File: test_image.py

package info (click to toggle)
scikit-learn 1.4.2%2Bdfsg-8
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 25,036 kB
  • sloc: python: 201,105; cpp: 5,790; ansic: 854; makefile: 304; sh: 56; javascript: 20
file content (356 lines) | stat: -rw-r--r-- 12,154 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
# Authors: Emmanuelle Gouillart <emmanuelle.gouillart@normalesup.org>
#          Gael Varoquaux <gael.varoquaux@normalesup.org>
# License: BSD 3 clause

import numpy as np
import pytest
from scipy import ndimage
from scipy.sparse.csgraph import connected_components

from sklearn.feature_extraction.image import (
    PatchExtractor,
    _extract_patches,
    extract_patches_2d,
    grid_to_graph,
    img_to_graph,
    reconstruct_from_patches_2d,
)


def test_img_to_graph():
    x, y = np.mgrid[:4, :4] - 10
    grad_x = img_to_graph(x)
    grad_y = img_to_graph(y)
    assert grad_x.nnz == grad_y.nnz
    # Negative elements are the diagonal: the elements of the original
    # image. Positive elements are the values of the gradient, they
    # should all be equal on grad_x and grad_y
    np.testing.assert_array_equal(
        grad_x.data[grad_x.data > 0], grad_y.data[grad_y.data > 0]
    )


def test_img_to_graph_sparse():
    # Check that the edges are in the right position
    #  when using a sparse image with a singleton component
    mask = np.zeros((2, 3), dtype=bool)
    mask[0, 0] = 1
    mask[:, 2] = 1
    x = np.zeros((2, 3))
    x[0, 0] = 1
    x[0, 2] = -1
    x[1, 2] = -2
    grad_x = img_to_graph(x, mask=mask).todense()
    desired = np.array([[1, 0, 0], [0, -1, 1], [0, 1, -2]])
    np.testing.assert_array_equal(grad_x, desired)


def test_grid_to_graph():
    # Checking that the function works with graphs containing no edges
    size = 2
    roi_size = 1
    # Generating two convex parts with one vertex
    # Thus, edges will be empty in _to_graph
    mask = np.zeros((size, size), dtype=bool)
    mask[0:roi_size, 0:roi_size] = True
    mask[-roi_size:, -roi_size:] = True
    mask = mask.reshape(size**2)
    A = grid_to_graph(n_x=size, n_y=size, mask=mask, return_as=np.ndarray)
    assert connected_components(A)[0] == 2

    # check ordering
    mask = np.zeros((2, 3), dtype=bool)
    mask[0, 0] = 1
    mask[:, 2] = 1
    graph = grid_to_graph(2, 3, 1, mask=mask.ravel()).todense()
    desired = np.array([[1, 0, 0], [0, 1, 1], [0, 1, 1]])
    np.testing.assert_array_equal(graph, desired)

    # Checking that the function works whatever the type of mask is
    mask = np.ones((size, size), dtype=np.int16)
    A = grid_to_graph(n_x=size, n_y=size, n_z=size, mask=mask)
    assert connected_components(A)[0] == 1

    # Checking dtype of the graph
    mask = np.ones((size, size))
    A = grid_to_graph(n_x=size, n_y=size, n_z=size, mask=mask, dtype=bool)
    assert A.dtype == bool
    A = grid_to_graph(n_x=size, n_y=size, n_z=size, mask=mask, dtype=int)
    assert A.dtype == int
    A = grid_to_graph(n_x=size, n_y=size, n_z=size, mask=mask, dtype=np.float64)
    assert A.dtype == np.float64


def test_connect_regions(raccoon_face_fxt):
    face = raccoon_face_fxt
    # subsample by 4 to reduce run time
    face = face[::4, ::4]
    for thr in (50, 150):
        mask = face > thr
        graph = img_to_graph(face, mask=mask)
        assert ndimage.label(mask)[1] == connected_components(graph)[0]


def test_connect_regions_with_grid(raccoon_face_fxt):
    face = raccoon_face_fxt

    # subsample by 4 to reduce run time
    face = face[::4, ::4]

    mask = face > 50
    graph = grid_to_graph(*face.shape, mask=mask)
    assert ndimage.label(mask)[1] == connected_components(graph)[0]

    mask = face > 150
    graph = grid_to_graph(*face.shape, mask=mask, dtype=None)
    assert ndimage.label(mask)[1] == connected_components(graph)[0]


@pytest.fixture
def downsampled_face(raccoon_face_fxt):
    face = raccoon_face_fxt
    face = face[::2, ::2] + face[1::2, ::2] + face[::2, 1::2] + face[1::2, 1::2]
    face = face[::2, ::2] + face[1::2, ::2] + face[::2, 1::2] + face[1::2, 1::2]
    face = face.astype(np.float32)
    face /= 16.0
    return face


@pytest.fixture
def orange_face(downsampled_face):
    face = downsampled_face
    face_color = np.zeros(face.shape + (3,))
    face_color[:, :, 0] = 256 - face
    face_color[:, :, 1] = 256 - face / 2
    face_color[:, :, 2] = 256 - face / 4
    return face_color


def _make_images(face):
    # make a collection of faces
    images = np.zeros((3,) + face.shape)
    images[0] = face
    images[1] = face + 1
    images[2] = face + 2
    return images


@pytest.fixture
def downsampled_face_collection(downsampled_face):
    return _make_images(downsampled_face)


def test_extract_patches_all(downsampled_face):
    face = downsampled_face
    i_h, i_w = face.shape
    p_h, p_w = 16, 16
    expected_n_patches = (i_h - p_h + 1) * (i_w - p_w + 1)
    patches = extract_patches_2d(face, (p_h, p_w))
    assert patches.shape == (expected_n_patches, p_h, p_w)


def test_extract_patches_all_color(orange_face):
    face = orange_face
    i_h, i_w = face.shape[:2]
    p_h, p_w = 16, 16
    expected_n_patches = (i_h - p_h + 1) * (i_w - p_w + 1)
    patches = extract_patches_2d(face, (p_h, p_w))
    assert patches.shape == (expected_n_patches, p_h, p_w, 3)


def test_extract_patches_all_rect(downsampled_face):
    face = downsampled_face
    face = face[:, 32:97]
    i_h, i_w = face.shape
    p_h, p_w = 16, 12
    expected_n_patches = (i_h - p_h + 1) * (i_w - p_w + 1)

    patches = extract_patches_2d(face, (p_h, p_w))
    assert patches.shape == (expected_n_patches, p_h, p_w)


def test_extract_patches_max_patches(downsampled_face):
    face = downsampled_face
    i_h, i_w = face.shape
    p_h, p_w = 16, 16

    patches = extract_patches_2d(face, (p_h, p_w), max_patches=100)
    assert patches.shape == (100, p_h, p_w)

    expected_n_patches = int(0.5 * (i_h - p_h + 1) * (i_w - p_w + 1))
    patches = extract_patches_2d(face, (p_h, p_w), max_patches=0.5)
    assert patches.shape == (expected_n_patches, p_h, p_w)

    with pytest.raises(ValueError):
        extract_patches_2d(face, (p_h, p_w), max_patches=2.0)
    with pytest.raises(ValueError):
        extract_patches_2d(face, (p_h, p_w), max_patches=-1.0)


def test_extract_patch_same_size_image(downsampled_face):
    face = downsampled_face
    # Request patches of the same size as image
    # Should return just the single patch a.k.a. the image
    patches = extract_patches_2d(face, face.shape, max_patches=2)
    assert patches.shape[0] == 1


def test_extract_patches_less_than_max_patches(downsampled_face):
    face = downsampled_face
    i_h, i_w = face.shape
    p_h, p_w = 3 * i_h // 4, 3 * i_w // 4
    # this is 3185
    expected_n_patches = (i_h - p_h + 1) * (i_w - p_w + 1)

    patches = extract_patches_2d(face, (p_h, p_w), max_patches=4000)
    assert patches.shape == (expected_n_patches, p_h, p_w)


def test_reconstruct_patches_perfect(downsampled_face):
    face = downsampled_face
    p_h, p_w = 16, 16

    patches = extract_patches_2d(face, (p_h, p_w))
    face_reconstructed = reconstruct_from_patches_2d(patches, face.shape)
    np.testing.assert_array_almost_equal(face, face_reconstructed)


def test_reconstruct_patches_perfect_color(orange_face):
    face = orange_face
    p_h, p_w = 16, 16

    patches = extract_patches_2d(face, (p_h, p_w))
    face_reconstructed = reconstruct_from_patches_2d(patches, face.shape)
    np.testing.assert_array_almost_equal(face, face_reconstructed)


def test_patch_extractor_fit(downsampled_face_collection):
    faces = downsampled_face_collection
    extr = PatchExtractor(patch_size=(8, 8), max_patches=100, random_state=0)
    assert extr == extr.fit(faces)


def test_patch_extractor_max_patches(downsampled_face_collection):
    faces = downsampled_face_collection
    i_h, i_w = faces.shape[1:3]
    p_h, p_w = 8, 8

    max_patches = 100
    expected_n_patches = len(faces) * max_patches
    extr = PatchExtractor(
        patch_size=(p_h, p_w), max_patches=max_patches, random_state=0
    )
    patches = extr.transform(faces)
    assert patches.shape == (expected_n_patches, p_h, p_w)

    max_patches = 0.5
    expected_n_patches = len(faces) * int(
        (i_h - p_h + 1) * (i_w - p_w + 1) * max_patches
    )
    extr = PatchExtractor(
        patch_size=(p_h, p_w), max_patches=max_patches, random_state=0
    )
    patches = extr.transform(faces)
    assert patches.shape == (expected_n_patches, p_h, p_w)


def test_patch_extractor_max_patches_default(downsampled_face_collection):
    faces = downsampled_face_collection
    extr = PatchExtractor(max_patches=100, random_state=0)
    patches = extr.transform(faces)
    assert patches.shape == (len(faces) * 100, 19, 25)


def test_patch_extractor_all_patches(downsampled_face_collection):
    faces = downsampled_face_collection
    i_h, i_w = faces.shape[1:3]
    p_h, p_w = 8, 8
    expected_n_patches = len(faces) * (i_h - p_h + 1) * (i_w - p_w + 1)
    extr = PatchExtractor(patch_size=(p_h, p_w), random_state=0)
    patches = extr.transform(faces)
    assert patches.shape == (expected_n_patches, p_h, p_w)


def test_patch_extractor_color(orange_face):
    faces = _make_images(orange_face)
    i_h, i_w = faces.shape[1:3]
    p_h, p_w = 8, 8
    expected_n_patches = len(faces) * (i_h - p_h + 1) * (i_w - p_w + 1)
    extr = PatchExtractor(patch_size=(p_h, p_w), random_state=0)
    patches = extr.transform(faces)
    assert patches.shape == (expected_n_patches, p_h, p_w, 3)


def test_extract_patches_strided():
    image_shapes_1D = [(10,), (10,), (11,), (10,)]
    patch_sizes_1D = [(1,), (2,), (3,), (8,)]
    patch_steps_1D = [(1,), (1,), (4,), (2,)]

    expected_views_1D = [(10,), (9,), (3,), (2,)]
    last_patch_1D = [(10,), (8,), (8,), (2,)]

    image_shapes_2D = [(10, 20), (10, 20), (10, 20), (11, 20)]
    patch_sizes_2D = [(2, 2), (10, 10), (10, 11), (6, 6)]
    patch_steps_2D = [(5, 5), (3, 10), (3, 4), (4, 2)]

    expected_views_2D = [(2, 4), (1, 2), (1, 3), (2, 8)]
    last_patch_2D = [(5, 15), (0, 10), (0, 8), (4, 14)]

    image_shapes_3D = [(5, 4, 3), (3, 3, 3), (7, 8, 9), (7, 8, 9)]
    patch_sizes_3D = [(2, 2, 3), (2, 2, 2), (1, 7, 3), (1, 3, 3)]
    patch_steps_3D = [(1, 2, 10), (1, 1, 1), (2, 1, 3), (3, 3, 4)]

    expected_views_3D = [(4, 2, 1), (2, 2, 2), (4, 2, 3), (3, 2, 2)]
    last_patch_3D = [(3, 2, 0), (1, 1, 1), (6, 1, 6), (6, 3, 4)]

    image_shapes = image_shapes_1D + image_shapes_2D + image_shapes_3D
    patch_sizes = patch_sizes_1D + patch_sizes_2D + patch_sizes_3D
    patch_steps = patch_steps_1D + patch_steps_2D + patch_steps_3D
    expected_views = expected_views_1D + expected_views_2D + expected_views_3D
    last_patches = last_patch_1D + last_patch_2D + last_patch_3D

    for image_shape, patch_size, patch_step, expected_view, last_patch in zip(
        image_shapes, patch_sizes, patch_steps, expected_views, last_patches
    ):
        image = np.arange(np.prod(image_shape)).reshape(image_shape)
        patches = _extract_patches(
            image, patch_shape=patch_size, extraction_step=patch_step
        )

        ndim = len(image_shape)

        assert patches.shape[:ndim] == expected_view
        last_patch_slices = tuple(
            slice(i, i + j, None) for i, j in zip(last_patch, patch_size)
        )
        assert (
            patches[(-1, None, None) * ndim] == image[last_patch_slices].squeeze()
        ).all()


def test_extract_patches_square(downsampled_face):
    # test same patch size for all dimensions
    face = downsampled_face
    i_h, i_w = face.shape
    p = 8
    expected_n_patches = ((i_h - p + 1), (i_w - p + 1))
    patches = _extract_patches(face, patch_shape=p)
    assert patches.shape == (expected_n_patches[0], expected_n_patches[1], p, p)


def test_width_patch():
    # width and height of the patch should be less than the image
    x = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
    with pytest.raises(ValueError):
        extract_patches_2d(x, (4, 1))
    with pytest.raises(ValueError):
        extract_patches_2d(x, (1, 4))


def test_patch_extractor_wrong_input(orange_face):
    """Check that an informative error is raised if the patch_size is not valid."""
    faces = _make_images(orange_face)
    err_msg = "patch_size must be a tuple of two integers"
    extractor = PatchExtractor(patch_size=(8, 8, 8))
    with pytest.raises(ValueError, match=err_msg):
        extractor.transform(faces)