File: test_splitting.py

package info (click to toggle)
scikit-learn 1.4.2%2Bdfsg-8
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 25,036 kB
  • sloc: python: 201,105; cpp: 5,790; ansic: 854; makefile: 304; sh: 56; javascript: 20
file content (1070 lines) | stat: -rw-r--r-- 38,639 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
import numpy as np
import pytest
from numpy.testing import assert_array_equal

from sklearn.ensemble._hist_gradient_boosting.common import (
    G_H_DTYPE,
    HISTOGRAM_DTYPE,
    X_BINNED_DTYPE,
    MonotonicConstraint,
)
from sklearn.ensemble._hist_gradient_boosting.histogram import HistogramBuilder
from sklearn.ensemble._hist_gradient_boosting.splitting import (
    Splitter,
    compute_node_value,
)
from sklearn.utils._openmp_helpers import _openmp_effective_n_threads
from sklearn.utils._testing import skip_if_32bit

n_threads = _openmp_effective_n_threads()


@pytest.mark.parametrize("n_bins", [3, 32, 256])
def test_histogram_split(n_bins):
    rng = np.random.RandomState(42)
    feature_idx = 0
    l2_regularization = 0
    min_hessian_to_split = 1e-3
    min_samples_leaf = 1
    min_gain_to_split = 0.0
    X_binned = np.asfortranarray(
        rng.randint(0, n_bins - 1, size=(int(1e4), 1)), dtype=X_BINNED_DTYPE
    )
    binned_feature = X_binned.T[feature_idx]
    sample_indices = np.arange(binned_feature.shape[0], dtype=np.uint32)
    ordered_hessians = np.ones_like(binned_feature, dtype=G_H_DTYPE)
    all_hessians = ordered_hessians
    sum_hessians = all_hessians.sum()
    hessians_are_constant = False

    for true_bin in range(1, n_bins - 2):
        for sign in [-1, 1]:
            ordered_gradients = np.full_like(binned_feature, sign, dtype=G_H_DTYPE)
            ordered_gradients[binned_feature <= true_bin] *= -1
            all_gradients = ordered_gradients
            sum_gradients = all_gradients.sum()

            builder = HistogramBuilder(
                X_binned,
                n_bins,
                all_gradients,
                all_hessians,
                hessians_are_constant,
                n_threads,
            )
            n_bins_non_missing = np.array(
                [n_bins - 1] * X_binned.shape[1], dtype=np.uint32
            )
            has_missing_values = np.array([False] * X_binned.shape[1], dtype=np.uint8)
            monotonic_cst = np.array(
                [MonotonicConstraint.NO_CST] * X_binned.shape[1], dtype=np.int8
            )
            is_categorical = np.zeros_like(monotonic_cst, dtype=np.uint8)
            missing_values_bin_idx = n_bins - 1
            splitter = Splitter(
                X_binned,
                n_bins_non_missing,
                missing_values_bin_idx,
                has_missing_values,
                is_categorical,
                monotonic_cst,
                l2_regularization,
                min_hessian_to_split,
                min_samples_leaf,
                min_gain_to_split,
                hessians_are_constant,
            )

            histograms = builder.compute_histograms_brute(sample_indices)
            value = compute_node_value(
                sum_gradients, sum_hessians, -np.inf, np.inf, l2_regularization
            )
            split_info = splitter.find_node_split(
                sample_indices.shape[0], histograms, sum_gradients, sum_hessians, value
            )

            assert split_info.bin_idx == true_bin
            assert split_info.gain >= 0
            assert split_info.feature_idx == feature_idx
            assert (
                split_info.n_samples_left + split_info.n_samples_right
                == sample_indices.shape[0]
            )
            # Constant hessian: 1. per sample.
            assert split_info.n_samples_left == split_info.sum_hessian_left


@skip_if_32bit
@pytest.mark.parametrize("constant_hessian", [True, False])
def test_gradient_and_hessian_sanity(constant_hessian):
    # This test checks that the values of gradients and hessians are
    # consistent in different places:
    # - in split_info: si.sum_gradient_left + si.sum_gradient_right must be
    #   equal to the gradient at the node. Same for hessians.
    # - in the histograms: summing 'sum_gradients' over the bins must be
    #   constant across all features, and those sums must be equal to the
    #   node's gradient. Same for hessians.

    rng = np.random.RandomState(42)

    n_bins = 10
    n_features = 20
    n_samples = 500
    l2_regularization = 0.0
    min_hessian_to_split = 1e-3
    min_samples_leaf = 1
    min_gain_to_split = 0.0

    X_binned = rng.randint(
        0, n_bins, size=(n_samples, n_features), dtype=X_BINNED_DTYPE
    )
    X_binned = np.asfortranarray(X_binned)
    sample_indices = np.arange(n_samples, dtype=np.uint32)
    all_gradients = rng.randn(n_samples).astype(G_H_DTYPE)
    sum_gradients = all_gradients.sum()
    if constant_hessian:
        all_hessians = np.ones(1, dtype=G_H_DTYPE)
        sum_hessians = 1 * n_samples
    else:
        all_hessians = rng.lognormal(size=n_samples).astype(G_H_DTYPE)
        sum_hessians = all_hessians.sum()

    builder = HistogramBuilder(
        X_binned, n_bins, all_gradients, all_hessians, constant_hessian, n_threads
    )
    n_bins_non_missing = np.array([n_bins - 1] * X_binned.shape[1], dtype=np.uint32)
    has_missing_values = np.array([False] * X_binned.shape[1], dtype=np.uint8)
    monotonic_cst = np.array(
        [MonotonicConstraint.NO_CST] * X_binned.shape[1], dtype=np.int8
    )
    is_categorical = np.zeros_like(monotonic_cst, dtype=np.uint8)
    missing_values_bin_idx = n_bins - 1
    splitter = Splitter(
        X_binned,
        n_bins_non_missing,
        missing_values_bin_idx,
        has_missing_values,
        is_categorical,
        monotonic_cst,
        l2_regularization,
        min_hessian_to_split,
        min_samples_leaf,
        min_gain_to_split,
        constant_hessian,
    )

    hists_parent = builder.compute_histograms_brute(sample_indices)
    value_parent = compute_node_value(
        sum_gradients, sum_hessians, -np.inf, np.inf, l2_regularization
    )
    si_parent = splitter.find_node_split(
        n_samples, hists_parent, sum_gradients, sum_hessians, value_parent
    )
    sample_indices_left, sample_indices_right, _ = splitter.split_indices(
        si_parent, sample_indices
    )

    hists_left = builder.compute_histograms_brute(sample_indices_left)
    value_left = compute_node_value(
        si_parent.sum_gradient_left,
        si_parent.sum_hessian_left,
        -np.inf,
        np.inf,
        l2_regularization,
    )
    hists_right = builder.compute_histograms_brute(sample_indices_right)
    value_right = compute_node_value(
        si_parent.sum_gradient_right,
        si_parent.sum_hessian_right,
        -np.inf,
        np.inf,
        l2_regularization,
    )
    si_left = splitter.find_node_split(
        n_samples,
        hists_left,
        si_parent.sum_gradient_left,
        si_parent.sum_hessian_left,
        value_left,
    )
    si_right = splitter.find_node_split(
        n_samples,
        hists_right,
        si_parent.sum_gradient_right,
        si_parent.sum_hessian_right,
        value_right,
    )

    # make sure that si.sum_gradient_left + si.sum_gradient_right have their
    # expected value, same for hessians
    for si, indices in (
        (si_parent, sample_indices),
        (si_left, sample_indices_left),
        (si_right, sample_indices_right),
    ):
        gradient = si.sum_gradient_right + si.sum_gradient_left
        expected_gradient = all_gradients[indices].sum()
        hessian = si.sum_hessian_right + si.sum_hessian_left
        if constant_hessian:
            expected_hessian = indices.shape[0] * all_hessians[0]
        else:
            expected_hessian = all_hessians[indices].sum()

        assert np.isclose(gradient, expected_gradient)
        assert np.isclose(hessian, expected_hessian)

    # make sure sum of gradients in histograms are the same for all features,
    # and make sure they're equal to their expected value
    hists_parent = np.asarray(hists_parent, dtype=HISTOGRAM_DTYPE)
    hists_left = np.asarray(hists_left, dtype=HISTOGRAM_DTYPE)
    hists_right = np.asarray(hists_right, dtype=HISTOGRAM_DTYPE)
    for hists, indices in (
        (hists_parent, sample_indices),
        (hists_left, sample_indices_left),
        (hists_right, sample_indices_right),
    ):
        # note: gradients and hessians have shape (n_features,),
        # we're comparing them to *scalars*. This has the benefit of also
        # making sure that all the entries are equal across features.
        gradients = hists["sum_gradients"].sum(axis=1)  # shape = (n_features,)
        expected_gradient = all_gradients[indices].sum()  # scalar
        hessians = hists["sum_hessians"].sum(axis=1)
        if constant_hessian:
            # 0 is not the actual hessian, but it's not computed in this case
            expected_hessian = 0.0
        else:
            expected_hessian = all_hessians[indices].sum()

        assert np.allclose(gradients, expected_gradient)
        assert np.allclose(hessians, expected_hessian)


def test_split_indices():
    # Check that split_indices returns the correct splits and that
    # splitter.partition is consistent with what is returned.
    rng = np.random.RandomState(421)

    n_bins = 5
    n_samples = 10
    l2_regularization = 0.0
    min_hessian_to_split = 1e-3
    min_samples_leaf = 1
    min_gain_to_split = 0.0

    # split will happen on feature 1 and on bin 3
    X_binned = [
        [0, 0],
        [0, 3],
        [0, 4],
        [0, 0],
        [0, 0],
        [0, 0],
        [0, 0],
        [0, 4],
        [0, 0],
        [0, 4],
    ]
    X_binned = np.asfortranarray(X_binned, dtype=X_BINNED_DTYPE)
    sample_indices = np.arange(n_samples, dtype=np.uint32)
    all_gradients = rng.randn(n_samples).astype(G_H_DTYPE)
    all_hessians = np.ones(1, dtype=G_H_DTYPE)
    sum_gradients = all_gradients.sum()
    sum_hessians = 1 * n_samples
    hessians_are_constant = True

    builder = HistogramBuilder(
        X_binned, n_bins, all_gradients, all_hessians, hessians_are_constant, n_threads
    )
    n_bins_non_missing = np.array([n_bins] * X_binned.shape[1], dtype=np.uint32)
    has_missing_values = np.array([False] * X_binned.shape[1], dtype=np.uint8)
    monotonic_cst = np.array(
        [MonotonicConstraint.NO_CST] * X_binned.shape[1], dtype=np.int8
    )
    is_categorical = np.zeros_like(monotonic_cst, dtype=np.uint8)
    missing_values_bin_idx = n_bins - 1
    splitter = Splitter(
        X_binned,
        n_bins_non_missing,
        missing_values_bin_idx,
        has_missing_values,
        is_categorical,
        monotonic_cst,
        l2_regularization,
        min_hessian_to_split,
        min_samples_leaf,
        min_gain_to_split,
        hessians_are_constant,
    )

    assert np.all(sample_indices == splitter.partition)

    histograms = builder.compute_histograms_brute(sample_indices)
    value = compute_node_value(
        sum_gradients, sum_hessians, -np.inf, np.inf, l2_regularization
    )
    si_root = splitter.find_node_split(
        n_samples, histograms, sum_gradients, sum_hessians, value
    )

    # sanity checks for best split
    assert si_root.feature_idx == 1
    assert si_root.bin_idx == 3

    samples_left, samples_right, position_right = splitter.split_indices(
        si_root, splitter.partition
    )
    assert set(samples_left) == set([0, 1, 3, 4, 5, 6, 8])
    assert set(samples_right) == set([2, 7, 9])

    assert list(samples_left) == list(splitter.partition[:position_right])
    assert list(samples_right) == list(splitter.partition[position_right:])

    # Check that the resulting split indices sizes are consistent with the
    # count statistics anticipated when looking for the best split.
    assert samples_left.shape[0] == si_root.n_samples_left
    assert samples_right.shape[0] == si_root.n_samples_right


def test_min_gain_to_split():
    # Try to split a pure node (all gradients are equal, same for hessians)
    # with min_gain_to_split = 0 and make sure that the node is not split (best
    # possible gain = -1). Note: before the strict inequality comparison, this
    # test would fail because the node would be split with a gain of 0.
    rng = np.random.RandomState(42)
    l2_regularization = 0
    min_hessian_to_split = 0
    min_samples_leaf = 1
    min_gain_to_split = 0.0
    n_bins = 255
    n_samples = 100
    X_binned = np.asfortranarray(
        rng.randint(0, n_bins, size=(n_samples, 1)), dtype=X_BINNED_DTYPE
    )
    binned_feature = X_binned[:, 0]
    sample_indices = np.arange(n_samples, dtype=np.uint32)
    all_hessians = np.ones_like(binned_feature, dtype=G_H_DTYPE)
    all_gradients = np.ones_like(binned_feature, dtype=G_H_DTYPE)
    sum_gradients = all_gradients.sum()
    sum_hessians = all_hessians.sum()
    hessians_are_constant = False

    builder = HistogramBuilder(
        X_binned, n_bins, all_gradients, all_hessians, hessians_are_constant, n_threads
    )
    n_bins_non_missing = np.array([n_bins - 1] * X_binned.shape[1], dtype=np.uint32)
    has_missing_values = np.array([False] * X_binned.shape[1], dtype=np.uint8)
    monotonic_cst = np.array(
        [MonotonicConstraint.NO_CST] * X_binned.shape[1], dtype=np.int8
    )
    is_categorical = np.zeros_like(monotonic_cst, dtype=np.uint8)
    missing_values_bin_idx = n_bins - 1
    splitter = Splitter(
        X_binned,
        n_bins_non_missing,
        missing_values_bin_idx,
        has_missing_values,
        is_categorical,
        monotonic_cst,
        l2_regularization,
        min_hessian_to_split,
        min_samples_leaf,
        min_gain_to_split,
        hessians_are_constant,
    )

    histograms = builder.compute_histograms_brute(sample_indices)
    value = compute_node_value(
        sum_gradients, sum_hessians, -np.inf, np.inf, l2_regularization
    )
    split_info = splitter.find_node_split(
        n_samples, histograms, sum_gradients, sum_hessians, value
    )
    assert split_info.gain == -1


@pytest.mark.parametrize(
    (
        "X_binned, all_gradients, has_missing_values, n_bins_non_missing, "
        " expected_split_on_nan, expected_bin_idx, expected_go_to_left"
    ),
    [
        # basic sanity check with no missing values: given the gradient
        # values, the split must occur on bin_idx=3
        (
            [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],  # X_binned
            [1, 1, 1, 1, 5, 5, 5, 5, 5, 5],  # gradients
            False,  # no missing values
            10,  # n_bins_non_missing
            False,  # don't split on nans
            3,  # expected_bin_idx
            "not_applicable",
        ),
        # We replace 2 samples by NaNs (bin_idx=8)
        # These 2 samples were mapped to the left node before, so they should
        # be mapped to left node again
        # Notice how the bin_idx threshold changes from 3 to 1.
        (
            [8, 0, 1, 8, 2, 3, 4, 5, 6, 7],  # 8 <=> missing
            [1, 1, 1, 1, 5, 5, 5, 5, 5, 5],
            True,  # missing values
            8,  # n_bins_non_missing
            False,  # don't split on nans
            1,  # cut on bin_idx=1
            True,
        ),  # missing values go to left
        # same as above, but with non-consecutive missing_values_bin
        (
            [9, 0, 1, 9, 2, 3, 4, 5, 6, 7],  # 9 <=> missing
            [1, 1, 1, 1, 5, 5, 5, 5, 5, 5],
            True,  # missing values
            8,  # n_bins_non_missing
            False,  # don't split on nans
            1,  # cut on bin_idx=1
            True,
        ),  # missing values go to left
        # this time replacing 2 samples that were on the right.
        (
            [0, 1, 2, 3, 8, 4, 8, 5, 6, 7],  # 8 <=> missing
            [1, 1, 1, 1, 5, 5, 5, 5, 5, 5],
            True,  # missing values
            8,  # n_bins_non_missing
            False,  # don't split on nans
            3,  # cut on bin_idx=3 (like in first case)
            False,
        ),  # missing values go to right
        # same as above, but with non-consecutive missing_values_bin
        (
            [0, 1, 2, 3, 9, 4, 9, 5, 6, 7],  # 9 <=> missing
            [1, 1, 1, 1, 5, 5, 5, 5, 5, 5],
            True,  # missing values
            8,  # n_bins_non_missing
            False,  # don't split on nans
            3,  # cut on bin_idx=3 (like in first case)
            False,
        ),  # missing values go to right
        # For the following cases, split_on_nans is True (we replace all of
        # the samples with nans, instead of just 2).
        (
            [0, 1, 2, 3, 4, 4, 4, 4, 4, 4],  # 4 <=> missing
            [1, 1, 1, 1, 5, 5, 5, 5, 5, 5],
            True,  # missing values
            4,  # n_bins_non_missing
            True,  # split on nans
            3,  # cut on bin_idx=3
            False,
        ),  # missing values go to right
        # same as above, but with non-consecutive missing_values_bin
        (
            [0, 1, 2, 3, 9, 9, 9, 9, 9, 9],  # 9 <=> missing
            [1, 1, 1, 1, 1, 1, 5, 5, 5, 5],
            True,  # missing values
            4,  # n_bins_non_missing
            True,  # split on nans
            3,  # cut on bin_idx=3
            False,
        ),  # missing values go to right
        (
            [6, 6, 6, 6, 0, 1, 2, 3, 4, 5],  # 6 <=> missing
            [1, 1, 1, 1, 5, 5, 5, 5, 5, 5],
            True,  # missing values
            6,  # n_bins_non_missing
            True,  # split on nans
            5,  # cut on bin_idx=5
            False,
        ),  # missing values go to right
        # same as above, but with non-consecutive missing_values_bin
        (
            [9, 9, 9, 9, 0, 1, 2, 3, 4, 5],  # 9 <=> missing
            [1, 1, 1, 1, 5, 5, 5, 5, 5, 5],
            True,  # missing values
            6,  # n_bins_non_missing
            True,  # split on nans
            5,  # cut on bin_idx=5
            False,
        ),  # missing values go to right
    ],
)
def test_splitting_missing_values(
    X_binned,
    all_gradients,
    has_missing_values,
    n_bins_non_missing,
    expected_split_on_nan,
    expected_bin_idx,
    expected_go_to_left,
):
    # Make sure missing values are properly supported.
    # we build an artificial example with gradients such that the best split
    # is on bin_idx=3, when there are no missing values.
    # Then we introduce missing values and:
    #   - make sure the chosen bin is correct (find_best_bin()): it's
    #     still the same split, even though the index of the bin may change
    #   - make sure the missing values are mapped to the correct child
    #     (split_indices())

    n_bins = max(X_binned) + 1
    n_samples = len(X_binned)
    l2_regularization = 0.0
    min_hessian_to_split = 1e-3
    min_samples_leaf = 1
    min_gain_to_split = 0.0

    sample_indices = np.arange(n_samples, dtype=np.uint32)
    X_binned = np.array(X_binned, dtype=X_BINNED_DTYPE).reshape(-1, 1)
    X_binned = np.asfortranarray(X_binned)
    all_gradients = np.array(all_gradients, dtype=G_H_DTYPE)
    has_missing_values = np.array([has_missing_values], dtype=np.uint8)
    all_hessians = np.ones(1, dtype=G_H_DTYPE)
    sum_gradients = all_gradients.sum()
    sum_hessians = 1 * n_samples
    hessians_are_constant = True

    builder = HistogramBuilder(
        X_binned, n_bins, all_gradients, all_hessians, hessians_are_constant, n_threads
    )

    n_bins_non_missing = np.array([n_bins_non_missing], dtype=np.uint32)
    monotonic_cst = np.array(
        [MonotonicConstraint.NO_CST] * X_binned.shape[1], dtype=np.int8
    )
    is_categorical = np.zeros_like(monotonic_cst, dtype=np.uint8)
    missing_values_bin_idx = n_bins - 1
    splitter = Splitter(
        X_binned,
        n_bins_non_missing,
        missing_values_bin_idx,
        has_missing_values,
        is_categorical,
        monotonic_cst,
        l2_regularization,
        min_hessian_to_split,
        min_samples_leaf,
        min_gain_to_split,
        hessians_are_constant,
    )

    histograms = builder.compute_histograms_brute(sample_indices)
    value = compute_node_value(
        sum_gradients, sum_hessians, -np.inf, np.inf, l2_regularization
    )
    split_info = splitter.find_node_split(
        n_samples, histograms, sum_gradients, sum_hessians, value
    )

    assert split_info.bin_idx == expected_bin_idx
    if has_missing_values:
        assert split_info.missing_go_to_left == expected_go_to_left

    split_on_nan = split_info.bin_idx == n_bins_non_missing[0] - 1
    assert split_on_nan == expected_split_on_nan

    # Make sure the split is properly computed.
    # This also make sure missing values are properly assigned to the correct
    # child in split_indices()
    samples_left, samples_right, _ = splitter.split_indices(
        split_info, splitter.partition
    )

    if not expected_split_on_nan:
        # When we don't split on nans, the split should always be the same.
        assert set(samples_left) == set([0, 1, 2, 3])
        assert set(samples_right) == set([4, 5, 6, 7, 8, 9])
    else:
        # When we split on nans, samples with missing values are always mapped
        # to the right child.
        missing_samples_indices = np.flatnonzero(
            np.array(X_binned) == missing_values_bin_idx
        )
        non_missing_samples_indices = np.flatnonzero(
            np.array(X_binned) != missing_values_bin_idx
        )

        assert set(samples_right) == set(missing_samples_indices)
        assert set(samples_left) == set(non_missing_samples_indices)


@pytest.mark.parametrize(
    "X_binned, has_missing_values, n_bins_non_missing, ",
    [
        # one category
        ([0] * 20, False, 1),
        # all categories appear less than MIN_CAT_SUPPORT (hardcoded to 10)
        ([0] * 9 + [1] * 8, False, 2),
        # only one category appears more than MIN_CAT_SUPPORT
        ([0] * 12 + [1] * 8, False, 2),
        # missing values + category appear less than MIN_CAT_SUPPORT
        # 9 is missing
        ([0] * 9 + [1] * 8 + [9] * 4, True, 2),
        # no non-missing category
        ([9] * 11, True, 0),
    ],
)
def test_splitting_categorical_cat_smooth(
    X_binned, has_missing_values, n_bins_non_missing
):
    # Checks categorical splits are correct when the MIN_CAT_SUPPORT constraint
    # isn't respected: there are no splits

    n_bins = max(X_binned) + 1
    n_samples = len(X_binned)
    X_binned = np.array([X_binned], dtype=X_BINNED_DTYPE).T
    X_binned = np.asfortranarray(X_binned)

    l2_regularization = 0.0
    min_hessian_to_split = 1e-3
    min_samples_leaf = 1
    min_gain_to_split = 0.0

    sample_indices = np.arange(n_samples, dtype=np.uint32)
    all_gradients = np.ones(n_samples, dtype=G_H_DTYPE)
    has_missing_values = np.array([has_missing_values], dtype=np.uint8)
    all_hessians = np.ones(1, dtype=G_H_DTYPE)
    sum_gradients = all_gradients.sum()
    sum_hessians = n_samples
    hessians_are_constant = True

    builder = HistogramBuilder(
        X_binned, n_bins, all_gradients, all_hessians, hessians_are_constant, n_threads
    )

    n_bins_non_missing = np.array([n_bins_non_missing], dtype=np.uint32)
    monotonic_cst = np.array(
        [MonotonicConstraint.NO_CST] * X_binned.shape[1], dtype=np.int8
    )
    is_categorical = np.ones_like(monotonic_cst, dtype=np.uint8)
    missing_values_bin_idx = n_bins - 1

    splitter = Splitter(
        X_binned,
        n_bins_non_missing,
        missing_values_bin_idx,
        has_missing_values,
        is_categorical,
        monotonic_cst,
        l2_regularization,
        min_hessian_to_split,
        min_samples_leaf,
        min_gain_to_split,
        hessians_are_constant,
    )

    histograms = builder.compute_histograms_brute(sample_indices)
    value = compute_node_value(
        sum_gradients, sum_hessians, -np.inf, np.inf, l2_regularization
    )
    split_info = splitter.find_node_split(
        n_samples, histograms, sum_gradients, sum_hessians, value
    )

    # no split found
    assert split_info.gain == -1


def _assert_categories_equals_bitset(categories, bitset):
    # assert that the bitset exactly corresponds to the categories
    # bitset is assumed to be an array of 8 uint32 elements

    # form bitset from threshold
    expected_bitset = np.zeros(8, dtype=np.uint32)
    for cat in categories:
        idx = cat // 32
        shift = cat % 32
        expected_bitset[idx] |= 1 << shift

    # check for equality
    assert_array_equal(expected_bitset, bitset)


@pytest.mark.parametrize(
    (
        "X_binned, all_gradients, expected_categories_left, n_bins_non_missing,"
        "missing_values_bin_idx, has_missing_values, expected_missing_go_to_left"
    ),
    [
        # 4 categories
        (
            [0, 1, 2, 3] * 11,  # X_binned
            [10, 1, 10, 10] * 11,  # all_gradients
            [1],  # expected_categories_left
            4,  # n_bins_non_missing
            4,  # missing_values_bin_idx
            False,  # has_missing_values
            None,
        ),  # expected_missing_go_to_left, unchecked
        # Make sure that the categories that are on the right (second half) of
        # the sorted categories array can still go in the left child. In this
        # case, the best split was found when scanning from right to left.
        (
            [0, 1, 2, 3] * 11,  # X_binned
            [10, 10, 10, 1] * 11,  # all_gradients
            [3],  # expected_categories_left
            4,  # n_bins_non_missing
            4,  # missing_values_bin_idx
            False,  # has_missing_values
            None,
        ),  # expected_missing_go_to_left, unchecked
        # categories that don't respect MIN_CAT_SUPPORT (cat 4) are always
        # mapped to the right child
        (
            [0, 1, 2, 3] * 11 + [4] * 5,  # X_binned
            [10, 10, 10, 1] * 11 + [10] * 5,  # all_gradients
            [3],  # expected_categories_left
            4,  # n_bins_non_missing
            4,  # missing_values_bin_idx
            False,  # has_missing_values
            None,
        ),  # expected_missing_go_to_left, unchecked
        # categories that don't respect MIN_CAT_SUPPORT are always mapped to
        # the right child: in this case a more sensible split could have been
        # 3, 4 - 0, 1, 2
        # But the split is still 3 - 0, 1, 2, 4. this is because we only scan
        # up to the middle of the sorted category array (0, 1, 2, 3), and
        # because we exclude cat 4 in this array.
        (
            [0, 1, 2, 3] * 11 + [4] * 5,  # X_binned
            [10, 10, 10, 1] * 11 + [1] * 5,  # all_gradients
            [3],  # expected_categories_left
            4,  # n_bins_non_missing
            4,  # missing_values_bin_idx
            False,  # has_missing_values
            None,
        ),  # expected_missing_go_to_left, unchecked
        # 4 categories with missing values that go to the right
        (
            [0, 1, 2] * 11 + [9] * 11,  # X_binned
            [10, 1, 10] * 11 + [10] * 11,  # all_gradients
            [1],  # expected_categories_left
            3,  # n_bins_non_missing
            9,  # missing_values_bin_idx
            True,  # has_missing_values
            False,
        ),  # expected_missing_go_to_left
        # 4 categories with missing values that go to the left
        (
            [0, 1, 2] * 11 + [9] * 11,  # X_binned
            [10, 1, 10] * 11 + [1] * 11,  # all_gradients
            [1, 9],  # expected_categories_left
            3,  # n_bins_non_missing
            9,  # missing_values_bin_idx
            True,  # has_missing_values
            True,
        ),  # expected_missing_go_to_left
        # split is on the missing value
        (
            [0, 1, 2, 3, 4] * 11 + [255] * 12,  # X_binned
            [10, 10, 10, 10, 10] * 11 + [1] * 12,  # all_gradients
            [255],  # expected_categories_left
            5,  # n_bins_non_missing
            255,  # missing_values_bin_idx
            True,  # has_missing_values
            True,
        ),  # expected_missing_go_to_left
        # split on even categories
        (
            list(range(60)) * 12,  # X_binned
            [10, 1] * 360,  # all_gradients
            list(range(1, 60, 2)),  # expected_categories_left
            59,  # n_bins_non_missing
            59,  # missing_values_bin_idx
            True,  # has_missing_values
            True,
        ),  # expected_missing_go_to_left
        # split on every 8 categories
        (
            list(range(256)) * 12,  # X_binned
            [10, 10, 10, 10, 10, 10, 10, 1] * 384,  # all_gradients
            list(range(7, 256, 8)),  # expected_categories_left
            255,  # n_bins_non_missing
            255,  # missing_values_bin_idx
            True,  # has_missing_values
            True,
        ),  # expected_missing_go_to_left
    ],
)
def test_splitting_categorical_sanity(
    X_binned,
    all_gradients,
    expected_categories_left,
    n_bins_non_missing,
    missing_values_bin_idx,
    has_missing_values,
    expected_missing_go_to_left,
):
    # Tests various combinations of categorical splits

    n_samples = len(X_binned)
    n_bins = max(X_binned) + 1

    X_binned = np.array(X_binned, dtype=X_BINNED_DTYPE).reshape(-1, 1)
    X_binned = np.asfortranarray(X_binned)

    l2_regularization = 0.0
    min_hessian_to_split = 1e-3
    min_samples_leaf = 1
    min_gain_to_split = 0.0

    sample_indices = np.arange(n_samples, dtype=np.uint32)
    all_gradients = np.array(all_gradients, dtype=G_H_DTYPE)
    all_hessians = np.ones(1, dtype=G_H_DTYPE)
    has_missing_values = np.array([has_missing_values], dtype=np.uint8)
    sum_gradients = all_gradients.sum()
    sum_hessians = n_samples
    hessians_are_constant = True

    builder = HistogramBuilder(
        X_binned, n_bins, all_gradients, all_hessians, hessians_are_constant, n_threads
    )

    n_bins_non_missing = np.array([n_bins_non_missing], dtype=np.uint32)
    monotonic_cst = np.array(
        [MonotonicConstraint.NO_CST] * X_binned.shape[1], dtype=np.int8
    )
    is_categorical = np.ones_like(monotonic_cst, dtype=np.uint8)

    splitter = Splitter(
        X_binned,
        n_bins_non_missing,
        missing_values_bin_idx,
        has_missing_values,
        is_categorical,
        monotonic_cst,
        l2_regularization,
        min_hessian_to_split,
        min_samples_leaf,
        min_gain_to_split,
        hessians_are_constant,
    )

    histograms = builder.compute_histograms_brute(sample_indices)

    value = compute_node_value(
        sum_gradients, sum_hessians, -np.inf, np.inf, l2_regularization
    )
    split_info = splitter.find_node_split(
        n_samples, histograms, sum_gradients, sum_hessians, value
    )

    assert split_info.is_categorical
    assert split_info.gain > 0
    _assert_categories_equals_bitset(
        expected_categories_left, split_info.left_cat_bitset
    )
    if has_missing_values:
        assert split_info.missing_go_to_left == expected_missing_go_to_left
    # If there is no missing value during training, the flag missing_go_to_left
    # is set later in the grower.

    # make sure samples are split correctly
    samples_left, samples_right, _ = splitter.split_indices(
        split_info, splitter.partition
    )

    left_mask = np.isin(X_binned.ravel(), expected_categories_left)
    assert_array_equal(sample_indices[left_mask], samples_left)
    assert_array_equal(sample_indices[~left_mask], samples_right)


def test_split_interaction_constraints():
    """Check that allowed_features are respected."""
    n_features = 4
    # features 1 and 2 are not allowed to be split on
    allowed_features = np.array([0, 3], dtype=np.uint32)
    n_bins = 5
    n_samples = 10
    l2_regularization = 0.0
    min_hessian_to_split = 1e-3
    min_samples_leaf = 1
    min_gain_to_split = 0.0

    sample_indices = np.arange(n_samples, dtype=np.uint32)
    all_hessians = np.ones(1, dtype=G_H_DTYPE)
    sum_hessians = n_samples
    hessians_are_constant = True

    split_features = []

    # The loop is to ensure that we split at least once on each allowed feature (0, 3).
    # This is tracked by split_features and checked at the end.
    for i in range(10):
        rng = np.random.RandomState(919 + i)
        X_binned = np.asfortranarray(
            rng.randint(0, n_bins - 1, size=(n_samples, n_features)),
            dtype=X_BINNED_DTYPE,
        )
        X_binned = np.asfortranarray(X_binned, dtype=X_BINNED_DTYPE)

        # Make feature 1 very important
        all_gradients = (10 * X_binned[:, 1] + rng.randn(n_samples)).astype(G_H_DTYPE)
        sum_gradients = all_gradients.sum()

        builder = HistogramBuilder(
            X_binned,
            n_bins,
            all_gradients,
            all_hessians,
            hessians_are_constant,
            n_threads,
        )
        n_bins_non_missing = np.array([n_bins] * X_binned.shape[1], dtype=np.uint32)
        has_missing_values = np.array([False] * X_binned.shape[1], dtype=np.uint8)
        monotonic_cst = np.array(
            [MonotonicConstraint.NO_CST] * X_binned.shape[1], dtype=np.int8
        )
        is_categorical = np.zeros_like(monotonic_cst, dtype=np.uint8)
        missing_values_bin_idx = n_bins - 1
        splitter = Splitter(
            X_binned,
            n_bins_non_missing,
            missing_values_bin_idx,
            has_missing_values,
            is_categorical,
            monotonic_cst,
            l2_regularization,
            min_hessian_to_split,
            min_samples_leaf,
            min_gain_to_split,
            hessians_are_constant,
        )

        assert np.all(sample_indices == splitter.partition)

        histograms = builder.compute_histograms_brute(sample_indices)
        value = compute_node_value(
            sum_gradients, sum_hessians, -np.inf, np.inf, l2_regularization
        )

        # with all features allowed, feature 1 should be split on as it is the most
        # important one by construction of the gradients
        si_root = splitter.find_node_split(
            n_samples,
            histograms,
            sum_gradients,
            sum_hessians,
            value,
            allowed_features=None,
        )
        assert si_root.feature_idx == 1

        # only features 0 and 3 are allowed to be split on
        si_root = splitter.find_node_split(
            n_samples,
            histograms,
            sum_gradients,
            sum_hessians,
            value,
            allowed_features=allowed_features,
        )
        split_features.append(si_root.feature_idx)
        assert si_root.feature_idx in allowed_features

    # make sure feature 0 and feature 3 are split on in the constraint setting
    assert set(allowed_features) == set(split_features)


@pytest.mark.parametrize("forbidden_features", [set(), {1, 3}])
def test_split_feature_fraction_per_split(forbidden_features):
    """Check that feature_fraction_per_split is respected.

    Because we set `n_features = 4` and `feature_fraction_per_split = 0.25`, it means
    that calling `splitter.find_node_split` will be allowed to select a split for a
    single completely random feature at each call. So if we iterate enough, we should
    cover all the allowed features, irrespective of the values of the gradients and
    Hessians of the objective.
    """
    n_features = 4
    allowed_features = np.array(
        list(set(range(n_features)) - forbidden_features), dtype=np.uint32
    )
    n_bins = 5
    n_samples = 40
    l2_regularization = 0.0
    min_hessian_to_split = 1e-3
    min_samples_leaf = 1
    min_gain_to_split = 0.0
    rng = np.random.default_rng(42)

    sample_indices = np.arange(n_samples, dtype=np.uint32)
    all_gradients = rng.uniform(low=0.5, high=1, size=n_samples).astype(G_H_DTYPE)
    sum_gradients = all_gradients.sum()
    all_hessians = np.ones(1, dtype=G_H_DTYPE)
    sum_hessians = n_samples
    hessians_are_constant = True

    X_binned = np.asfortranarray(
        rng.integers(low=0, high=n_bins - 1, size=(n_samples, n_features)),
        dtype=X_BINNED_DTYPE,
    )
    X_binned = np.asfortranarray(X_binned, dtype=X_BINNED_DTYPE)
    builder = HistogramBuilder(
        X_binned,
        n_bins,
        all_gradients,
        all_hessians,
        hessians_are_constant,
        n_threads,
    )
    histograms = builder.compute_histograms_brute(sample_indices)
    value = compute_node_value(
        sum_gradients, sum_hessians, -np.inf, np.inf, l2_regularization
    )
    n_bins_non_missing = np.array([n_bins] * X_binned.shape[1], dtype=np.uint32)
    has_missing_values = np.array([False] * X_binned.shape[1], dtype=np.uint8)
    monotonic_cst = np.array(
        [MonotonicConstraint.NO_CST] * X_binned.shape[1], dtype=np.int8
    )
    is_categorical = np.zeros_like(monotonic_cst, dtype=np.uint8)
    missing_values_bin_idx = n_bins - 1

    params = dict(
        X_binned=X_binned,
        n_bins_non_missing=n_bins_non_missing,
        missing_values_bin_idx=missing_values_bin_idx,
        has_missing_values=has_missing_values,
        is_categorical=is_categorical,
        monotonic_cst=monotonic_cst,
        l2_regularization=l2_regularization,
        min_hessian_to_split=min_hessian_to_split,
        min_samples_leaf=min_samples_leaf,
        min_gain_to_split=min_gain_to_split,
        hessians_are_constant=hessians_are_constant,
        rng=rng,
    )
    splitter_subsample = Splitter(
        feature_fraction_per_split=0.25,  # THIS is the important setting here.
        **params,
    )
    splitter_all_features = Splitter(feature_fraction_per_split=1.0, **params)

    assert np.all(sample_indices == splitter_subsample.partition)

    split_features_subsample = []
    split_features_all = []
    # The loop is to ensure that we split at least once on each feature.
    # This is tracked by split_features and checked at the end.
    for i in range(20):
        si_root = splitter_subsample.find_node_split(
            n_samples,
            histograms,
            sum_gradients,
            sum_hessians,
            value,
            allowed_features=allowed_features,
        )
        split_features_subsample.append(si_root.feature_idx)

        # This second splitter is our "counterfactual".
        si_root = splitter_all_features.find_node_split(
            n_samples,
            histograms,
            sum_gradients,
            sum_hessians,
            value,
            allowed_features=allowed_features,
        )
        split_features_all.append(si_root.feature_idx)

    # Make sure all features are split on.
    assert set(split_features_subsample) == set(allowed_features)

    # Make sure, our counterfactual always splits on same feature.
    assert len(set(split_features_all)) == 1