File: gradient_boosting.py

package info (click to toggle)
scikit-learn 1.4.2%2Bdfsg-8
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 25,036 kB
  • sloc: python: 201,105; cpp: 5,790; ansic: 854; makefile: 304; sh: 56; javascript: 20
file content (2270 lines) | stat: -rw-r--r-- 92,936 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
"""Fast Gradient Boosting decision trees for classification and regression."""

# Author: Nicolas Hug

import itertools
import warnings
from abc import ABC, abstractmethod
from contextlib import contextmanager, nullcontext, suppress
from functools import partial
from numbers import Integral, Real
from time import time

import numpy as np

from ..._loss.loss import (
    _LOSSES,
    BaseLoss,
    HalfBinomialLoss,
    HalfGammaLoss,
    HalfMultinomialLoss,
    HalfPoissonLoss,
    PinballLoss,
)
from ...base import (
    BaseEstimator,
    ClassifierMixin,
    RegressorMixin,
    _fit_context,
    is_classifier,
)
from ...compose import ColumnTransformer
from ...metrics import check_scoring
from ...metrics._scorer import _SCORERS
from ...model_selection import train_test_split
from ...preprocessing import FunctionTransformer, LabelEncoder, OrdinalEncoder
from ...utils import check_random_state, compute_sample_weight, is_scalar_nan, resample
from ...utils._openmp_helpers import _openmp_effective_n_threads
from ...utils._param_validation import Hidden, Interval, RealNotInt, StrOptions
from ...utils.multiclass import check_classification_targets
from ...utils.validation import (
    _check_monotonic_cst,
    _check_sample_weight,
    _check_y,
    _is_pandas_df,
    check_array,
    check_consistent_length,
    check_is_fitted,
)
from ._gradient_boosting import _update_raw_predictions
from .binning import _BinMapper
from .common import G_H_DTYPE, X_DTYPE, Y_DTYPE
from .grower import TreeGrower

_LOSSES = _LOSSES.copy()
_LOSSES.update(
    {
        "poisson": HalfPoissonLoss,
        "gamma": HalfGammaLoss,
        "quantile": PinballLoss,
    }
)


def _update_leaves_values(loss, grower, y_true, raw_prediction, sample_weight):
    """Update the leaf values to be predicted by the tree.

    Update equals:
        loss.fit_intercept_only(y_true - raw_prediction)

    This is only applied if loss.differentiable is False.
    Note: It only works, if the loss is a function of the residual, as is the
    case for AbsoluteError and PinballLoss. Otherwise, one would need to get
    the minimum of loss(y_true, raw_prediction + x) in x. A few examples:
      - AbsoluteError: median(y_true - raw_prediction).
      - PinballLoss: quantile(y_true - raw_prediction).

    More background:
    For the standard gradient descent method according to "Greedy Function
    Approximation: A Gradient Boosting Machine" by Friedman, all loss functions but the
    squared loss need a line search step. BaseHistGradientBoosting, however, implements
    a so called Newton boosting where the trees are fitted to a 2nd order
    approximations of the loss in terms of gradients and hessians. In this case, the
    line search step is only necessary if the loss is not smooth, i.e. not
    differentiable, which renders the 2nd order approximation invalid. In fact,
    non-smooth losses arbitrarily set hessians to 1 and effectively use the standard
    gradient descent method with line search.
    """
    # TODO: Ideally this should be computed in parallel over the leaves using something
    # similar to _update_raw_predictions(), but this requires a cython version of
    # median().
    for leaf in grower.finalized_leaves:
        indices = leaf.sample_indices
        if sample_weight is None:
            sw = None
        else:
            sw = sample_weight[indices]
        update = loss.fit_intercept_only(
            y_true=y_true[indices] - raw_prediction[indices],
            sample_weight=sw,
        )
        leaf.value = grower.shrinkage * update
        # Note that the regularization is ignored here


@contextmanager
def _patch_raw_predict(estimator, raw_predictions):
    """Context manager that patches _raw_predict to return raw_predictions.

    `raw_predictions` is typically a precomputed array to avoid redundant
    state-wise computations fitting with early stopping enabled: in this case
    `raw_predictions` is incrementally updated whenever we add a tree to the
    boosted ensemble.

    Note: this makes fitting HistGradientBoosting* models inherently non thread
    safe at fit time. However thread-safety at fit time was never guaranteed nor
    enforced for scikit-learn estimators in general.

    Thread-safety at prediction/transform time is another matter as those
    operations are typically side-effect free and therefore often thread-safe by
    default for most scikit-learn models and would like to keep it that way.
    Therefore this context manager should only be used at fit time.

    TODO: in the future, we could explore the possibility to extend the scorer
    public API to expose a way to compute vales from raw predictions. That would
    probably require also making the scorer aware of the inverse link function
    used by the estimator which is typically private API for now, hence the need
    for this patching mechanism.
    """
    orig_raw_predict = estimator._raw_predict

    def _patched_raw_predicts(*args, **kwargs):
        return raw_predictions

    estimator._raw_predict = _patched_raw_predicts
    yield estimator
    estimator._raw_predict = orig_raw_predict


class BaseHistGradientBoosting(BaseEstimator, ABC):
    """Base class for histogram-based gradient boosting estimators."""

    _parameter_constraints: dict = {
        "loss": [BaseLoss],
        "learning_rate": [Interval(Real, 0, None, closed="neither")],
        "max_iter": [Interval(Integral, 1, None, closed="left")],
        "max_leaf_nodes": [Interval(Integral, 2, None, closed="left"), None],
        "max_depth": [Interval(Integral, 1, None, closed="left"), None],
        "min_samples_leaf": [Interval(Integral, 1, None, closed="left")],
        "l2_regularization": [Interval(Real, 0, None, closed="left")],
        "max_features": [Interval(RealNotInt, 0, 1, closed="right")],
        "monotonic_cst": ["array-like", dict, None],
        "interaction_cst": [
            list,
            tuple,
            StrOptions({"pairwise", "no_interactions"}),
            None,
        ],
        "n_iter_no_change": [Interval(Integral, 1, None, closed="left")],
        "validation_fraction": [
            Interval(RealNotInt, 0, 1, closed="neither"),
            Interval(Integral, 1, None, closed="left"),
            None,
        ],
        "tol": [Interval(Real, 0, None, closed="left")],
        "max_bins": [Interval(Integral, 2, 255, closed="both")],
        "categorical_features": [
            "array-like",
            StrOptions({"from_dtype"}),
            Hidden(StrOptions({"warn"})),
            None,
        ],
        "warm_start": ["boolean"],
        "early_stopping": [StrOptions({"auto"}), "boolean"],
        "scoring": [str, callable, None],
        "verbose": ["verbose"],
        "random_state": ["random_state"],
    }

    @abstractmethod
    def __init__(
        self,
        loss,
        *,
        learning_rate,
        max_iter,
        max_leaf_nodes,
        max_depth,
        min_samples_leaf,
        l2_regularization,
        max_features,
        max_bins,
        categorical_features,
        monotonic_cst,
        interaction_cst,
        warm_start,
        early_stopping,
        scoring,
        validation_fraction,
        n_iter_no_change,
        tol,
        verbose,
        random_state,
    ):
        self.loss = loss
        self.learning_rate = learning_rate
        self.max_iter = max_iter
        self.max_leaf_nodes = max_leaf_nodes
        self.max_depth = max_depth
        self.min_samples_leaf = min_samples_leaf
        self.l2_regularization = l2_regularization
        self.max_features = max_features
        self.max_bins = max_bins
        self.monotonic_cst = monotonic_cst
        self.interaction_cst = interaction_cst
        self.categorical_features = categorical_features
        self.warm_start = warm_start
        self.early_stopping = early_stopping
        self.scoring = scoring
        self.validation_fraction = validation_fraction
        self.n_iter_no_change = n_iter_no_change
        self.tol = tol
        self.verbose = verbose
        self.random_state = random_state

    def _validate_parameters(self):
        """Validate parameters passed to __init__.

        The parameters that are directly passed to the grower are checked in
        TreeGrower."""
        if self.monotonic_cst is not None and self.n_trees_per_iteration_ != 1:
            raise ValueError(
                "monotonic constraints are not supported for multiclass classification."
            )

    def _finalize_sample_weight(self, sample_weight, y):
        """Finalize sample weight.

        Used by subclasses to adjust sample_weights. This is useful for implementing
        class weights.
        """
        return sample_weight

    def _preprocess_X(self, X, *, reset):
        """Preprocess and validate X.

        Parameters
        ----------
        X : {array-like, pandas DataFrame} of shape (n_samples, n_features)
            Input data.

        reset : bool
            Whether to reset the `n_features_in_` and `feature_names_in_ attributes.

        Returns
        -------
        X : ndarray of shape (n_samples, n_features)
            Validated input data.

        known_categories : list of ndarray of shape (n_categories,)
            List of known categories for each categorical feature.
        """
        # If there is a preprocessor, we let the preprocessor handle the validation.
        # Otherwise, we validate the data ourselves.
        check_X_kwargs = dict(dtype=[X_DTYPE], force_all_finite=False)
        if not reset:
            if self._preprocessor is None:
                return self._validate_data(X, reset=False, **check_X_kwargs)
            return self._preprocessor.transform(X)

        # At this point, reset is False, which runs during `fit`.
        self.is_categorical_ = self._check_categorical_features(X)

        if self.is_categorical_ is None:
            self._preprocessor = None
            self._is_categorical_remapped = None

            X = self._validate_data(X, **check_X_kwargs)
            return X, None

        n_features = X.shape[1]
        ordinal_encoder = OrdinalEncoder(
            categories="auto",
            handle_unknown="use_encoded_value",
            unknown_value=np.nan,
            encoded_missing_value=np.nan,
            dtype=X_DTYPE,
        )

        check_X = partial(check_array, **check_X_kwargs)
        numerical_preprocessor = FunctionTransformer(check_X)
        self._preprocessor = ColumnTransformer(
            [
                ("encoder", ordinal_encoder, self.is_categorical_),
                ("numerical", numerical_preprocessor, ~self.is_categorical_),
            ]
        )
        self._preprocessor.set_output(transform="default")
        X = self._preprocessor.fit_transform(X)
        # check categories found by the OrdinalEncoder and get their encoded values
        known_categories = self._check_categories()
        self.n_features_in_ = self._preprocessor.n_features_in_
        with suppress(AttributeError):
            self.feature_names_in_ = self._preprocessor.feature_names_in_

        # The ColumnTransformer's output places the categorical features at the
        # beginning
        categorical_remapped = np.zeros(n_features, dtype=bool)
        categorical_remapped[self._preprocessor.output_indices_["encoder"]] = True
        self._is_categorical_remapped = categorical_remapped

        return X, known_categories

    def _check_categories(self):
        """Check categories found by the preprocessor and return their encoded values.

        Returns a list of length ``self.n_features_in_``, with one entry per
        input feature.

        For non-categorical features, the corresponding entry is ``None``.

        For categorical features, the corresponding entry is an array
        containing the categories as encoded by the preprocessor (an
        ``OrdinalEncoder``), excluding missing values. The entry is therefore
        ``np.arange(n_categories)`` where ``n_categories`` is the number of
        unique values in the considered feature column, after removing missing
        values.

        If ``n_categories > self.max_bins`` for any feature, a ``ValueError``
        is raised.
        """
        encoder = self._preprocessor.named_transformers_["encoder"]
        known_categories = [None] * self._preprocessor.n_features_in_
        categorical_column_indices = np.arange(self._preprocessor.n_features_in_)[
            self._preprocessor.output_indices_["encoder"]
        ]
        for feature_idx, categories in zip(
            categorical_column_indices, encoder.categories_
        ):
            # OrdinalEncoder always puts np.nan as the last category if the
            # training data has missing values. Here we remove it because it is
            # already added by the _BinMapper.
            if len(categories) and is_scalar_nan(categories[-1]):
                categories = categories[:-1]
            if categories.size > self.max_bins:
                try:
                    feature_name = repr(encoder.feature_names_in_[feature_idx])
                except AttributeError:
                    feature_name = f"at index {feature_idx}"
                raise ValueError(
                    f"Categorical feature {feature_name} is expected to "
                    f"have a cardinality <= {self.max_bins} but actually "
                    f"has a cardinality of {categories.size}."
                )
            known_categories[feature_idx] = np.arange(len(categories), dtype=X_DTYPE)
        return known_categories

    def _check_categorical_features(self, X):
        """Check and validate categorical features in X

        Parameters
        ----------
        X : {array-like, pandas DataFrame} of shape (n_samples, n_features)
            Input data.

        Return
        ------
        is_categorical : ndarray of shape (n_features,) or None, dtype=bool
            Indicates whether a feature is categorical. If no feature is
            categorical, this is None.
        """
        # Special code for pandas because of a bug in recent pandas, which is
        # fixed in main and maybe included in 2.2.1, see
        # https://github.com/pandas-dev/pandas/pull/57173.
        # Also pandas versions < 1.5.1 do not support the dataframe interchange
        if _is_pandas_df(X):
            X_is_dataframe = True
            categorical_columns_mask = np.asarray(X.dtypes == "category")
            X_has_categorical_columns = categorical_columns_mask.any()
        elif hasattr(X, "__dataframe__"):
            X_is_dataframe = True
            categorical_columns_mask = np.asarray(
                [
                    c.dtype[0].name == "CATEGORICAL"
                    for c in X.__dataframe__().get_columns()
                ]
            )
            X_has_categorical_columns = categorical_columns_mask.any()
        else:
            X_is_dataframe = False
            categorical_columns_mask = None
            X_has_categorical_columns = False

        # TODO(1.6): Remove warning and change default to "from_dtype" in v1.6
        if (
            isinstance(self.categorical_features, str)
            and self.categorical_features == "warn"
        ):
            if X_has_categorical_columns:
                warnings.warn(
                    (
                        "The categorical_features parameter will change to 'from_dtype'"
                        " in v1.6. The 'from_dtype' option automatically treats"
                        " categorical dtypes in a DataFrame as categorical features."
                    ),
                    FutureWarning,
                )
            categorical_features = None
        else:
            categorical_features = self.categorical_features

        categorical_by_dtype = (
            isinstance(categorical_features, str)
            and categorical_features == "from_dtype"
        )
        no_categorical_dtype = categorical_features is None or (
            categorical_by_dtype and not X_is_dataframe
        )

        if no_categorical_dtype:
            return None

        use_pandas_categorical = categorical_by_dtype and X_is_dataframe
        if use_pandas_categorical:
            categorical_features = categorical_columns_mask
        else:
            categorical_features = np.asarray(categorical_features)

        if categorical_features.size == 0:
            return None

        if categorical_features.dtype.kind not in ("i", "b", "U", "O"):
            raise ValueError(
                "categorical_features must be an array-like of bool, int or "
                f"str, got: {categorical_features.dtype.name}."
            )

        if categorical_features.dtype.kind == "O":
            types = set(type(f) for f in categorical_features)
            if types != {str}:
                raise ValueError(
                    "categorical_features must be an array-like of bool, int or "
                    f"str, got: {', '.join(sorted(t.__name__ for t in types))}."
                )

        n_features = X.shape[1]
        # At this point `_validate_data` was not called yet because we want to use the
        # dtypes are used to discover the categorical features. Thus `feature_names_in_`
        # is not defined yet.
        feature_names_in_ = getattr(X, "columns", None)

        if categorical_features.dtype.kind in ("U", "O"):
            # check for feature names
            if feature_names_in_ is None:
                raise ValueError(
                    "categorical_features should be passed as an array of "
                    "integers or as a boolean mask when the model is fitted "
                    "on data without feature names."
                )
            is_categorical = np.zeros(n_features, dtype=bool)
            feature_names = list(feature_names_in_)
            for feature_name in categorical_features:
                try:
                    is_categorical[feature_names.index(feature_name)] = True
                except ValueError as e:
                    raise ValueError(
                        f"categorical_features has a item value '{feature_name}' "
                        "which is not a valid feature name of the training "
                        f"data. Observed feature names: {feature_names}"
                    ) from e
        elif categorical_features.dtype.kind == "i":
            # check for categorical features as indices
            if (
                np.max(categorical_features) >= n_features
                or np.min(categorical_features) < 0
            ):
                raise ValueError(
                    "categorical_features set as integer "
                    "indices must be in [0, n_features - 1]"
                )
            is_categorical = np.zeros(n_features, dtype=bool)
            is_categorical[categorical_features] = True
        else:
            if categorical_features.shape[0] != n_features:
                raise ValueError(
                    "categorical_features set as a boolean mask "
                    "must have shape (n_features,), got: "
                    f"{categorical_features.shape}"
                )
            is_categorical = categorical_features

        if not np.any(is_categorical):
            return None
        return is_categorical

    def _check_interaction_cst(self, n_features):
        """Check and validation for interaction constraints."""
        if self.interaction_cst is None:
            return None

        if self.interaction_cst == "no_interactions":
            interaction_cst = [[i] for i in range(n_features)]
        elif self.interaction_cst == "pairwise":
            interaction_cst = itertools.combinations(range(n_features), 2)
        else:
            interaction_cst = self.interaction_cst

        try:
            constraints = [set(group) for group in interaction_cst]
        except TypeError:
            raise ValueError(
                "Interaction constraints must be a sequence of tuples or lists, got:"
                f" {self.interaction_cst!r}."
            )

        for group in constraints:
            for x in group:
                if not (isinstance(x, Integral) and 0 <= x < n_features):
                    raise ValueError(
                        "Interaction constraints must consist of integer indices in"
                        f" [0, n_features - 1] = [0, {n_features - 1}], specifying the"
                        " position of features, got invalid indices:"
                        f" {group!r}"
                    )

        # Add all not listed features as own group by default.
        rest = set(range(n_features)) - set().union(*constraints)
        if len(rest) > 0:
            constraints.append(rest)

        return constraints

    @_fit_context(prefer_skip_nested_validation=True)
    def fit(self, X, y, sample_weight=None):
        """Fit the gradient boosting model.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            The input samples.

        y : array-like of shape (n_samples,)
            Target values.

        sample_weight : array-like of shape (n_samples,) default=None
            Weights of training data.

            .. versionadded:: 0.23

        Returns
        -------
        self : object
            Fitted estimator.
        """
        fit_start_time = time()
        acc_find_split_time = 0.0  # time spent finding the best splits
        acc_apply_split_time = 0.0  # time spent splitting nodes
        acc_compute_hist_time = 0.0  # time spent computing histograms
        # time spent predicting X for gradient and hessians update
        acc_prediction_time = 0.0
        X, known_categories = self._preprocess_X(X, reset=True)
        y = _check_y(y, estimator=self)
        y = self._encode_y(y)
        check_consistent_length(X, y)
        # Do not create unit sample weights by default to later skip some
        # computation
        if sample_weight is not None:
            sample_weight = _check_sample_weight(sample_weight, X, dtype=np.float64)
            # TODO: remove when PDP supports sample weights
            self._fitted_with_sw = True

        sample_weight = self._finalize_sample_weight(sample_weight, y)

        rng = check_random_state(self.random_state)

        # When warm starting, we want to reuse the same seed that was used
        # the first time fit was called (e.g. train/val split).
        # For feature subsampling, we want to continue with the rng we started with.
        if not self.warm_start or not self._is_fitted():
            self._random_seed = rng.randint(np.iinfo(np.uint32).max, dtype="u8")
            feature_subsample_seed = rng.randint(np.iinfo(np.uint32).max, dtype="u8")
            self._feature_subsample_rng = np.random.default_rng(feature_subsample_seed)

        self._validate_parameters()
        monotonic_cst = _check_monotonic_cst(self, self.monotonic_cst)

        # used for validation in predict
        n_samples, self._n_features = X.shape

        # Encode constraints into a list of sets of features indices (integers).
        interaction_cst = self._check_interaction_cst(self._n_features)

        # we need this stateful variable to tell raw_predict() that it was
        # called from fit() (this current method), and that the data it has
        # received is pre-binned.
        # predicting is faster on pre-binned data, so we want early stopping
        # predictions to be made on pre-binned data. Unfortunately the _scorer
        # can only call predict() or predict_proba(), not raw_predict(), and
        # there's no way to tell the scorer that it needs to predict binned
        # data.
        self._in_fit = True

        # `_openmp_effective_n_threads` is used to take cgroups CPU quotes
        # into account when determine the maximum number of threads to use.
        n_threads = _openmp_effective_n_threads()

        if isinstance(self.loss, str):
            self._loss = self._get_loss(sample_weight=sample_weight)
        elif isinstance(self.loss, BaseLoss):
            self._loss = self.loss

        if self.early_stopping == "auto":
            self.do_early_stopping_ = n_samples > 10000
        else:
            self.do_early_stopping_ = self.early_stopping

        # create validation data if needed
        self._use_validation_data = self.validation_fraction is not None
        if self.do_early_stopping_ and self._use_validation_data:
            # stratify for classification
            # instead of checking predict_proba, loss.n_classes >= 2 would also work
            stratify = y if hasattr(self._loss, "predict_proba") else None

            # Save the state of the RNG for the training and validation split.
            # This is needed in order to have the same split when using
            # warm starting.

            if sample_weight is None:
                X_train, X_val, y_train, y_val = train_test_split(
                    X,
                    y,
                    test_size=self.validation_fraction,
                    stratify=stratify,
                    random_state=self._random_seed,
                )
                sample_weight_train = sample_weight_val = None
            else:
                # TODO: incorporate sample_weight in sampling here, as well as
                # stratify
                (
                    X_train,
                    X_val,
                    y_train,
                    y_val,
                    sample_weight_train,
                    sample_weight_val,
                ) = train_test_split(
                    X,
                    y,
                    sample_weight,
                    test_size=self.validation_fraction,
                    stratify=stratify,
                    random_state=self._random_seed,
                )
        else:
            X_train, y_train, sample_weight_train = X, y, sample_weight
            X_val = y_val = sample_weight_val = None

        # Bin the data
        # For ease of use of the API, the user-facing GBDT classes accept the
        # parameter max_bins, which doesn't take into account the bin for
        # missing values (which is always allocated). However, since max_bins
        # isn't the true maximal number of bins, all other private classes
        # (binmapper, histbuilder...) accept n_bins instead, which is the
        # actual total number of bins. Everywhere in the code, the
        # convention is that n_bins == max_bins + 1
        n_bins = self.max_bins + 1  # + 1 for missing values
        self._bin_mapper = _BinMapper(
            n_bins=n_bins,
            is_categorical=self._is_categorical_remapped,
            known_categories=known_categories,
            random_state=self._random_seed,
            n_threads=n_threads,
        )
        X_binned_train = self._bin_data(X_train, is_training_data=True)
        if X_val is not None:
            X_binned_val = self._bin_data(X_val, is_training_data=False)
        else:
            X_binned_val = None

        # Uses binned data to check for missing values
        has_missing_values = (
            (X_binned_train == self._bin_mapper.missing_values_bin_idx_)
            .any(axis=0)
            .astype(np.uint8)
        )

        if self.verbose:
            print("Fitting gradient boosted rounds:")

        n_samples = X_binned_train.shape[0]
        scoring_is_predefined_string = self.scoring in _SCORERS
        need_raw_predictions_val = X_binned_val is not None and (
            scoring_is_predefined_string or self.scoring == "loss"
        )
        # First time calling fit, or no warm start
        if not (self._is_fitted() and self.warm_start):
            # Clear random state and score attributes
            self._clear_state()

            # initialize raw_predictions: those are the accumulated values
            # predicted by the trees for the training data. raw_predictions has
            # shape (n_samples, n_trees_per_iteration) where
            # n_trees_per_iterations is n_classes in multiclass classification,
            # else 1.
            # self._baseline_prediction has shape (1, n_trees_per_iteration)
            self._baseline_prediction = self._loss.fit_intercept_only(
                y_true=y_train, sample_weight=sample_weight_train
            ).reshape((1, -1))
            raw_predictions = np.zeros(
                shape=(n_samples, self.n_trees_per_iteration_),
                dtype=self._baseline_prediction.dtype,
                order="F",
            )
            raw_predictions += self._baseline_prediction

            # predictors is a matrix (list of lists) of TreePredictor objects
            # with shape (n_iter_, n_trees_per_iteration)
            self._predictors = predictors = []

            # Initialize structures and attributes related to early stopping
            self._scorer = None  # set if scoring != loss
            raw_predictions_val = None  # set if use val and scoring is a string
            self.train_score_ = []
            self.validation_score_ = []

            if self.do_early_stopping_:
                # populate train_score and validation_score with the
                # predictions of the initial model (before the first tree)

                # Create raw_predictions_val for storing the raw predictions of
                # the validation data.
                if need_raw_predictions_val:
                    raw_predictions_val = np.zeros(
                        shape=(X_binned_val.shape[0], self.n_trees_per_iteration_),
                        dtype=self._baseline_prediction.dtype,
                        order="F",
                    )

                    raw_predictions_val += self._baseline_prediction

                if self.scoring == "loss":
                    # we're going to compute scoring w.r.t the loss. As losses
                    # take raw predictions as input (unlike the scorers), we
                    # can optimize a bit and avoid repeating computing the
                    # predictions of the previous trees. We'll reuse
                    # raw_predictions (as it's needed for training anyway) for
                    # evaluating the training loss.

                    self._check_early_stopping_loss(
                        raw_predictions=raw_predictions,
                        y_train=y_train,
                        sample_weight_train=sample_weight_train,
                        raw_predictions_val=raw_predictions_val,
                        y_val=y_val,
                        sample_weight_val=sample_weight_val,
                        n_threads=n_threads,
                    )
                else:
                    self._scorer = check_scoring(self, self.scoring)
                    # _scorer is a callable with signature (est, X, y) and
                    # calls est.predict() or est.predict_proba() depending on
                    # its nature.
                    # Unfortunately, each call to _scorer() will compute
                    # the predictions of all the trees. So we use a subset of
                    # the training set to compute train scores.

                    # Compute the subsample set
                    (
                        X_binned_small_train,
                        y_small_train,
                        sample_weight_small_train,
                        indices_small_train,
                    ) = self._get_small_trainset(
                        X_binned_train,
                        y_train,
                        sample_weight_train,
                        self._random_seed,
                    )

                    # If the scorer is a predefined string, then we optimize
                    # the evaluation by re-using the incrementally updated raw
                    # predictions.
                    if scoring_is_predefined_string:
                        raw_predictions_small_train = raw_predictions[
                            indices_small_train
                        ]
                    else:
                        raw_predictions_small_train = None

                    self._check_early_stopping_scorer(
                        X_binned_small_train,
                        y_small_train,
                        sample_weight_small_train,
                        X_binned_val,
                        y_val,
                        sample_weight_val,
                        raw_predictions_small_train=raw_predictions_small_train,
                        raw_predictions_val=raw_predictions_val,
                    )
            begin_at_stage = 0

        # warm start: this is not the first time fit was called
        else:
            # Check that the maximum number of iterations is not smaller
            # than the number of iterations from the previous fit
            if self.max_iter < self.n_iter_:
                raise ValueError(
                    "max_iter=%d must be larger than or equal to "
                    "n_iter_=%d when warm_start==True" % (self.max_iter, self.n_iter_)
                )

            # Convert array attributes to lists
            self.train_score_ = self.train_score_.tolist()
            self.validation_score_ = self.validation_score_.tolist()

            # Compute raw predictions
            raw_predictions = self._raw_predict(X_binned_train, n_threads=n_threads)
            if self.do_early_stopping_ and need_raw_predictions_val:
                raw_predictions_val = self._raw_predict(
                    X_binned_val, n_threads=n_threads
                )
            else:
                raw_predictions_val = None

            if self.do_early_stopping_ and self.scoring != "loss":
                # Compute the subsample set
                (
                    X_binned_small_train,
                    y_small_train,
                    sample_weight_small_train,
                    indices_small_train,
                ) = self._get_small_trainset(
                    X_binned_train, y_train, sample_weight_train, self._random_seed
                )

            # Get the predictors from the previous fit
            predictors = self._predictors

            begin_at_stage = self.n_iter_

        # initialize gradients and hessians (empty arrays).
        # shape = (n_samples, n_trees_per_iteration).
        gradient, hessian = self._loss.init_gradient_and_hessian(
            n_samples=n_samples, dtype=G_H_DTYPE, order="F"
        )

        for iteration in range(begin_at_stage, self.max_iter):
            if self.verbose:
                iteration_start_time = time()
                print(
                    "[{}/{}] ".format(iteration + 1, self.max_iter), end="", flush=True
                )

            # Update gradients and hessians, inplace
            # Note that self._loss expects shape (n_samples,) for
            # n_trees_per_iteration = 1 else shape (n_samples, n_trees_per_iteration).
            if self._loss.constant_hessian:
                self._loss.gradient(
                    y_true=y_train,
                    raw_prediction=raw_predictions,
                    sample_weight=sample_weight_train,
                    gradient_out=gradient,
                    n_threads=n_threads,
                )
            else:
                self._loss.gradient_hessian(
                    y_true=y_train,
                    raw_prediction=raw_predictions,
                    sample_weight=sample_weight_train,
                    gradient_out=gradient,
                    hessian_out=hessian,
                    n_threads=n_threads,
                )

            # Append a list since there may be more than 1 predictor per iter
            predictors.append([])

            # 2-d views of shape (n_samples, n_trees_per_iteration_) or (n_samples, 1)
            # on gradient and hessian to simplify the loop over n_trees_per_iteration_.
            if gradient.ndim == 1:
                g_view = gradient.reshape((-1, 1))
                h_view = hessian.reshape((-1, 1))
            else:
                g_view = gradient
                h_view = hessian

            # Build `n_trees_per_iteration` trees.
            for k in range(self.n_trees_per_iteration_):
                grower = TreeGrower(
                    X_binned=X_binned_train,
                    gradients=g_view[:, k],
                    hessians=h_view[:, k],
                    n_bins=n_bins,
                    n_bins_non_missing=self._bin_mapper.n_bins_non_missing_,
                    has_missing_values=has_missing_values,
                    is_categorical=self._is_categorical_remapped,
                    monotonic_cst=monotonic_cst,
                    interaction_cst=interaction_cst,
                    max_leaf_nodes=self.max_leaf_nodes,
                    max_depth=self.max_depth,
                    min_samples_leaf=self.min_samples_leaf,
                    l2_regularization=self.l2_regularization,
                    feature_fraction_per_split=self.max_features,
                    rng=self._feature_subsample_rng,
                    shrinkage=self.learning_rate,
                    n_threads=n_threads,
                )
                grower.grow()

                acc_apply_split_time += grower.total_apply_split_time
                acc_find_split_time += grower.total_find_split_time
                acc_compute_hist_time += grower.total_compute_hist_time

                if not self._loss.differentiable:
                    _update_leaves_values(
                        loss=self._loss,
                        grower=grower,
                        y_true=y_train,
                        raw_prediction=raw_predictions[:, k],
                        sample_weight=sample_weight_train,
                    )

                predictor = grower.make_predictor(
                    binning_thresholds=self._bin_mapper.bin_thresholds_
                )
                predictors[-1].append(predictor)

                # Update raw_predictions with the predictions of the newly
                # created tree.
                tic_pred = time()
                _update_raw_predictions(raw_predictions[:, k], grower, n_threads)
                toc_pred = time()
                acc_prediction_time += toc_pred - tic_pred

            should_early_stop = False
            if self.do_early_stopping_:
                # Update raw_predictions_val with the newest tree(s)
                if need_raw_predictions_val:
                    for k, pred in enumerate(self._predictors[-1]):
                        raw_predictions_val[:, k] += pred.predict_binned(
                            X_binned_val,
                            self._bin_mapper.missing_values_bin_idx_,
                            n_threads,
                        )

                if self.scoring == "loss":
                    should_early_stop = self._check_early_stopping_loss(
                        raw_predictions=raw_predictions,
                        y_train=y_train,
                        sample_weight_train=sample_weight_train,
                        raw_predictions_val=raw_predictions_val,
                        y_val=y_val,
                        sample_weight_val=sample_weight_val,
                        n_threads=n_threads,
                    )

                else:
                    # If the scorer is a predefined string, then we optimize the
                    # evaluation by re-using the incrementally computed raw predictions.
                    if scoring_is_predefined_string:
                        raw_predictions_small_train = raw_predictions[
                            indices_small_train
                        ]
                    else:
                        raw_predictions_small_train = None

                    should_early_stop = self._check_early_stopping_scorer(
                        X_binned_small_train,
                        y_small_train,
                        sample_weight_small_train,
                        X_binned_val,
                        y_val,
                        sample_weight_val,
                        raw_predictions_small_train=raw_predictions_small_train,
                        raw_predictions_val=raw_predictions_val,
                    )

            if self.verbose:
                self._print_iteration_stats(iteration_start_time)

            # maybe we could also early stop if all the trees are stumps?
            if should_early_stop:
                break

        if self.verbose:
            duration = time() - fit_start_time
            n_total_leaves = sum(
                predictor.get_n_leaf_nodes()
                for predictors_at_ith_iteration in self._predictors
                for predictor in predictors_at_ith_iteration
            )
            n_predictors = sum(
                len(predictors_at_ith_iteration)
                for predictors_at_ith_iteration in self._predictors
            )
            print(
                "Fit {} trees in {:.3f} s, ({} total leaves)".format(
                    n_predictors, duration, n_total_leaves
                )
            )
            print(
                "{:<32} {:.3f}s".format(
                    "Time spent computing histograms:", acc_compute_hist_time
                )
            )
            print(
                "{:<32} {:.3f}s".format(
                    "Time spent finding best splits:", acc_find_split_time
                )
            )
            print(
                "{:<32} {:.3f}s".format(
                    "Time spent applying splits:", acc_apply_split_time
                )
            )
            print(
                "{:<32} {:.3f}s".format("Time spent predicting:", acc_prediction_time)
            )

        self.train_score_ = np.asarray(self.train_score_)
        self.validation_score_ = np.asarray(self.validation_score_)
        del self._in_fit  # hard delete so we're sure it can't be used anymore
        return self

    def _is_fitted(self):
        return len(getattr(self, "_predictors", [])) > 0

    def _clear_state(self):
        """Clear the state of the gradient boosting model."""
        for var in ("train_score_", "validation_score_"):
            if hasattr(self, var):
                delattr(self, var)

    def _get_small_trainset(self, X_binned_train, y_train, sample_weight_train, seed):
        """Compute the indices of the subsample set and return this set.

        For efficiency, we need to subsample the training set to compute scores
        with scorers.
        """
        # TODO: incorporate sample_weights here in `resample`
        subsample_size = 10000
        if X_binned_train.shape[0] > subsample_size:
            indices = np.arange(X_binned_train.shape[0])
            stratify = y_train if is_classifier(self) else None
            indices = resample(
                indices,
                n_samples=subsample_size,
                replace=False,
                random_state=seed,
                stratify=stratify,
            )
            X_binned_small_train = X_binned_train[indices]
            y_small_train = y_train[indices]
            if sample_weight_train is not None:
                sample_weight_small_train = sample_weight_train[indices]
            else:
                sample_weight_small_train = None
            X_binned_small_train = np.ascontiguousarray(X_binned_small_train)
            return (
                X_binned_small_train,
                y_small_train,
                sample_weight_small_train,
                indices,
            )
        else:
            return X_binned_train, y_train, sample_weight_train, slice(None)

    def _check_early_stopping_scorer(
        self,
        X_binned_small_train,
        y_small_train,
        sample_weight_small_train,
        X_binned_val,
        y_val,
        sample_weight_val,
        raw_predictions_small_train=None,
        raw_predictions_val=None,
    ):
        """Check if fitting should be early-stopped based on scorer.

        Scores are computed on validation data or on training data.
        """
        if is_classifier(self):
            y_small_train = self.classes_[y_small_train.astype(int)]

        self.train_score_.append(
            self._score_with_raw_predictions(
                X_binned_small_train,
                y_small_train,
                sample_weight_small_train,
                raw_predictions_small_train,
            )
        )

        if self._use_validation_data:
            if is_classifier(self):
                y_val = self.classes_[y_val.astype(int)]
            self.validation_score_.append(
                self._score_with_raw_predictions(
                    X_binned_val, y_val, sample_weight_val, raw_predictions_val
                )
            )
            return self._should_stop(self.validation_score_)
        else:
            return self._should_stop(self.train_score_)

    def _score_with_raw_predictions(self, X, y, sample_weight, raw_predictions=None):
        if raw_predictions is None:
            patcher_raw_predict = nullcontext()
        else:
            patcher_raw_predict = _patch_raw_predict(self, raw_predictions)

        with patcher_raw_predict:
            if sample_weight is None:
                return self._scorer(self, X, y)
            else:
                return self._scorer(self, X, y, sample_weight=sample_weight)

    def _check_early_stopping_loss(
        self,
        raw_predictions,
        y_train,
        sample_weight_train,
        raw_predictions_val,
        y_val,
        sample_weight_val,
        n_threads=1,
    ):
        """Check if fitting should be early-stopped based on loss.

        Scores are computed on validation data or on training data.
        """
        self.train_score_.append(
            -self._loss(
                y_true=y_train,
                raw_prediction=raw_predictions,
                sample_weight=sample_weight_train,
                n_threads=n_threads,
            )
        )

        if self._use_validation_data:
            self.validation_score_.append(
                -self._loss(
                    y_true=y_val,
                    raw_prediction=raw_predictions_val,
                    sample_weight=sample_weight_val,
                    n_threads=n_threads,
                )
            )
            return self._should_stop(self.validation_score_)
        else:
            return self._should_stop(self.train_score_)

    def _should_stop(self, scores):
        """
        Return True (do early stopping) if the last n scores aren't better
        than the (n-1)th-to-last score, up to some tolerance.
        """
        reference_position = self.n_iter_no_change + 1
        if len(scores) < reference_position:
            return False

        # A higher score is always better. Higher tol means that it will be
        # harder for subsequent iteration to be considered an improvement upon
        # the reference score, and therefore it is more likely to early stop
        # because of the lack of significant improvement.
        reference_score = scores[-reference_position] + self.tol
        recent_scores = scores[-reference_position + 1 :]
        recent_improvements = [score > reference_score for score in recent_scores]
        return not any(recent_improvements)

    def _bin_data(self, X, is_training_data):
        """Bin data X.

        If is_training_data, then fit the _bin_mapper attribute.
        Else, the binned data is converted to a C-contiguous array.
        """

        description = "training" if is_training_data else "validation"
        if self.verbose:
            print(
                "Binning {:.3f} GB of {} data: ".format(X.nbytes / 1e9, description),
                end="",
                flush=True,
            )
        tic = time()
        if is_training_data:
            X_binned = self._bin_mapper.fit_transform(X)  # F-aligned array
        else:
            X_binned = self._bin_mapper.transform(X)  # F-aligned array
            # We convert the array to C-contiguous since predicting is faster
            # with this layout (training is faster on F-arrays though)
            X_binned = np.ascontiguousarray(X_binned)
        toc = time()
        if self.verbose:
            duration = toc - tic
            print("{:.3f} s".format(duration))

        return X_binned

    def _print_iteration_stats(self, iteration_start_time):
        """Print info about the current fitting iteration."""
        log_msg = ""

        predictors_of_ith_iteration = [
            predictors_list
            for predictors_list in self._predictors[-1]
            if predictors_list
        ]
        n_trees = len(predictors_of_ith_iteration)
        max_depth = max(
            predictor.get_max_depth() for predictor in predictors_of_ith_iteration
        )
        n_leaves = sum(
            predictor.get_n_leaf_nodes() for predictor in predictors_of_ith_iteration
        )

        if n_trees == 1:
            log_msg += "{} tree, {} leaves, ".format(n_trees, n_leaves)
        else:
            log_msg += "{} trees, {} leaves ".format(n_trees, n_leaves)
            log_msg += "({} on avg), ".format(int(n_leaves / n_trees))

        log_msg += "max depth = {}, ".format(max_depth)

        if self.do_early_stopping_:
            if self.scoring == "loss":
                factor = -1  # score_ arrays contain the negative loss
                name = "loss"
            else:
                factor = 1
                name = "score"
            log_msg += "train {}: {:.5f}, ".format(name, factor * self.train_score_[-1])
            if self._use_validation_data:
                log_msg += "val {}: {:.5f}, ".format(
                    name, factor * self.validation_score_[-1]
                )

        iteration_time = time() - iteration_start_time
        log_msg += "in {:0.3f}s".format(iteration_time)

        print(log_msg)

    def _raw_predict(self, X, n_threads=None):
        """Return the sum of the leaves values over all predictors.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            The input samples.
        n_threads : int, default=None
            Number of OpenMP threads to use. `_openmp_effective_n_threads` is called
            to determine the effective number of threads use, which takes cgroups CPU
            quotes into account. See the docstring of `_openmp_effective_n_threads`
            for details.

        Returns
        -------
        raw_predictions : array, shape (n_samples, n_trees_per_iteration)
            The raw predicted values.
        """
        check_is_fitted(self)
        is_binned = getattr(self, "_in_fit", False)
        if not is_binned:
            X = self._preprocess_X(X, reset=False)

        n_samples = X.shape[0]
        raw_predictions = np.zeros(
            shape=(n_samples, self.n_trees_per_iteration_),
            dtype=self._baseline_prediction.dtype,
            order="F",
        )
        raw_predictions += self._baseline_prediction

        # We intentionally decouple the number of threads used at prediction
        # time from the number of threads used at fit time because the model
        # can be deployed on a different machine for prediction purposes.
        n_threads = _openmp_effective_n_threads(n_threads)
        self._predict_iterations(
            X, self._predictors, raw_predictions, is_binned, n_threads
        )
        return raw_predictions

    def _predict_iterations(self, X, predictors, raw_predictions, is_binned, n_threads):
        """Add the predictions of the predictors to raw_predictions."""
        if not is_binned:
            (
                known_cat_bitsets,
                f_idx_map,
            ) = self._bin_mapper.make_known_categories_bitsets()

        for predictors_of_ith_iteration in predictors:
            for k, predictor in enumerate(predictors_of_ith_iteration):
                if is_binned:
                    predict = partial(
                        predictor.predict_binned,
                        missing_values_bin_idx=self._bin_mapper.missing_values_bin_idx_,
                        n_threads=n_threads,
                    )
                else:
                    predict = partial(
                        predictor.predict,
                        known_cat_bitsets=known_cat_bitsets,
                        f_idx_map=f_idx_map,
                        n_threads=n_threads,
                    )
                raw_predictions[:, k] += predict(X)

    def _staged_raw_predict(self, X):
        """Compute raw predictions of ``X`` for each iteration.

        This method allows monitoring (i.e. determine error on testing set)
        after each stage.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            The input samples.

        Yields
        ------
        raw_predictions : generator of ndarray of shape \
            (n_samples, n_trees_per_iteration)
            The raw predictions of the input samples. The order of the
            classes corresponds to that in the attribute :term:`classes_`.
        """
        check_is_fitted(self)
        X = self._preprocess_X(X, reset=False)
        if X.shape[1] != self._n_features:
            raise ValueError(
                "X has {} features but this estimator was trained with "
                "{} features.".format(X.shape[1], self._n_features)
            )
        n_samples = X.shape[0]
        raw_predictions = np.zeros(
            shape=(n_samples, self.n_trees_per_iteration_),
            dtype=self._baseline_prediction.dtype,
            order="F",
        )
        raw_predictions += self._baseline_prediction

        # We intentionally decouple the number of threads used at prediction
        # time from the number of threads used at fit time because the model
        # can be deployed on a different machine for prediction purposes.
        n_threads = _openmp_effective_n_threads()
        for iteration in range(len(self._predictors)):
            self._predict_iterations(
                X,
                self._predictors[iteration : iteration + 1],
                raw_predictions,
                is_binned=False,
                n_threads=n_threads,
            )
            yield raw_predictions.copy()

    def _compute_partial_dependence_recursion(self, grid, target_features):
        """Fast partial dependence computation.

        Parameters
        ----------
        grid : ndarray, shape (n_samples, n_target_features)
            The grid points on which the partial dependence should be
            evaluated.
        target_features : ndarray, shape (n_target_features)
            The set of target features for which the partial dependence
            should be evaluated.

        Returns
        -------
        averaged_predictions : ndarray, shape \
                (n_trees_per_iteration, n_samples)
            The value of the partial dependence function on each grid point.
        """

        if getattr(self, "_fitted_with_sw", False):
            raise NotImplementedError(
                "{} does not support partial dependence "
                "plots with the 'recursion' method when "
                "sample weights were given during fit "
                "time.".format(self.__class__.__name__)
            )

        grid = np.asarray(grid, dtype=X_DTYPE, order="C")
        averaged_predictions = np.zeros(
            (self.n_trees_per_iteration_, grid.shape[0]), dtype=Y_DTYPE
        )

        for predictors_of_ith_iteration in self._predictors:
            for k, predictor in enumerate(predictors_of_ith_iteration):
                predictor.compute_partial_dependence(
                    grid, target_features, averaged_predictions[k]
                )
        # Note that the learning rate is already accounted for in the leaves
        # values.

        return averaged_predictions

    def _more_tags(self):
        return {"allow_nan": True}

    @abstractmethod
    def _get_loss(self, sample_weight):
        pass

    @abstractmethod
    def _encode_y(self, y=None):
        pass

    @property
    def n_iter_(self):
        """Number of iterations of the boosting process."""
        check_is_fitted(self)
        return len(self._predictors)


class HistGradientBoostingRegressor(RegressorMixin, BaseHistGradientBoosting):
    """Histogram-based Gradient Boosting Regression Tree.

    This estimator is much faster than
    :class:`GradientBoostingRegressor<sklearn.ensemble.GradientBoostingRegressor>`
    for big datasets (n_samples >= 10 000).

    This estimator has native support for missing values (NaNs). During
    training, the tree grower learns at each split point whether samples
    with missing values should go to the left or right child, based on the
    potential gain. When predicting, samples with missing values are
    assigned to the left or right child consequently. If no missing values
    were encountered for a given feature during training, then samples with
    missing values are mapped to whichever child has the most samples.

    This implementation is inspired by
    `LightGBM <https://github.com/Microsoft/LightGBM>`_.

    Read more in the :ref:`User Guide <histogram_based_gradient_boosting>`.

    .. versionadded:: 0.21

    Parameters
    ----------
    loss : {'squared_error', 'absolute_error', 'gamma', 'poisson', 'quantile'}, \
            default='squared_error'
        The loss function to use in the boosting process. Note that the
        "squared error", "gamma" and "poisson" losses actually implement
        "half least squares loss", "half gamma deviance" and "half poisson
        deviance" to simplify the computation of the gradient. Furthermore,
        "gamma" and "poisson" losses internally use a log-link, "gamma"
        requires ``y > 0`` and "poisson" requires ``y >= 0``.
        "quantile" uses the pinball loss.

        .. versionchanged:: 0.23
           Added option 'poisson'.

        .. versionchanged:: 1.1
           Added option 'quantile'.

        .. versionchanged:: 1.3
           Added option 'gamma'.

    quantile : float, default=None
        If loss is "quantile", this parameter specifies which quantile to be estimated
        and must be between 0 and 1.
    learning_rate : float, default=0.1
        The learning rate, also known as *shrinkage*. This is used as a
        multiplicative factor for the leaves values. Use ``1`` for no
        shrinkage.
    max_iter : int, default=100
        The maximum number of iterations of the boosting process, i.e. the
        maximum number of trees.
    max_leaf_nodes : int or None, default=31
        The maximum number of leaves for each tree. Must be strictly greater
        than 1. If None, there is no maximum limit.
    max_depth : int or None, default=None
        The maximum depth of each tree. The depth of a tree is the number of
        edges to go from the root to the deepest leaf.
        Depth isn't constrained by default.
    min_samples_leaf : int, default=20
        The minimum number of samples per leaf. For small datasets with less
        than a few hundred samples, it is recommended to lower this value
        since only very shallow trees would be built.
    l2_regularization : float, default=0
        The L2 regularization parameter. Use ``0`` for no regularization (default).
    max_features : float, default=1.0
        Proportion of randomly chosen features in each and every node split.
        This is a form of regularization, smaller values make the trees weaker
        learners and might prevent overfitting.
        If interaction constraints from `interaction_cst` are present, only allowed
        features are taken into account for the subsampling.

        .. versionadded:: 1.4

    max_bins : int, default=255
        The maximum number of bins to use for non-missing values. Before
        training, each feature of the input array `X` is binned into
        integer-valued bins, which allows for a much faster training stage.
        Features with a small number of unique values may use less than
        ``max_bins`` bins. In addition to the ``max_bins`` bins, one more bin
        is always reserved for missing values. Must be no larger than 255.
    categorical_features : array-like of {bool, int, str} of shape (n_features) \
            or shape (n_categorical_features,), default=None
        Indicates the categorical features.

        - None : no feature will be considered categorical.
        - boolean array-like : boolean mask indicating categorical features.
        - integer array-like : integer indices indicating categorical
          features.
        - str array-like: names of categorical features (assuming the training
          data has feature names).
        - `"from_dtype"`: dataframe columns with dtype "category" are
          considered to be categorical features. The input must be an object
          exposing a ``__dataframe__`` method such as pandas or polars
          DataFrames to use this feature.

        For each categorical feature, there must be at most `max_bins` unique
        categories. Negative values for categorical features encoded as numeric
        dtypes are treated as missing values. All categorical values are
        converted to floating point numbers. This means that categorical values
        of 1.0 and 1 are treated as the same category.

        Read more in the :ref:`User Guide <categorical_support_gbdt>`.

        .. versionadded:: 0.24

        .. versionchanged:: 1.2
           Added support for feature names.

        .. versionchanged:: 1.4
           Added `"from_dtype"` option. The default will change to `"from_dtype"` in
           v1.6.

    monotonic_cst : array-like of int of shape (n_features) or dict, default=None
        Monotonic constraint to enforce on each feature are specified using the
        following integer values:

        - 1: monotonic increase
        - 0: no constraint
        - -1: monotonic decrease

        If a dict with str keys, map feature to monotonic constraints by name.
        If an array, the features are mapped to constraints by position. See
        :ref:`monotonic_cst_features_names` for a usage example.

        Read more in the :ref:`User Guide <monotonic_cst_gbdt>`.

        .. versionadded:: 0.23

        .. versionchanged:: 1.2
           Accept dict of constraints with feature names as keys.

    interaction_cst : {"pairwise", "no_interactions"} or sequence of lists/tuples/sets \
            of int, default=None
        Specify interaction constraints, the sets of features which can
        interact with each other in child node splits.

        Each item specifies the set of feature indices that are allowed
        to interact with each other. If there are more features than
        specified in these constraints, they are treated as if they were
        specified as an additional set.

        The strings "pairwise" and "no_interactions" are shorthands for
        allowing only pairwise or no interactions, respectively.

        For instance, with 5 features in total, `interaction_cst=[{0, 1}]`
        is equivalent to `interaction_cst=[{0, 1}, {2, 3, 4}]`,
        and specifies that each branch of a tree will either only split
        on features 0 and 1 or only split on features 2, 3 and 4.

        .. versionadded:: 1.2

    warm_start : bool, default=False
        When set to ``True``, reuse the solution of the previous call to fit
        and add more estimators to the ensemble. For results to be valid, the
        estimator should be re-trained on the same data only.
        See :term:`the Glossary <warm_start>`.
    early_stopping : 'auto' or bool, default='auto'
        If 'auto', early stopping is enabled if the sample size is larger than
        10000. If True, early stopping is enabled, otherwise early stopping is
        disabled.

        .. versionadded:: 0.23

    scoring : str or callable or None, default='loss'
        Scoring parameter to use for early stopping. It can be a single
        string (see :ref:`scoring_parameter`) or a callable (see
        :ref:`scoring`). If None, the estimator's default scorer is used. If
        ``scoring='loss'``, early stopping is checked w.r.t the loss value.
        Only used if early stopping is performed.
    validation_fraction : int or float or None, default=0.1
        Proportion (or absolute size) of training data to set aside as
        validation data for early stopping. If None, early stopping is done on
        the training data. Only used if early stopping is performed.
    n_iter_no_change : int, default=10
        Used to determine when to "early stop". The fitting process is
        stopped when none of the last ``n_iter_no_change`` scores are better
        than the ``n_iter_no_change - 1`` -th-to-last one, up to some
        tolerance. Only used if early stopping is performed.
    tol : float, default=1e-7
        The absolute tolerance to use when comparing scores during early
        stopping. The higher the tolerance, the more likely we are to early
        stop: higher tolerance means that it will be harder for subsequent
        iterations to be considered an improvement upon the reference score.
    verbose : int, default=0
        The verbosity level. If not zero, print some information about the
        fitting process.
    random_state : int, RandomState instance or None, default=None
        Pseudo-random number generator to control the subsampling in the
        binning process, and the train/validation data split if early stopping
        is enabled.
        Pass an int for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.

    Attributes
    ----------
    do_early_stopping_ : bool
        Indicates whether early stopping is used during training.
    n_iter_ : int
        The number of iterations as selected by early stopping, depending on
        the `early_stopping` parameter. Otherwise it corresponds to max_iter.
    n_trees_per_iteration_ : int
        The number of tree that are built at each iteration. For regressors,
        this is always 1.
    train_score_ : ndarray, shape (n_iter_+1,)
        The scores at each iteration on the training data. The first entry
        is the score of the ensemble before the first iteration. Scores are
        computed according to the ``scoring`` parameter. If ``scoring`` is
        not 'loss', scores are computed on a subset of at most 10 000
        samples. Empty if no early stopping.
    validation_score_ : ndarray, shape (n_iter_+1,)
        The scores at each iteration on the held-out validation data. The
        first entry is the score of the ensemble before the first iteration.
        Scores are computed according to the ``scoring`` parameter. Empty if
        no early stopping or if ``validation_fraction`` is None.
    is_categorical_ : ndarray, shape (n_features, ) or None
        Boolean mask for the categorical features. ``None`` if there are no
        categorical features.
    n_features_in_ : int
        Number of features seen during :term:`fit`.

        .. versionadded:: 0.24
    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    See Also
    --------
    GradientBoostingRegressor : Exact gradient boosting method that does not
        scale as good on datasets with a large number of samples.
    sklearn.tree.DecisionTreeRegressor : A decision tree regressor.
    RandomForestRegressor : A meta-estimator that fits a number of decision
        tree regressors on various sub-samples of the dataset and uses
        averaging to improve the statistical performance and control
        over-fitting.
    AdaBoostRegressor : A meta-estimator that begins by fitting a regressor
        on the original dataset and then fits additional copies of the
        regressor on the same dataset but where the weights of instances are
        adjusted according to the error of the current prediction. As such,
        subsequent regressors focus more on difficult cases.

    Examples
    --------
    >>> from sklearn.ensemble import HistGradientBoostingRegressor
    >>> from sklearn.datasets import load_diabetes
    >>> X, y = load_diabetes(return_X_y=True)
    >>> est = HistGradientBoostingRegressor().fit(X, y)
    >>> est.score(X, y)
    0.92...
    """

    _parameter_constraints: dict = {
        **BaseHistGradientBoosting._parameter_constraints,
        "loss": [
            StrOptions(
                {
                    "squared_error",
                    "absolute_error",
                    "poisson",
                    "gamma",
                    "quantile",
                }
            ),
            BaseLoss,
        ],
        "quantile": [Interval(Real, 0, 1, closed="both"), None],
    }

    def __init__(
        self,
        loss="squared_error",
        *,
        quantile=None,
        learning_rate=0.1,
        max_iter=100,
        max_leaf_nodes=31,
        max_depth=None,
        min_samples_leaf=20,
        l2_regularization=0.0,
        max_features=1.0,
        max_bins=255,
        categorical_features="warn",
        monotonic_cst=None,
        interaction_cst=None,
        warm_start=False,
        early_stopping="auto",
        scoring="loss",
        validation_fraction=0.1,
        n_iter_no_change=10,
        tol=1e-7,
        verbose=0,
        random_state=None,
    ):
        super(HistGradientBoostingRegressor, self).__init__(
            loss=loss,
            learning_rate=learning_rate,
            max_iter=max_iter,
            max_leaf_nodes=max_leaf_nodes,
            max_depth=max_depth,
            min_samples_leaf=min_samples_leaf,
            l2_regularization=l2_regularization,
            max_features=max_features,
            max_bins=max_bins,
            monotonic_cst=monotonic_cst,
            interaction_cst=interaction_cst,
            categorical_features=categorical_features,
            early_stopping=early_stopping,
            warm_start=warm_start,
            scoring=scoring,
            validation_fraction=validation_fraction,
            n_iter_no_change=n_iter_no_change,
            tol=tol,
            verbose=verbose,
            random_state=random_state,
        )
        self.quantile = quantile

    def predict(self, X):
        """Predict values for X.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            The input samples.

        Returns
        -------
        y : ndarray, shape (n_samples,)
            The predicted values.
        """
        check_is_fitted(self)
        # Return inverse link of raw predictions after converting
        # shape (n_samples, 1) to (n_samples,)
        return self._loss.link.inverse(self._raw_predict(X).ravel())

    def staged_predict(self, X):
        """Predict regression target for each iteration.

        This method allows monitoring (i.e. determine error on testing set)
        after each stage.

        .. versionadded:: 0.24

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            The input samples.

        Yields
        ------
        y : generator of ndarray of shape (n_samples,)
            The predicted values of the input samples, for each iteration.
        """
        for raw_predictions in self._staged_raw_predict(X):
            yield self._loss.link.inverse(raw_predictions.ravel())

    def _encode_y(self, y):
        # Just convert y to the expected dtype
        self.n_trees_per_iteration_ = 1
        y = y.astype(Y_DTYPE, copy=False)
        if self.loss == "gamma":
            # Ensure y > 0
            if not np.all(y > 0):
                raise ValueError("loss='gamma' requires strictly positive y.")
        elif self.loss == "poisson":
            # Ensure y >= 0 and sum(y) > 0
            if not (np.all(y >= 0) and np.sum(y) > 0):
                raise ValueError(
                    "loss='poisson' requires non-negative y and sum(y) > 0."
                )
        return y

    def _get_loss(self, sample_weight):
        if self.loss == "quantile":
            return _LOSSES[self.loss](
                sample_weight=sample_weight, quantile=self.quantile
            )
        else:
            return _LOSSES[self.loss](sample_weight=sample_weight)


class HistGradientBoostingClassifier(ClassifierMixin, BaseHistGradientBoosting):
    """Histogram-based Gradient Boosting Classification Tree.

    This estimator is much faster than
    :class:`GradientBoostingClassifier<sklearn.ensemble.GradientBoostingClassifier>`
    for big datasets (n_samples >= 10 000).

    This estimator has native support for missing values (NaNs). During
    training, the tree grower learns at each split point whether samples
    with missing values should go to the left or right child, based on the
    potential gain. When predicting, samples with missing values are
    assigned to the left or right child consequently. If no missing values
    were encountered for a given feature during training, then samples with
    missing values are mapped to whichever child has the most samples.

    This implementation is inspired by
    `LightGBM <https://github.com/Microsoft/LightGBM>`_.

    Read more in the :ref:`User Guide <histogram_based_gradient_boosting>`.

    .. versionadded:: 0.21

    Parameters
    ----------
    loss : {'log_loss'}, default='log_loss'
        The loss function to use in the boosting process.

        For binary classification problems, 'log_loss' is also known as logistic loss,
        binomial deviance or binary crossentropy. Internally, the model fits one tree
        per boosting iteration and uses the logistic sigmoid function (expit) as
        inverse link function to compute the predicted positive class probability.

        For multiclass classification problems, 'log_loss' is also known as multinomial
        deviance or categorical crossentropy. Internally, the model fits one tree per
        boosting iteration and per class and uses the softmax function as inverse link
        function to compute the predicted probabilities of the classes.

    learning_rate : float, default=0.1
        The learning rate, also known as *shrinkage*. This is used as a
        multiplicative factor for the leaves values. Use ``1`` for no
        shrinkage.
    max_iter : int, default=100
        The maximum number of iterations of the boosting process, i.e. the
        maximum number of trees for binary classification. For multiclass
        classification, `n_classes` trees per iteration are built.
    max_leaf_nodes : int or None, default=31
        The maximum number of leaves for each tree. Must be strictly greater
        than 1. If None, there is no maximum limit.
    max_depth : int or None, default=None
        The maximum depth of each tree. The depth of a tree is the number of
        edges to go from the root to the deepest leaf.
        Depth isn't constrained by default.
    min_samples_leaf : int, default=20
        The minimum number of samples per leaf. For small datasets with less
        than a few hundred samples, it is recommended to lower this value
        since only very shallow trees would be built.
    l2_regularization : float, default=0
        The L2 regularization parameter. Use ``0`` for no regularization (default).
    max_features : float, default=1.0
        Proportion of randomly chosen features in each and every node split.
        This is a form of regularization, smaller values make the trees weaker
        learners and might prevent overfitting.
        If interaction constraints from `interaction_cst` are present, only allowed
        features are taken into account for the subsampling.

        .. versionadded:: 1.4

    max_bins : int, default=255
        The maximum number of bins to use for non-missing values. Before
        training, each feature of the input array `X` is binned into
        integer-valued bins, which allows for a much faster training stage.
        Features with a small number of unique values may use less than
        ``max_bins`` bins. In addition to the ``max_bins`` bins, one more bin
        is always reserved for missing values. Must be no larger than 255.
    categorical_features : array-like of {bool, int, str} of shape (n_features) \
            or shape (n_categorical_features,), default=None
        Indicates the categorical features.

        - None : no feature will be considered categorical.
        - boolean array-like : boolean mask indicating categorical features.
        - integer array-like : integer indices indicating categorical
          features.
        - str array-like: names of categorical features (assuming the training
          data has feature names).
        - `"from_dtype"`: dataframe columns with dtype "category" are
          considered to be categorical features. The input must be an object
          exposing a ``__dataframe__`` method such as pandas or polars
          DataFrames to use this feature.

        For each categorical feature, there must be at most `max_bins` unique
        categories. Negative values for categorical features encoded as numeric
        dtypes are treated as missing values. All categorical values are
        converted to floating point numbers. This means that categorical values
        of 1.0 and 1 are treated as the same category.

        Read more in the :ref:`User Guide <categorical_support_gbdt>`.

        .. versionadded:: 0.24

        .. versionchanged:: 1.2
           Added support for feature names.

        .. versionchanged:: 1.4
           Added `"from_dtype"` option. The default will change to `"from_dtype"` in
           v1.6.

    monotonic_cst : array-like of int of shape (n_features) or dict, default=None
        Monotonic constraint to enforce on each feature are specified using the
        following integer values:

        - 1: monotonic increase
        - 0: no constraint
        - -1: monotonic decrease

        If a dict with str keys, map feature to monotonic constraints by name.
        If an array, the features are mapped to constraints by position. See
        :ref:`monotonic_cst_features_names` for a usage example.

        The constraints are only valid for binary classifications and hold
        over the probability of the positive class.
        Read more in the :ref:`User Guide <monotonic_cst_gbdt>`.

        .. versionadded:: 0.23

        .. versionchanged:: 1.2
           Accept dict of constraints with feature names as keys.

    interaction_cst : {"pairwise", "no_interactions"} or sequence of lists/tuples/sets \
            of int, default=None
        Specify interaction constraints, the sets of features which can
        interact with each other in child node splits.

        Each item specifies the set of feature indices that are allowed
        to interact with each other. If there are more features than
        specified in these constraints, they are treated as if they were
        specified as an additional set.

        The strings "pairwise" and "no_interactions" are shorthands for
        allowing only pairwise or no interactions, respectively.

        For instance, with 5 features in total, `interaction_cst=[{0, 1}]`
        is equivalent to `interaction_cst=[{0, 1}, {2, 3, 4}]`,
        and specifies that each branch of a tree will either only split
        on features 0 and 1 or only split on features 2, 3 and 4.

        .. versionadded:: 1.2

    warm_start : bool, default=False
        When set to ``True``, reuse the solution of the previous call to fit
        and add more estimators to the ensemble. For results to be valid, the
        estimator should be re-trained on the same data only.
        See :term:`the Glossary <warm_start>`.
    early_stopping : 'auto' or bool, default='auto'
        If 'auto', early stopping is enabled if the sample size is larger than
        10000. If True, early stopping is enabled, otherwise early stopping is
        disabled.

        .. versionadded:: 0.23

    scoring : str or callable or None, default='loss'
        Scoring parameter to use for early stopping. It can be a single
        string (see :ref:`scoring_parameter`) or a callable (see
        :ref:`scoring`). If None, the estimator's default scorer
        is used. If ``scoring='loss'``, early stopping is checked
        w.r.t the loss value. Only used if early stopping is performed.
    validation_fraction : int or float or None, default=0.1
        Proportion (or absolute size) of training data to set aside as
        validation data for early stopping. If None, early stopping is done on
        the training data. Only used if early stopping is performed.
    n_iter_no_change : int, default=10
        Used to determine when to "early stop". The fitting process is
        stopped when none of the last ``n_iter_no_change`` scores are better
        than the ``n_iter_no_change - 1`` -th-to-last one, up to some
        tolerance. Only used if early stopping is performed.
    tol : float, default=1e-7
        The absolute tolerance to use when comparing scores. The higher the
        tolerance, the more likely we are to early stop: higher tolerance
        means that it will be harder for subsequent iterations to be
        considered an improvement upon the reference score.
    verbose : int, default=0
        The verbosity level. If not zero, print some information about the
        fitting process.
    random_state : int, RandomState instance or None, default=None
        Pseudo-random number generator to control the subsampling in the
        binning process, and the train/validation data split if early stopping
        is enabled.
        Pass an int for reproducible output across multiple function calls.
        See :term:`Glossary <random_state>`.
    class_weight : dict or 'balanced', default=None
        Weights associated with classes in the form `{class_label: weight}`.
        If not given, all classes are supposed to have weight one.
        The "balanced" mode uses the values of y to automatically adjust
        weights inversely proportional to class frequencies in the input data
        as `n_samples / (n_classes * np.bincount(y))`.
        Note that these weights will be multiplied with sample_weight (passed
        through the fit method) if `sample_weight` is specified.

        .. versionadded:: 1.2

    Attributes
    ----------
    classes_ : array, shape = (n_classes,)
        Class labels.
    do_early_stopping_ : bool
        Indicates whether early stopping is used during training.
    n_iter_ : int
        The number of iterations as selected by early stopping, depending on
        the `early_stopping` parameter. Otherwise it corresponds to max_iter.
    n_trees_per_iteration_ : int
        The number of tree that are built at each iteration. This is equal to 1
        for binary classification, and to ``n_classes`` for multiclass
        classification.
    train_score_ : ndarray, shape (n_iter_+1,)
        The scores at each iteration on the training data. The first entry
        is the score of the ensemble before the first iteration. Scores are
        computed according to the ``scoring`` parameter. If ``scoring`` is
        not 'loss', scores are computed on a subset of at most 10 000
        samples. Empty if no early stopping.
    validation_score_ : ndarray, shape (n_iter_+1,)
        The scores at each iteration on the held-out validation data. The
        first entry is the score of the ensemble before the first iteration.
        Scores are computed according to the ``scoring`` parameter. Empty if
        no early stopping or if ``validation_fraction`` is None.
    is_categorical_ : ndarray, shape (n_features, ) or None
        Boolean mask for the categorical features. ``None`` if there are no
        categorical features.
    n_features_in_ : int
        Number of features seen during :term:`fit`.

        .. versionadded:: 0.24
    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    See Also
    --------
    GradientBoostingClassifier : Exact gradient boosting method that does not
        scale as good on datasets with a large number of samples.
    sklearn.tree.DecisionTreeClassifier : A decision tree classifier.
    RandomForestClassifier : A meta-estimator that fits a number of decision
        tree classifiers on various sub-samples of the dataset and uses
        averaging to improve the predictive accuracy and control over-fitting.
    AdaBoostClassifier : A meta-estimator that begins by fitting a classifier
        on the original dataset and then fits additional copies of the
        classifier on the same dataset where the weights of incorrectly
        classified instances are adjusted such that subsequent classifiers
        focus more on difficult cases.

    Examples
    --------
    >>> from sklearn.ensemble import HistGradientBoostingClassifier
    >>> from sklearn.datasets import load_iris
    >>> X, y = load_iris(return_X_y=True)
    >>> clf = HistGradientBoostingClassifier().fit(X, y)
    >>> clf.score(X, y)
    1.0
    """

    _parameter_constraints: dict = {
        **BaseHistGradientBoosting._parameter_constraints,
        "loss": [StrOptions({"log_loss"}), BaseLoss],
        "class_weight": [dict, StrOptions({"balanced"}), None],
    }

    def __init__(
        self,
        loss="log_loss",
        *,
        learning_rate=0.1,
        max_iter=100,
        max_leaf_nodes=31,
        max_depth=None,
        min_samples_leaf=20,
        l2_regularization=0.0,
        max_features=1.0,
        max_bins=255,
        categorical_features="warn",
        monotonic_cst=None,
        interaction_cst=None,
        warm_start=False,
        early_stopping="auto",
        scoring="loss",
        validation_fraction=0.1,
        n_iter_no_change=10,
        tol=1e-7,
        verbose=0,
        random_state=None,
        class_weight=None,
    ):
        super(HistGradientBoostingClassifier, self).__init__(
            loss=loss,
            learning_rate=learning_rate,
            max_iter=max_iter,
            max_leaf_nodes=max_leaf_nodes,
            max_depth=max_depth,
            min_samples_leaf=min_samples_leaf,
            l2_regularization=l2_regularization,
            max_features=max_features,
            max_bins=max_bins,
            categorical_features=categorical_features,
            monotonic_cst=monotonic_cst,
            interaction_cst=interaction_cst,
            warm_start=warm_start,
            early_stopping=early_stopping,
            scoring=scoring,
            validation_fraction=validation_fraction,
            n_iter_no_change=n_iter_no_change,
            tol=tol,
            verbose=verbose,
            random_state=random_state,
        )
        self.class_weight = class_weight

    def _finalize_sample_weight(self, sample_weight, y):
        """Adjust sample_weights with class_weights."""
        if self.class_weight is None:
            return sample_weight

        expanded_class_weight = compute_sample_weight(self.class_weight, y)

        if sample_weight is not None:
            return sample_weight * expanded_class_weight
        else:
            return expanded_class_weight

    def predict(self, X):
        """Predict classes for X.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            The input samples.

        Returns
        -------
        y : ndarray, shape (n_samples,)
            The predicted classes.
        """
        # TODO: This could be done in parallel
        encoded_classes = np.argmax(self.predict_proba(X), axis=1)
        return self.classes_[encoded_classes]

    def staged_predict(self, X):
        """Predict classes at each iteration.

        This method allows monitoring (i.e. determine error on testing set)
        after each stage.

        .. versionadded:: 0.24

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            The input samples.

        Yields
        ------
        y : generator of ndarray of shape (n_samples,)
            The predicted classes of the input samples, for each iteration.
        """
        for proba in self.staged_predict_proba(X):
            encoded_classes = np.argmax(proba, axis=1)
            yield self.classes_.take(encoded_classes, axis=0)

    def predict_proba(self, X):
        """Predict class probabilities for X.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            The input samples.

        Returns
        -------
        p : ndarray, shape (n_samples, n_classes)
            The class probabilities of the input samples.
        """
        raw_predictions = self._raw_predict(X)
        return self._loss.predict_proba(raw_predictions)

    def staged_predict_proba(self, X):
        """Predict class probabilities at each iteration.

        This method allows monitoring (i.e. determine error on testing set)
        after each stage.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            The input samples.

        Yields
        ------
        y : generator of ndarray of shape (n_samples,)
            The predicted class probabilities of the input samples,
            for each iteration.
        """
        for raw_predictions in self._staged_raw_predict(X):
            yield self._loss.predict_proba(raw_predictions)

    def decision_function(self, X):
        """Compute the decision function of ``X``.

        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            The input samples.

        Returns
        -------
        decision : ndarray, shape (n_samples,) or \
                (n_samples, n_trees_per_iteration)
            The raw predicted values (i.e. the sum of the trees leaves) for
            each sample. n_trees_per_iteration is equal to the number of
            classes in multiclass classification.
        """
        decision = self._raw_predict(X)
        if decision.shape[1] == 1:
            decision = decision.ravel()
        return decision

    def staged_decision_function(self, X):
        """Compute decision function of ``X`` for each iteration.

        This method allows monitoring (i.e. determine error on testing set)
        after each stage.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            The input samples.

        Yields
        ------
        decision : generator of ndarray of shape (n_samples,) or \
                (n_samples, n_trees_per_iteration)
            The decision function of the input samples, which corresponds to
            the raw values predicted from the trees of the ensemble . The
            classes corresponds to that in the attribute :term:`classes_`.
        """
        for staged_decision in self._staged_raw_predict(X):
            if staged_decision.shape[1] == 1:
                staged_decision = staged_decision.ravel()
            yield staged_decision

    def _encode_y(self, y):
        # encode classes into 0 ... n_classes - 1 and sets attributes classes_
        # and n_trees_per_iteration_
        check_classification_targets(y)

        label_encoder = LabelEncoder()
        encoded_y = label_encoder.fit_transform(y)
        self.classes_ = label_encoder.classes_
        n_classes = self.classes_.shape[0]
        # only 1 tree for binary classification. For multiclass classification,
        # we build 1 tree per class.
        self.n_trees_per_iteration_ = 1 if n_classes <= 2 else n_classes
        encoded_y = encoded_y.astype(Y_DTYPE, copy=False)
        return encoded_y

    def _get_loss(self, sample_weight):
        # At this point self.loss == "log_loss"
        if self.n_trees_per_iteration_ == 1:
            return HalfBinomialLoss(sample_weight=sample_weight)
        else:
            return HalfMultinomialLoss(
                sample_weight=sample_weight, n_classes=self.n_trees_per_iteration_
            )