File: _univariate_selection.py

package info (click to toggle)
scikit-learn 1.4.2%2Bdfsg-8
  • links: PTS, VCS
  • area: main
  • in suites: forky, trixie
  • size: 25,036 kB
  • sloc: python: 201,105; cpp: 5,790; ansic: 854; makefile: 304; sh: 56; javascript: 20
file content (1161 lines) | stat: -rw-r--r-- 40,350 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
"""Univariate features selection."""

# Authors: V. Michel, B. Thirion, G. Varoquaux, A. Gramfort, E. Duchesnay.
#          L. Buitinck, A. Joly
# License: BSD 3 clause


import warnings
from numbers import Integral, Real

import numpy as np
from scipy import special, stats
from scipy.sparse import issparse

from ..base import BaseEstimator, _fit_context
from ..preprocessing import LabelBinarizer
from ..utils import as_float_array, check_array, check_X_y, safe_mask, safe_sqr
from ..utils._param_validation import Interval, StrOptions, validate_params
from ..utils.extmath import row_norms, safe_sparse_dot
from ..utils.validation import check_is_fitted
from ._base import SelectorMixin


def _clean_nans(scores):
    """
    Fixes Issue #1240: NaNs can't be properly compared, so change them to the
    smallest value of scores's dtype. -inf seems to be unreliable.
    """
    # XXX where should this function be called? fit? scoring functions
    # themselves?
    scores = as_float_array(scores, copy=True)
    scores[np.isnan(scores)] = np.finfo(scores.dtype).min
    return scores


######################################################################
# Scoring functions


# The following function is a rewriting of scipy.stats.f_oneway
# Contrary to the scipy.stats.f_oneway implementation it does not
# copy the data while keeping the inputs unchanged.
def f_oneway(*args):
    """Perform a 1-way ANOVA.

    The one-way ANOVA tests the null hypothesis that 2 or more groups have
    the same population mean. The test is applied to samples from two or
    more groups, possibly with differing sizes.

    Read more in the :ref:`User Guide <univariate_feature_selection>`.

    Parameters
    ----------
    *args : {array-like, sparse matrix}
        Sample1, sample2... The sample measurements should be given as
        arguments.

    Returns
    -------
    f_statistic : float
        The computed F-value of the test.
    p_value : float
        The associated p-value from the F-distribution.

    Notes
    -----
    The ANOVA test has important assumptions that must be satisfied in order
    for the associated p-value to be valid.

    1. The samples are independent
    2. Each sample is from a normally distributed population
    3. The population standard deviations of the groups are all equal. This
       property is known as homoscedasticity.

    If these assumptions are not true for a given set of data, it may still be
    possible to use the Kruskal-Wallis H-test (`scipy.stats.kruskal`_) although
    with some loss of power.

    The algorithm is from Heiman[2], pp.394-7.

    See ``scipy.stats.f_oneway`` that should give the same results while
    being less efficient.

    References
    ----------
    .. [1] Lowry, Richard.  "Concepts and Applications of Inferential
           Statistics". Chapter 14.
           http://vassarstats.net/textbook

    .. [2] Heiman, G.W.  Research Methods in Statistics. 2002.
    """
    n_classes = len(args)
    args = [as_float_array(a) for a in args]
    n_samples_per_class = np.array([a.shape[0] for a in args])
    n_samples = np.sum(n_samples_per_class)
    ss_alldata = sum(safe_sqr(a).sum(axis=0) for a in args)
    sums_args = [np.asarray(a.sum(axis=0)) for a in args]
    square_of_sums_alldata = sum(sums_args) ** 2
    square_of_sums_args = [s**2 for s in sums_args]
    sstot = ss_alldata - square_of_sums_alldata / float(n_samples)
    ssbn = 0.0
    for k, _ in enumerate(args):
        ssbn += square_of_sums_args[k] / n_samples_per_class[k]
    ssbn -= square_of_sums_alldata / float(n_samples)
    sswn = sstot - ssbn
    dfbn = n_classes - 1
    dfwn = n_samples - n_classes
    msb = ssbn / float(dfbn)
    msw = sswn / float(dfwn)
    constant_features_idx = np.where(msw == 0.0)[0]
    if np.nonzero(msb)[0].size != msb.size and constant_features_idx.size:
        warnings.warn("Features %s are constant." % constant_features_idx, UserWarning)
    f = msb / msw
    # flatten matrix to vector in sparse case
    f = np.asarray(f).ravel()
    prob = special.fdtrc(dfbn, dfwn, f)
    return f, prob


@validate_params(
    {
        "X": ["array-like", "sparse matrix"],
        "y": ["array-like"],
    },
    prefer_skip_nested_validation=True,
)
def f_classif(X, y):
    """Compute the ANOVA F-value for the provided sample.

    Read more in the :ref:`User Guide <univariate_feature_selection>`.

    Parameters
    ----------
    X : {array-like, sparse matrix} of shape (n_samples, n_features)
        The set of regressors that will be tested sequentially.

    y : array-like of shape (n_samples,)
        The target vector.

    Returns
    -------
    f_statistic : ndarray of shape (n_features,)
        F-statistic for each feature.

    p_values : ndarray of shape (n_features,)
        P-values associated with the F-statistic.

    See Also
    --------
    chi2 : Chi-squared stats of non-negative features for classification tasks.
    f_regression : F-value between label/feature for regression tasks.

    Examples
    --------
    >>> from sklearn.datasets import make_classification
    >>> from sklearn.feature_selection import f_classif
    >>> X, y = make_classification(
    ...     n_samples=100, n_features=10, n_informative=2, n_clusters_per_class=1,
    ...     shuffle=False, random_state=42
    ... )
    >>> f_statistic, p_values = f_classif(X, y)
    >>> f_statistic
    array([2.2...e+02, 7.0...e-01, 1.6...e+00, 9.3...e-01,
           5.4...e+00, 3.2...e-01, 4.7...e-02, 5.7...e-01,
           7.5...e-01, 8.9...e-02])
    >>> p_values
    array([7.1...e-27, 4.0...e-01, 1.9...e-01, 3.3...e-01,
           2.2...e-02, 5.7...e-01, 8.2...e-01, 4.5...e-01,
           3.8...e-01, 7.6...e-01])
    """
    X, y = check_X_y(X, y, accept_sparse=["csr", "csc", "coo"])
    args = [X[safe_mask(X, y == k)] for k in np.unique(y)]
    return f_oneway(*args)


def _chisquare(f_obs, f_exp):
    """Fast replacement for scipy.stats.chisquare.

    Version from https://github.com/scipy/scipy/pull/2525 with additional
    optimizations.
    """
    f_obs = np.asarray(f_obs, dtype=np.float64)

    k = len(f_obs)
    # Reuse f_obs for chi-squared statistics
    chisq = f_obs
    chisq -= f_exp
    chisq **= 2
    with np.errstate(invalid="ignore"):
        chisq /= f_exp
    chisq = chisq.sum(axis=0)
    return chisq, special.chdtrc(k - 1, chisq)


@validate_params(
    {
        "X": ["array-like", "sparse matrix"],
        "y": ["array-like"],
    },
    prefer_skip_nested_validation=True,
)
def chi2(X, y):
    """Compute chi-squared stats between each non-negative feature and class.

    This score can be used to select the `n_features` features with the
    highest values for the test chi-squared statistic from X, which must
    contain only **non-negative features** such as booleans or frequencies
    (e.g., term counts in document classification), relative to the classes.

    Recall that the chi-square test measures dependence between stochastic
    variables, so using this function "weeds out" the features that are the
    most likely to be independent of class and therefore irrelevant for
    classification.

    Read more in the :ref:`User Guide <univariate_feature_selection>`.

    Parameters
    ----------
    X : {array-like, sparse matrix} of shape (n_samples, n_features)
        Sample vectors.

    y : array-like of shape (n_samples,)
        Target vector (class labels).

    Returns
    -------
    chi2 : ndarray of shape (n_features,)
        Chi2 statistics for each feature.

    p_values : ndarray of shape (n_features,)
        P-values for each feature.

    See Also
    --------
    f_classif : ANOVA F-value between label/feature for classification tasks.
    f_regression : F-value between label/feature for regression tasks.

    Notes
    -----
    Complexity of this algorithm is O(n_classes * n_features).

    Examples
    --------
    >>> import numpy as np
    >>> from sklearn.feature_selection import chi2
    >>> X = np.array([[1, 1, 3],
    ...               [0, 1, 5],
    ...               [5, 4, 1],
    ...               [6, 6, 2],
    ...               [1, 4, 0],
    ...               [0, 0, 0]])
    >>> y = np.array([1, 1, 0, 0, 2, 2])
    >>> chi2_stats, p_values = chi2(X, y)
    >>> chi2_stats
    array([15.3...,  6.5       ,  8.9...])
    >>> p_values
    array([0.0004..., 0.0387..., 0.0116... ])
    """

    # XXX: we might want to do some of the following in logspace instead for
    # numerical stability.
    # Converting X to float allows getting better performance for the
    # safe_sparse_dot call made below.
    X = check_array(X, accept_sparse="csr", dtype=(np.float64, np.float32))
    if np.any((X.data if issparse(X) else X) < 0):
        raise ValueError("Input X must be non-negative.")

    # Use a sparse representation for Y by default to reduce memory usage when
    # y has many unique classes.
    Y = LabelBinarizer(sparse_output=True).fit_transform(y)
    if Y.shape[1] == 1:
        Y = Y.toarray()
        Y = np.append(1 - Y, Y, axis=1)

    observed = safe_sparse_dot(Y.T, X)  # n_classes * n_features

    if issparse(observed):
        # convert back to a dense array before calling _chisquare
        # XXX: could _chisquare be reimplement to accept sparse matrices for
        # cases where both n_classes and n_features are large (and X is
        # sparse)?
        observed = observed.toarray()

    feature_count = X.sum(axis=0).reshape(1, -1)
    class_prob = Y.mean(axis=0).reshape(1, -1)
    expected = np.dot(class_prob.T, feature_count)

    return _chisquare(observed, expected)


@validate_params(
    {
        "X": ["array-like", "sparse matrix"],
        "y": ["array-like"],
        "center": ["boolean"],
        "force_finite": ["boolean"],
    },
    prefer_skip_nested_validation=True,
)
def r_regression(X, y, *, center=True, force_finite=True):
    """Compute Pearson's r for each features and the target.

    Pearson's r is also known as the Pearson correlation coefficient.

    Linear model for testing the individual effect of each of many regressors.
    This is a scoring function to be used in a feature selection procedure, not
    a free standing feature selection procedure.

    The cross correlation between each regressor and the target is computed
    as::

        E[(X[:, i] - mean(X[:, i])) * (y - mean(y))] / (std(X[:, i]) * std(y))

    For more on usage see the :ref:`User Guide <univariate_feature_selection>`.

    .. versionadded:: 1.0

    Parameters
    ----------
    X : {array-like, sparse matrix} of shape (n_samples, n_features)
        The data matrix.

    y : array-like of shape (n_samples,)
        The target vector.

    center : bool, default=True
        Whether or not to center the data matrix `X` and the target vector `y`.
        By default, `X` and `y` will be centered.

    force_finite : bool, default=True
        Whether or not to force the Pearson's R correlation to be finite.
        In the particular case where some features in `X` or the target `y`
        are constant, the Pearson's R correlation is not defined. When
        `force_finite=False`, a correlation of `np.nan` is returned to
        acknowledge this case. When `force_finite=True`, this value will be
        forced to a minimal correlation of `0.0`.

        .. versionadded:: 1.1

    Returns
    -------
    correlation_coefficient : ndarray of shape (n_features,)
        Pearson's R correlation coefficients of features.

    See Also
    --------
    f_regression: Univariate linear regression tests returning f-statistic
        and p-values.
    mutual_info_regression: Mutual information for a continuous target.
    f_classif: ANOVA F-value between label/feature for classification tasks.
    chi2: Chi-squared stats of non-negative features for classification tasks.

    Examples
    --------
    >>> from sklearn.datasets import make_regression
    >>> from sklearn.feature_selection import r_regression
    >>> X, y = make_regression(
    ...     n_samples=50, n_features=3, n_informative=1, noise=1e-4, random_state=42
    ... )
    >>> r_regression(X, y)
    array([-0.15...,  1.        , -0.22...])
    """
    X, y = check_X_y(X, y, accept_sparse=["csr", "csc", "coo"], dtype=np.float64)
    n_samples = X.shape[0]

    # Compute centered values
    # Note that E[(x - mean(x))*(y - mean(y))] = E[x*(y - mean(y))], so we
    # need not center X
    if center:
        y = y - np.mean(y)
        # TODO: for Scipy <= 1.10, `isspmatrix(X)` returns `True` for sparse arrays.
        # Here, we check the output of the `.mean` operation that returns a `np.matrix`
        # for sparse matrices while a `np.array` for dense and sparse arrays.
        # We can reconsider using `isspmatrix` when the minimum version is
        # SciPy >= 1.11
        X_means = X.mean(axis=0)
        X_means = X_means.getA1() if isinstance(X_means, np.matrix) else X_means
        # Compute the scaled standard deviations via moments
        X_norms = np.sqrt(row_norms(X.T, squared=True) - n_samples * X_means**2)
    else:
        X_norms = row_norms(X.T)

    correlation_coefficient = safe_sparse_dot(y, X)
    with np.errstate(divide="ignore", invalid="ignore"):
        correlation_coefficient /= X_norms
        correlation_coefficient /= np.linalg.norm(y)

    if force_finite and not np.isfinite(correlation_coefficient).all():
        # case where the target or some features are constant
        # the correlation coefficient(s) is/are set to the minimum (i.e. 0.0)
        nan_mask = np.isnan(correlation_coefficient)
        correlation_coefficient[nan_mask] = 0.0
    return correlation_coefficient


@validate_params(
    {
        "X": ["array-like", "sparse matrix"],
        "y": ["array-like"],
        "center": ["boolean"],
        "force_finite": ["boolean"],
    },
    prefer_skip_nested_validation=True,
)
def f_regression(X, y, *, center=True, force_finite=True):
    """Univariate linear regression tests returning F-statistic and p-values.

    Quick linear model for testing the effect of a single regressor,
    sequentially for many regressors.

    This is done in 2 steps:

    1. The cross correlation between each regressor and the target is computed
       using :func:`r_regression` as::

           E[(X[:, i] - mean(X[:, i])) * (y - mean(y))] / (std(X[:, i]) * std(y))

    2. It is converted to an F score and then to a p-value.

    :func:`f_regression` is derived from :func:`r_regression` and will rank
    features in the same order if all the features are positively correlated
    with the target.

    Note however that contrary to :func:`f_regression`, :func:`r_regression`
    values lie in [-1, 1] and can thus be negative. :func:`f_regression` is
    therefore recommended as a feature selection criterion to identify
    potentially predictive feature for a downstream classifier, irrespective of
    the sign of the association with the target variable.

    Furthermore :func:`f_regression` returns p-values while
    :func:`r_regression` does not.

    Read more in the :ref:`User Guide <univariate_feature_selection>`.

    Parameters
    ----------
    X : {array-like, sparse matrix} of shape (n_samples, n_features)
        The data matrix.

    y : array-like of shape (n_samples,)
        The target vector.

    center : bool, default=True
        Whether or not to center the data matrix `X` and the target vector `y`.
        By default, `X` and `y` will be centered.

    force_finite : bool, default=True
        Whether or not to force the F-statistics and associated p-values to
        be finite. There are two cases where the F-statistic is expected to not
        be finite:

        - when the target `y` or some features in `X` are constant. In this
          case, the Pearson's R correlation is not defined leading to obtain
          `np.nan` values in the F-statistic and p-value. When
          `force_finite=True`, the F-statistic is set to `0.0` and the
          associated p-value is set to `1.0`.
        - when a feature in `X` is perfectly correlated (or
          anti-correlated) with the target `y`. In this case, the F-statistic
          is expected to be `np.inf`. When `force_finite=True`, the F-statistic
          is set to `np.finfo(dtype).max` and the associated p-value is set to
          `0.0`.

        .. versionadded:: 1.1

    Returns
    -------
    f_statistic : ndarray of shape (n_features,)
        F-statistic for each feature.

    p_values : ndarray of shape (n_features,)
        P-values associated with the F-statistic.

    See Also
    --------
    r_regression: Pearson's R between label/feature for regression tasks.
    f_classif: ANOVA F-value between label/feature for classification tasks.
    chi2: Chi-squared stats of non-negative features for classification tasks.
    SelectKBest: Select features based on the k highest scores.
    SelectFpr: Select features based on a false positive rate test.
    SelectFdr: Select features based on an estimated false discovery rate.
    SelectFwe: Select features based on family-wise error rate.
    SelectPercentile: Select features based on percentile of the highest
        scores.

    Examples
    --------
    >>> from sklearn.datasets import make_regression
    >>> from sklearn.feature_selection import f_regression
    >>> X, y = make_regression(
    ...     n_samples=50, n_features=3, n_informative=1, noise=1e-4, random_state=42
    ... )
    >>> f_statistic, p_values = f_regression(X, y)
    >>> f_statistic
    array([1.2...+00, 2.6...+13, 2.6...+00])
    >>> p_values
    array([2.7..., 1.5..., 1.0...])
    """
    correlation_coefficient = r_regression(
        X, y, center=center, force_finite=force_finite
    )
    deg_of_freedom = y.size - (2 if center else 1)

    corr_coef_squared = correlation_coefficient**2

    with np.errstate(divide="ignore", invalid="ignore"):
        f_statistic = corr_coef_squared / (1 - corr_coef_squared) * deg_of_freedom
        p_values = stats.f.sf(f_statistic, 1, deg_of_freedom)

    if force_finite and not np.isfinite(f_statistic).all():
        # case where there is a perfect (anti-)correlation
        # f-statistics can be set to the maximum and p-values to zero
        mask_inf = np.isinf(f_statistic)
        f_statistic[mask_inf] = np.finfo(f_statistic.dtype).max
        # case where the target or some features are constant
        # f-statistics would be minimum and thus p-values large
        mask_nan = np.isnan(f_statistic)
        f_statistic[mask_nan] = 0.0
        p_values[mask_nan] = 1.0
    return f_statistic, p_values


######################################################################
# Base classes


class _BaseFilter(SelectorMixin, BaseEstimator):
    """Initialize the univariate feature selection.

    Parameters
    ----------
    score_func : callable
        Function taking two arrays X and y, and returning a pair of arrays
        (scores, pvalues) or a single array with scores.
    """

    _parameter_constraints: dict = {"score_func": [callable]}

    def __init__(self, score_func):
        self.score_func = score_func

    @_fit_context(prefer_skip_nested_validation=True)
    def fit(self, X, y=None):
        """Run score function on (X, y) and get the appropriate features.

        Parameters
        ----------
        X : array-like of shape (n_samples, n_features)
            The training input samples.

        y : array-like of shape (n_samples,) or None
            The target values (class labels in classification, real numbers in
            regression). If the selector is unsupervised then `y` can be set to `None`.

        Returns
        -------
        self : object
            Returns the instance itself.
        """
        if y is None:
            X = self._validate_data(X, accept_sparse=["csr", "csc"])
        else:
            X, y = self._validate_data(
                X, y, accept_sparse=["csr", "csc"], multi_output=True
            )

        self._check_params(X, y)
        score_func_ret = self.score_func(X, y)
        if isinstance(score_func_ret, (list, tuple)):
            self.scores_, self.pvalues_ = score_func_ret
            self.pvalues_ = np.asarray(self.pvalues_)
        else:
            self.scores_ = score_func_ret
            self.pvalues_ = None

        self.scores_ = np.asarray(self.scores_)

        return self

    def _check_params(self, X, y):
        pass

    def _more_tags(self):
        return {"requires_y": True}


######################################################################
# Specific filters
######################################################################
class SelectPercentile(_BaseFilter):
    """Select features according to a percentile of the highest scores.

    Read more in the :ref:`User Guide <univariate_feature_selection>`.

    Parameters
    ----------
    score_func : callable, default=f_classif
        Function taking two arrays X and y, and returning a pair of arrays
        (scores, pvalues) or a single array with scores.
        Default is f_classif (see below "See Also"). The default function only
        works with classification tasks.

        .. versionadded:: 0.18

    percentile : int, default=10
        Percent of features to keep.

    Attributes
    ----------
    scores_ : array-like of shape (n_features,)
        Scores of features.

    pvalues_ : array-like of shape (n_features,)
        p-values of feature scores, None if `score_func` returned only scores.

    n_features_in_ : int
        Number of features seen during :term:`fit`.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    See Also
    --------
    f_classif : ANOVA F-value between label/feature for classification tasks.
    mutual_info_classif : Mutual information for a discrete target.
    chi2 : Chi-squared stats of non-negative features for classification tasks.
    f_regression : F-value between label/feature for regression tasks.
    mutual_info_regression : Mutual information for a continuous target.
    SelectKBest : Select features based on the k highest scores.
    SelectFpr : Select features based on a false positive rate test.
    SelectFdr : Select features based on an estimated false discovery rate.
    SelectFwe : Select features based on family-wise error rate.
    GenericUnivariateSelect : Univariate feature selector with configurable
        mode.

    Notes
    -----
    Ties between features with equal scores will be broken in an unspecified
    way.

    This filter supports unsupervised feature selection that only requests `X` for
    computing the scores.

    Examples
    --------
    >>> from sklearn.datasets import load_digits
    >>> from sklearn.feature_selection import SelectPercentile, chi2
    >>> X, y = load_digits(return_X_y=True)
    >>> X.shape
    (1797, 64)
    >>> X_new = SelectPercentile(chi2, percentile=10).fit_transform(X, y)
    >>> X_new.shape
    (1797, 7)
    """

    _parameter_constraints: dict = {
        **_BaseFilter._parameter_constraints,
        "percentile": [Interval(Real, 0, 100, closed="both")],
    }

    def __init__(self, score_func=f_classif, *, percentile=10):
        super().__init__(score_func=score_func)
        self.percentile = percentile

    def _get_support_mask(self):
        check_is_fitted(self)

        # Cater for NaNs
        if self.percentile == 100:
            return np.ones(len(self.scores_), dtype=bool)
        elif self.percentile == 0:
            return np.zeros(len(self.scores_), dtype=bool)

        scores = _clean_nans(self.scores_)
        threshold = np.percentile(scores, 100 - self.percentile)
        mask = scores > threshold
        ties = np.where(scores == threshold)[0]
        if len(ties):
            max_feats = int(len(scores) * self.percentile / 100)
            kept_ties = ties[: max_feats - mask.sum()]
            mask[kept_ties] = True
        return mask

    def _more_tags(self):
        return {"requires_y": False}


class SelectKBest(_BaseFilter):
    """Select features according to the k highest scores.

    Read more in the :ref:`User Guide <univariate_feature_selection>`.

    Parameters
    ----------
    score_func : callable, default=f_classif
        Function taking two arrays X and y, and returning a pair of arrays
        (scores, pvalues) or a single array with scores.
        Default is f_classif (see below "See Also"). The default function only
        works with classification tasks.

        .. versionadded:: 0.18

    k : int or "all", default=10
        Number of top features to select.
        The "all" option bypasses selection, for use in a parameter search.

    Attributes
    ----------
    scores_ : array-like of shape (n_features,)
        Scores of features.

    pvalues_ : array-like of shape (n_features,)
        p-values of feature scores, None if `score_func` returned only scores.

    n_features_in_ : int
        Number of features seen during :term:`fit`.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    See Also
    --------
    f_classif: ANOVA F-value between label/feature for classification tasks.
    mutual_info_classif: Mutual information for a discrete target.
    chi2: Chi-squared stats of non-negative features for classification tasks.
    f_regression: F-value between label/feature for regression tasks.
    mutual_info_regression: Mutual information for a continuous target.
    SelectPercentile: Select features based on percentile of the highest
        scores.
    SelectFpr : Select features based on a false positive rate test.
    SelectFdr : Select features based on an estimated false discovery rate.
    SelectFwe : Select features based on family-wise error rate.
    GenericUnivariateSelect : Univariate feature selector with configurable
        mode.

    Notes
    -----
    Ties between features with equal scores will be broken in an unspecified
    way.

    This filter supports unsupervised feature selection that only requests `X` for
    computing the scores.

    Examples
    --------
    >>> from sklearn.datasets import load_digits
    >>> from sklearn.feature_selection import SelectKBest, chi2
    >>> X, y = load_digits(return_X_y=True)
    >>> X.shape
    (1797, 64)
    >>> X_new = SelectKBest(chi2, k=20).fit_transform(X, y)
    >>> X_new.shape
    (1797, 20)
    """

    _parameter_constraints: dict = {
        **_BaseFilter._parameter_constraints,
        "k": [StrOptions({"all"}), Interval(Integral, 0, None, closed="left")],
    }

    def __init__(self, score_func=f_classif, *, k=10):
        super().__init__(score_func=score_func)
        self.k = k

    def _check_params(self, X, y):
        if not isinstance(self.k, str) and self.k > X.shape[1]:
            warnings.warn(
                f"k={self.k} is greater than n_features={X.shape[1]}. "
                "All the features will be returned."
            )

    def _get_support_mask(self):
        check_is_fitted(self)

        if self.k == "all":
            return np.ones(self.scores_.shape, dtype=bool)
        elif self.k == 0:
            return np.zeros(self.scores_.shape, dtype=bool)
        else:
            scores = _clean_nans(self.scores_)
            mask = np.zeros(scores.shape, dtype=bool)

            # Request a stable sort. Mergesort takes more memory (~40MB per
            # megafeature on x86-64).
            mask[np.argsort(scores, kind="mergesort")[-self.k :]] = 1
            return mask

    def _more_tags(self):
        return {"requires_y": False}


class SelectFpr(_BaseFilter):
    """Filter: Select the pvalues below alpha based on a FPR test.

    FPR test stands for False Positive Rate test. It controls the total
    amount of false detections.

    Read more in the :ref:`User Guide <univariate_feature_selection>`.

    Parameters
    ----------
    score_func : callable, default=f_classif
        Function taking two arrays X and y, and returning a pair of arrays
        (scores, pvalues).
        Default is f_classif (see below "See Also"). The default function only
        works with classification tasks.

    alpha : float, default=5e-2
        Features with p-values less than `alpha` are selected.

    Attributes
    ----------
    scores_ : array-like of shape (n_features,)
        Scores of features.

    pvalues_ : array-like of shape (n_features,)
        p-values of feature scores.

    n_features_in_ : int
        Number of features seen during :term:`fit`.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    See Also
    --------
    f_classif : ANOVA F-value between label/feature for classification tasks.
    chi2 : Chi-squared stats of non-negative features for classification tasks.
    mutual_info_classif: Mutual information for a discrete target.
    f_regression : F-value between label/feature for regression tasks.
    mutual_info_regression : Mutual information for a continuous target.
    SelectPercentile : Select features based on percentile of the highest
        scores.
    SelectKBest : Select features based on the k highest scores.
    SelectFdr : Select features based on an estimated false discovery rate.
    SelectFwe : Select features based on family-wise error rate.
    GenericUnivariateSelect : Univariate feature selector with configurable
        mode.

    Examples
    --------
    >>> from sklearn.datasets import load_breast_cancer
    >>> from sklearn.feature_selection import SelectFpr, chi2
    >>> X, y = load_breast_cancer(return_X_y=True)
    >>> X.shape
    (569, 30)
    >>> X_new = SelectFpr(chi2, alpha=0.01).fit_transform(X, y)
    >>> X_new.shape
    (569, 16)
    """

    _parameter_constraints: dict = {
        **_BaseFilter._parameter_constraints,
        "alpha": [Interval(Real, 0, 1, closed="both")],
    }

    def __init__(self, score_func=f_classif, *, alpha=5e-2):
        super().__init__(score_func=score_func)
        self.alpha = alpha

    def _get_support_mask(self):
        check_is_fitted(self)

        return self.pvalues_ < self.alpha


class SelectFdr(_BaseFilter):
    """Filter: Select the p-values for an estimated false discovery rate.

    This uses the Benjamini-Hochberg procedure. ``alpha`` is an upper bound
    on the expected false discovery rate.

    Read more in the :ref:`User Guide <univariate_feature_selection>`.

    Parameters
    ----------
    score_func : callable, default=f_classif
        Function taking two arrays X and y, and returning a pair of arrays
        (scores, pvalues).
        Default is f_classif (see below "See Also"). The default function only
        works with classification tasks.

    alpha : float, default=5e-2
        The highest uncorrected p-value for features to keep.

    Attributes
    ----------
    scores_ : array-like of shape (n_features,)
        Scores of features.

    pvalues_ : array-like of shape (n_features,)
        p-values of feature scores.

    n_features_in_ : int
        Number of features seen during :term:`fit`.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    See Also
    --------
    f_classif : ANOVA F-value between label/feature for classification tasks.
    mutual_info_classif : Mutual information for a discrete target.
    chi2 : Chi-squared stats of non-negative features for classification tasks.
    f_regression : F-value between label/feature for regression tasks.
    mutual_info_regression : Mutual information for a continuous target.
    SelectPercentile : Select features based on percentile of the highest
        scores.
    SelectKBest : Select features based on the k highest scores.
    SelectFpr : Select features based on a false positive rate test.
    SelectFwe : Select features based on family-wise error rate.
    GenericUnivariateSelect : Univariate feature selector with configurable
        mode.

    References
    ----------
    https://en.wikipedia.org/wiki/False_discovery_rate

    Examples
    --------
    >>> from sklearn.datasets import load_breast_cancer
    >>> from sklearn.feature_selection import SelectFdr, chi2
    >>> X, y = load_breast_cancer(return_X_y=True)
    >>> X.shape
    (569, 30)
    >>> X_new = SelectFdr(chi2, alpha=0.01).fit_transform(X, y)
    >>> X_new.shape
    (569, 16)
    """

    _parameter_constraints: dict = {
        **_BaseFilter._parameter_constraints,
        "alpha": [Interval(Real, 0, 1, closed="both")],
    }

    def __init__(self, score_func=f_classif, *, alpha=5e-2):
        super().__init__(score_func=score_func)
        self.alpha = alpha

    def _get_support_mask(self):
        check_is_fitted(self)

        n_features = len(self.pvalues_)
        sv = np.sort(self.pvalues_)
        selected = sv[
            sv <= float(self.alpha) / n_features * np.arange(1, n_features + 1)
        ]
        if selected.size == 0:
            return np.zeros_like(self.pvalues_, dtype=bool)
        return self.pvalues_ <= selected.max()


class SelectFwe(_BaseFilter):
    """Filter: Select the p-values corresponding to Family-wise error rate.

    Read more in the :ref:`User Guide <univariate_feature_selection>`.

    Parameters
    ----------
    score_func : callable, default=f_classif
        Function taking two arrays X and y, and returning a pair of arrays
        (scores, pvalues).
        Default is f_classif (see below "See Also"). The default function only
        works with classification tasks.

    alpha : float, default=5e-2
        The highest uncorrected p-value for features to keep.

    Attributes
    ----------
    scores_ : array-like of shape (n_features,)
        Scores of features.

    pvalues_ : array-like of shape (n_features,)
        p-values of feature scores.

    n_features_in_ : int
        Number of features seen during :term:`fit`.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    See Also
    --------
    f_classif : ANOVA F-value between label/feature for classification tasks.
    chi2 : Chi-squared stats of non-negative features for classification tasks.
    f_regression : F-value between label/feature for regression tasks.
    SelectPercentile : Select features based on percentile of the highest
        scores.
    SelectKBest : Select features based on the k highest scores.
    SelectFpr : Select features based on a false positive rate test.
    SelectFdr : Select features based on an estimated false discovery rate.
    GenericUnivariateSelect : Univariate feature selector with configurable
        mode.

    Examples
    --------
    >>> from sklearn.datasets import load_breast_cancer
    >>> from sklearn.feature_selection import SelectFwe, chi2
    >>> X, y = load_breast_cancer(return_X_y=True)
    >>> X.shape
    (569, 30)
    >>> X_new = SelectFwe(chi2, alpha=0.01).fit_transform(X, y)
    >>> X_new.shape
    (569, 15)
    """

    _parameter_constraints: dict = {
        **_BaseFilter._parameter_constraints,
        "alpha": [Interval(Real, 0, 1, closed="both")],
    }

    def __init__(self, score_func=f_classif, *, alpha=5e-2):
        super().__init__(score_func=score_func)
        self.alpha = alpha

    def _get_support_mask(self):
        check_is_fitted(self)

        return self.pvalues_ < self.alpha / len(self.pvalues_)


######################################################################
# Generic filter
######################################################################


# TODO this class should fit on either p-values or scores,
# depending on the mode.
class GenericUnivariateSelect(_BaseFilter):
    """Univariate feature selector with configurable strategy.

    Read more in the :ref:`User Guide <univariate_feature_selection>`.

    Parameters
    ----------
    score_func : callable, default=f_classif
        Function taking two arrays X and y, and returning a pair of arrays
        (scores, pvalues). For modes 'percentile' or 'kbest' it can return
        a single array scores.

    mode : {'percentile', 'k_best', 'fpr', 'fdr', 'fwe'}, default='percentile'
        Feature selection mode. Note that the `'percentile'` and `'kbest'`
        modes are supporting unsupervised feature selection (when `y` is `None`).

    param : "all", float or int, default=1e-5
        Parameter of the corresponding mode.

    Attributes
    ----------
    scores_ : array-like of shape (n_features,)
        Scores of features.

    pvalues_ : array-like of shape (n_features,)
        p-values of feature scores, None if `score_func` returned scores only.

    n_features_in_ : int
        Number of features seen during :term:`fit`.

        .. versionadded:: 0.24

    feature_names_in_ : ndarray of shape (`n_features_in_`,)
        Names of features seen during :term:`fit`. Defined only when `X`
        has feature names that are all strings.

        .. versionadded:: 1.0

    See Also
    --------
    f_classif : ANOVA F-value between label/feature for classification tasks.
    mutual_info_classif : Mutual information for a discrete target.
    chi2 : Chi-squared stats of non-negative features for classification tasks.
    f_regression : F-value between label/feature for regression tasks.
    mutual_info_regression : Mutual information for a continuous target.
    SelectPercentile : Select features based on percentile of the highest
        scores.
    SelectKBest : Select features based on the k highest scores.
    SelectFpr : Select features based on a false positive rate test.
    SelectFdr : Select features based on an estimated false discovery rate.
    SelectFwe : Select features based on family-wise error rate.

    Examples
    --------
    >>> from sklearn.datasets import load_breast_cancer
    >>> from sklearn.feature_selection import GenericUnivariateSelect, chi2
    >>> X, y = load_breast_cancer(return_X_y=True)
    >>> X.shape
    (569, 30)
    >>> transformer = GenericUnivariateSelect(chi2, mode='k_best', param=20)
    >>> X_new = transformer.fit_transform(X, y)
    >>> X_new.shape
    (569, 20)
    """

    _selection_modes: dict = {
        "percentile": SelectPercentile,
        "k_best": SelectKBest,
        "fpr": SelectFpr,
        "fdr": SelectFdr,
        "fwe": SelectFwe,
    }

    _parameter_constraints: dict = {
        **_BaseFilter._parameter_constraints,
        "mode": [StrOptions(set(_selection_modes.keys()))],
        "param": [Interval(Real, 0, None, closed="left"), StrOptions({"all"})],
    }

    def __init__(self, score_func=f_classif, *, mode="percentile", param=1e-5):
        super().__init__(score_func=score_func)
        self.mode = mode
        self.param = param

    def _make_selector(self):
        selector = self._selection_modes[self.mode](score_func=self.score_func)

        # Now perform some acrobatics to set the right named parameter in
        # the selector
        possible_params = selector._get_param_names()
        possible_params.remove("score_func")
        selector.set_params(**{possible_params[0]: self.param})

        return selector

    def _more_tags(self):
        return {"preserves_dtype": [np.float64, np.float32]}

    def _check_params(self, X, y):
        self._make_selector()._check_params(X, y)

    def _get_support_mask(self):
        check_is_fitted(self)

        selector = self._make_selector()
        selector.pvalues_ = self.pvalues_
        selector.scores_ = self.scores_
        return selector._get_support_mask()