1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
|
import numpy as np
import pytest
from numpy.testing import assert_allclose
from sklearn.datasets import make_regression
from sklearn.ensemble._hist_gradient_boosting._bitset import (
set_bitset_memoryview,
set_raw_bitset_from_binned_bitset,
)
from sklearn.ensemble._hist_gradient_boosting.binning import _BinMapper
from sklearn.ensemble._hist_gradient_boosting.common import (
ALMOST_INF,
G_H_DTYPE,
PREDICTOR_RECORD_DTYPE,
X_BINNED_DTYPE,
X_BITSET_INNER_DTYPE,
X_DTYPE,
)
from sklearn.ensemble._hist_gradient_boosting.grower import TreeGrower
from sklearn.ensemble._hist_gradient_boosting.predictor import TreePredictor
from sklearn.metrics import r2_score
from sklearn.model_selection import train_test_split
from sklearn.utils._openmp_helpers import _openmp_effective_n_threads
n_threads = _openmp_effective_n_threads()
@pytest.mark.parametrize("n_bins", [200, 256])
def test_regression_dataset(n_bins):
X, y = make_regression(
n_samples=500, n_features=10, n_informative=5, random_state=42
)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42)
mapper = _BinMapper(n_bins=n_bins, random_state=42)
X_train_binned = mapper.fit_transform(X_train)
# Init gradients and hessians to that of least squares loss
gradients = -y_train.astype(G_H_DTYPE)
hessians = np.ones(1, dtype=G_H_DTYPE)
min_samples_leaf = 10
max_leaf_nodes = 30
grower = TreeGrower(
X_train_binned,
gradients,
hessians,
min_samples_leaf=min_samples_leaf,
max_leaf_nodes=max_leaf_nodes,
n_bins=n_bins,
n_bins_non_missing=mapper.n_bins_non_missing_,
)
grower.grow()
predictor = grower.make_predictor(binning_thresholds=mapper.bin_thresholds_)
known_cat_bitsets = np.zeros((0, 8), dtype=X_BITSET_INNER_DTYPE)
f_idx_map = np.zeros(0, dtype=np.uint32)
y_pred_train = predictor.predict(X_train, known_cat_bitsets, f_idx_map, n_threads)
assert r2_score(y_train, y_pred_train) > 0.82
y_pred_test = predictor.predict(X_test, known_cat_bitsets, f_idx_map, n_threads)
assert r2_score(y_test, y_pred_test) > 0.67
@pytest.mark.parametrize(
"num_threshold, expected_predictions",
[
(-np.inf, [0, 1, 1, 1]),
(10, [0, 0, 1, 1]),
(20, [0, 0, 0, 1]),
(ALMOST_INF, [0, 0, 0, 1]),
(np.inf, [0, 0, 0, 0]),
],
)
def test_infinite_values_and_thresholds(num_threshold, expected_predictions):
# Make sure infinite values and infinite thresholds are handled properly.
# In particular, if a value is +inf and the threshold is ALMOST_INF the
# sample should go to the right child. If the threshold is inf (split on
# nan), the +inf sample will go to the left child.
X = np.array([-np.inf, 10, 20, np.inf]).reshape(-1, 1)
nodes = np.zeros(3, dtype=PREDICTOR_RECORD_DTYPE)
# We just construct a simple tree with 1 root and 2 children
# parent node
nodes[0]["left"] = 1
nodes[0]["right"] = 2
nodes[0]["feature_idx"] = 0
nodes[0]["num_threshold"] = num_threshold
# left child
nodes[1]["is_leaf"] = True
nodes[1]["value"] = 0
# right child
nodes[2]["is_leaf"] = True
nodes[2]["value"] = 1
binned_cat_bitsets = np.zeros((0, 8), dtype=X_BITSET_INNER_DTYPE)
raw_categorical_bitsets = np.zeros((0, 8), dtype=X_BITSET_INNER_DTYPE)
known_cat_bitset = np.zeros((0, 8), dtype=X_BITSET_INNER_DTYPE)
f_idx_map = np.zeros(0, dtype=np.uint32)
predictor = TreePredictor(nodes, binned_cat_bitsets, raw_categorical_bitsets)
predictions = predictor.predict(X, known_cat_bitset, f_idx_map, n_threads)
assert np.all(predictions == expected_predictions)
@pytest.mark.parametrize(
"bins_go_left, expected_predictions",
[
([0, 3, 4, 6], [1, 0, 0, 1, 1, 0]),
([0, 1, 2, 6], [1, 1, 1, 0, 0, 0]),
([3, 5, 6], [0, 0, 0, 1, 0, 1]),
],
)
def test_categorical_predictor(bins_go_left, expected_predictions):
# Test predictor outputs are correct with categorical features
X_binned = np.array([[0, 1, 2, 3, 4, 5]], dtype=X_BINNED_DTYPE).T
categories = np.array([2, 5, 6, 8, 10, 15], dtype=X_DTYPE)
bins_go_left = np.array(bins_go_left, dtype=X_BINNED_DTYPE)
# We just construct a simple tree with 1 root and 2 children
# parent node
nodes = np.zeros(3, dtype=PREDICTOR_RECORD_DTYPE)
nodes[0]["left"] = 1
nodes[0]["right"] = 2
nodes[0]["feature_idx"] = 0
nodes[0]["is_categorical"] = True
nodes[0]["missing_go_to_left"] = True
# left child
nodes[1]["is_leaf"] = True
nodes[1]["value"] = 1
# right child
nodes[2]["is_leaf"] = True
nodes[2]["value"] = 0
binned_cat_bitsets = np.zeros((1, 8), dtype=X_BITSET_INNER_DTYPE)
raw_categorical_bitsets = np.zeros((1, 8), dtype=X_BITSET_INNER_DTYPE)
for go_left in bins_go_left:
set_bitset_memoryview(binned_cat_bitsets[0], go_left)
set_raw_bitset_from_binned_bitset(
raw_categorical_bitsets[0], binned_cat_bitsets[0], categories
)
predictor = TreePredictor(nodes, binned_cat_bitsets, raw_categorical_bitsets)
# Check binned data gives correct predictions
prediction_binned = predictor.predict_binned(
X_binned, missing_values_bin_idx=6, n_threads=n_threads
)
assert_allclose(prediction_binned, expected_predictions)
# manually construct bitset
known_cat_bitsets = np.zeros((1, 8), dtype=np.uint32)
known_cat_bitsets[0, 0] = np.sum(2**categories, dtype=np.uint32)
f_idx_map = np.array([0], dtype=np.uint32)
# Check with un-binned data
predictions = predictor.predict(
categories.reshape(-1, 1), known_cat_bitsets, f_idx_map, n_threads
)
assert_allclose(predictions, expected_predictions)
# Check missing goes left because missing_values_bin_idx=6
X_binned_missing = np.array([[6]], dtype=X_BINNED_DTYPE).T
predictions = predictor.predict_binned(
X_binned_missing, missing_values_bin_idx=6, n_threads=n_threads
)
assert_allclose(predictions, [1])
# missing and unknown go left
predictions = predictor.predict(
np.array([[np.nan, 17]], dtype=X_DTYPE).T,
known_cat_bitsets,
f_idx_map,
n_threads,
)
assert_allclose(predictions, [1, 1])
|