsity:
        X[X < sparsity] = 0.0
    X = csr_container(X)
    y = rng.randint(low=0, high=2, size=n_samples)

    f = BytesIO()
    dump_svmlight_file(X, y, f)
    f.seek(0)

    size = len(f.getvalue())

    # put some marks that are likely to happen anywhere in a row
    mark_0 = 0
    mark_1 = size // 3
    length_0 = mark_1 - mark_0
    mark_2 = 4 * size // 5
    length_1 = mark_2 - mark_1

    # load the original sparse matrix into 3 independent CSR matrices
    X_0, y_0 = load_svmlight_file(
        f, n_features=n_features, offset=mark_0, length=length_0
    )
    X_1, y_1 = load_svmlight_file(
        f, n_features=n_features, offset=mark_1, length=length_1
    )
    X_2, y_2 = load_svmlight_file(f, n_features=n_features, offset=mark_2)

    y_concat = np.concatenate([y_0, y_1, y_2])
    X_concat = sp.vstack([X_0, X_1, X_2])
    assert_array_almost_equal(y, y_concat)
    assert_array_almost_equal(X.toarray(), X_concat.toarray())


@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_load_offset_exhaustive_splits(csr_container):
    rng = np.random.RandomState(0)
    X = np.array(
        [
            [0, 0, 0, 0, 0, 0],
            [1, 2, 3, 4, 0, 6],
            [1, 2, 3, 4, 0, 6],
            [0, 0, 0, 0, 0, 0],
            [1, 0, 3, 0, 0, 0],
            [0, 0, 0, 0, 0, 1],
            [1, 0, 0, 0, 0, 0],
        ]
    )
    X = csr_container(X)
    n_samples, n_features = X.shape
    y = rng.randint(low=0, high=2, size=n_samples)
    query_id = np.arange(n_samples) // 2

    f = BytesIO()
    dump_svmlight_file(X, y, f, query_id=query_id)
    f.seek(0)

    size = len(f.getvalue())

    # load the same data in 2 parts with all the possible byte offsets to
    # locate the split so has to test for particular boundary cases
    for mark in range(size):
        f.seek(0)
        X_0, y_0, q_0 = load_svmlight_file(
            f, n_features=n_features, query_id=True, offset=0, length=mark
        )
        X_1, y_1, q_1 = load_svmlight_file(
            f, n_features=n_features, query_id=True, offset=mark, length=-1
        )
        q_concat = np.concatenate([q_0, q_1])
        y_concat = np.concatenate([y_0, y_1])
        X_concat = sp.vstack([X_0, X_1])
        assert_array_almost_equal(y, y_concat)
        assert_array_equal(query_id, q_concat)
        assert_array_almost_equal(X.toarray(), X_concat.toarray())


def test_load_with_offsets_error():
    with pytest.raises(ValueError, match="n_features is required"):
        _load_svmlight_local_test_file(datafile, offset=3, length=3)


@pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
def test_multilabel_y_explicit_zeros(tmp_path, csr_container):
    """
    Ensure that if y contains explicit zeros (i.e. elements of y.data equal to
    0) then those explicit zeros are not encoded.
    """
    save_path = str(tmp_path / "svm_explicit_zero")
    rng = np.random.RandomState(42)
    X = rng.randn(3, 5).astype(np.float64)
    indptr = np.array([0, 2, 3, 6])
    indices = np.array([0, 2, 2, 0, 1, 2])
    # The first and last element are explicit zeros.
    data = np.array([0, 1, 1, 1, 1, 0])
    y = csr_container((data, indices, indptr), shape=(3, 3))
    # y as a dense array would look like
    # [[0, 0, 1],
    #  [0, 0, 1],
    #  [1, 1, 0]]

    dump_svmlight_file(X, y, save_path, multilabel=True)

    _, y_load = load_svmlight_file(save_path, multilabel=True)
    y_true = [(2.0,), (2.0,), (0.0, 1.0)]
    assert y_load == y_true


def test_dump_read_only(tmp_path):
    """Ensure that there is no ValueError when dumping a read-only `X`.

    Non-regression test for:
    https://github.com/scikit-learn/scikit-learn/issues/28026
    """
    rng = np.random.RandomState(42)
    X = rng.randn(5, 2)
    y = rng.randn(5)

    # Convert to memmap-backed which are read-only
    X, y = create_memmap_backed_data([X, y])

    save_path = str(tmp_path / "svm_read_only")
    dump_svmlight_file(X, y, save_path)