File: test_base.py

package info (click to toggle)
scikit-learn 1.4.2%2Bdfsg-8
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 25,036 kB
  • sloc: python: 201,105; cpp: 5,790; ansic: 854; makefile: 304; sh: 56; javascript: 20
file content (153 lines) | stat: -rw-r--r-- 4,781 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import numpy as np
import pytest
from numpy.testing import assert_array_equal

from sklearn.base import BaseEstimator
from sklearn.feature_selection._base import SelectorMixin
from sklearn.utils.fixes import CSC_CONTAINERS


class StepSelector(SelectorMixin, BaseEstimator):
    """Retain every `step` features (beginning with 0).

    If `step < 1`, then no features are selected.
    """

    def __init__(self, step=2):
        self.step = step

    def fit(self, X, y=None):
        X = self._validate_data(X, accept_sparse="csc")
        return self

    def _get_support_mask(self):
        mask = np.zeros(self.n_features_in_, dtype=bool)
        if self.step >= 1:
            mask[:: self.step] = True
        return mask


support = [True, False] * 5
support_inds = [0, 2, 4, 6, 8]
X = np.arange(20).reshape(2, 10)
Xt = np.arange(0, 20, 2).reshape(2, 5)
Xinv = X.copy()
Xinv[:, 1::2] = 0
y = [0, 1]
feature_names = list("ABCDEFGHIJ")
feature_names_t = feature_names[::2]
feature_names_inv = np.array(feature_names)
feature_names_inv[1::2] = ""


def test_transform_dense():
    sel = StepSelector()
    Xt_actual = sel.fit(X, y).transform(X)
    Xt_actual2 = StepSelector().fit_transform(X, y)
    assert_array_equal(Xt, Xt_actual)
    assert_array_equal(Xt, Xt_actual2)

    # Check dtype matches
    assert np.int32 == sel.transform(X.astype(np.int32)).dtype
    assert np.float32 == sel.transform(X.astype(np.float32)).dtype

    # Check 1d list and other dtype:
    names_t_actual = sel.transform([feature_names])
    assert_array_equal(feature_names_t, names_t_actual.ravel())

    # Check wrong shape raises error
    with pytest.raises(ValueError):
        sel.transform(np.array([[1], [2]]))


@pytest.mark.parametrize("csc_container", CSC_CONTAINERS)
def test_transform_sparse(csc_container):
    X_sp = csc_container(X)
    sel = StepSelector()
    Xt_actual = sel.fit(X_sp).transform(X_sp)
    Xt_actual2 = sel.fit_transform(X_sp)
    assert_array_equal(Xt, Xt_actual.toarray())
    assert_array_equal(Xt, Xt_actual2.toarray())

    # Check dtype matches
    assert np.int32 == sel.transform(X_sp.astype(np.int32)).dtype
    assert np.float32 == sel.transform(X_sp.astype(np.float32)).dtype

    # Check wrong shape raises error
    with pytest.raises(ValueError):
        sel.transform(np.array([[1], [2]]))


def test_inverse_transform_dense():
    sel = StepSelector()
    Xinv_actual = sel.fit(X, y).inverse_transform(Xt)
    assert_array_equal(Xinv, Xinv_actual)

    # Check dtype matches
    assert np.int32 == sel.inverse_transform(Xt.astype(np.int32)).dtype
    assert np.float32 == sel.inverse_transform(Xt.astype(np.float32)).dtype

    # Check 1d list and other dtype:
    names_inv_actual = sel.inverse_transform([feature_names_t])
    assert_array_equal(feature_names_inv, names_inv_actual.ravel())

    # Check wrong shape raises error
    with pytest.raises(ValueError):
        sel.inverse_transform(np.array([[1], [2]]))


@pytest.mark.parametrize("csc_container", CSC_CONTAINERS)
def test_inverse_transform_sparse(csc_container):
    X_sp = csc_container(X)
    Xt_sp = csc_container(Xt)
    sel = StepSelector()
    Xinv_actual = sel.fit(X_sp).inverse_transform(Xt_sp)
    assert_array_equal(Xinv, Xinv_actual.toarray())

    # Check dtype matches
    assert np.int32 == sel.inverse_transform(Xt_sp.astype(np.int32)).dtype
    assert np.float32 == sel.inverse_transform(Xt_sp.astype(np.float32)).dtype

    # Check wrong shape raises error
    with pytest.raises(ValueError):
        sel.inverse_transform(np.array([[1], [2]]))


def test_get_support():
    sel = StepSelector()
    sel.fit(X, y)
    assert_array_equal(support, sel.get_support())
    assert_array_equal(support_inds, sel.get_support(indices=True))


def test_output_dataframe():
    """Check output dtypes for dataframes is consistent with the input dtypes."""
    pd = pytest.importorskip("pandas")

    X = pd.DataFrame(
        {
            "a": pd.Series([1.0, 2.4, 4.5], dtype=np.float32),
            "b": pd.Series(["a", "b", "a"], dtype="category"),
            "c": pd.Series(["j", "b", "b"], dtype="category"),
            "d": pd.Series([3.0, 2.4, 1.2], dtype=np.float64),
        }
    )

    for step in [2, 3]:
        sel = StepSelector(step=step).set_output(transform="pandas")
        sel.fit(X)

        output = sel.transform(X)
        for name, dtype in output.dtypes.items():
            assert dtype == X.dtypes[name]

    # step=0 will select nothing
    sel0 = StepSelector(step=0).set_output(transform="pandas")
    sel0.fit(X, y)

    msg = "No features were selected"
    with pytest.warns(UserWarning, match=msg):
        output0 = sel0.transform(X)

    assert_array_equal(output0.index, X.index)
    assert output0.shape == (X.shape[0], 0)